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ON A REVERSE OF THE TAN–XIE INEQUALITY

FOR SECTOR MATRICES AND ITS APPLICATIONS

LEILA NASIRI ∗ AND SHIGERU FURUICHI

(Communicated by M. Niezgoda)

Abstract. In this short paper, we establish a reverse of the derived inequalities for sector matrices
by Tan and Xie, with Kantorovich constant. Then, as application of our main theorem, some
inequalities for determinant and unitarily invariant norm are presented.

1. Introduction

Let Mn and M+
n denote the set of all n× n matrices and the set of all n× n

positive semidefinite matrices with entries in C, respectivey. For A∈Mn, the cartesian
decomposition of A is presented as

A = ℜA+ iℑA,

where ℜA = A+A∗
2 and ℑA = A−A∗

2i are the real and imaginary parts of A, respectively.
The matrix A ∈ Mn is called accretive, if ℜA is positive definite. Also, the matrix
A ∈ Mn is called accretive-disipative, if both ℜA and ℑA are positive definite. For
α ∈ [

0, π
2

)
, define a sector as follows:

Sα = {z ∈ C : ℜz > 0, |ℑz| � (ℜz) tanα}.

Here, we recall that the numerical range of A ∈ Mn is defined by

W (A) = {x∗Ax : x ∈ C
n,x∗x = 1}.

The matrix A ∈ Mn is called sector, if whose numerical range is contained in sector
Sα . In other words, W (A) ⊂ Sα . Clearly, any sector matrix is accretive with extra
information about the angle α . Since W (A) ⊂ Sα implies that W (X∗AX) ⊂ Sα for
any nonsingular matrix X ∈ Mn , also W (A−1) ⊂ Sα , that is, inverse of every sector
matrix is a sector matrix. Indeed, by defintion, W (A) ⊂ Sα is equivalent to ±ℑA �
(tanα)ℜA . This inequality means the Löewner partial order. Therefore, ±XℑAX∗ �
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(tanα)XℜAX∗ which is equivalent to W (X∗AX) ⊂ Sα . In addition, if we take X =
A−1 , then we have

±A−1 A−A∗

2i

(
A−1)∗ � (tanα)A−1 A+A∗

2

(
A−1)∗ .

Thus we have

∓A−1− (
A−1

)∗
2i

� (tanα)

(
A−1

)∗ +A−1

2

which means ±ℑA−1 � (tanα)ℜA−1 . This is equivalent to W (A−1) ⊂ Sα .
For A,B ∈ M+

n , the weighted geometric mean, the weighted arithmetic mean and
the weighted harmonic mean are defined, respectively, as follows:

A�vB = A
1
2 (A− 1

2 BA− 1
2 )vA

1
2 ,A∇vB = (1− v)A+ vB,A!vB =

(
(1− v)A−1 + vB−1)−1

.

It is clear that the following inequality holds

A!vB � A�vB � A∇vB. (1.1)

In [11, Theorem 2.1], the authors obtained a reverse of the second inequality in (1.1)
using the Kantorovich constant for every positive unital linear map Φ as follows:

Φ2(A∇vB) � K2(h)Φ2(A�vB). (1.2)

From the operator monotonicity of the function f (t) = t1/2 on [0,∞), it implies that

Φ(A∇vB) � K(h)Φ(A�vB).

For Φ = id, it is obvious that

A∇vB � K(h)(A�vB). (1.3)

The authors [14] defined the weighted geometric mean for two accretive matrices A,B∈
Mn and v ∈ [0,1] as follows:

A�vB =
sinvπ

π

∫ ∞

0
sv−1(A−1 + sB−1)−1ds.

Tan and Xie [15] studied the inequality (1.1) for sector matrices A,B ∈ Mn, v ∈ [0,1]
and α ∈ [

0, π
2

)
and obtained the following result:

cos2(α)ℜ(A!vB) � ℜ(A�vB) � sec2(α)ℜ(A∇vB). (1.4)

Inspired by the nice results (1.4), we are going to present a reverse of the double
inequality (1.4) for two sector matrices A,B ∈ Mn and v ∈ [0,1] in this short paper.
Moreover, we establish some new determinant and norm inequalities using the deduced
inequality.
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2. A reverse of the double inequality (1.4)

Our aim of this section is to establish a reverse of the double inequality (1.4) which
both generalizes and extends the obtained results in recent years. To do this work, we

use the Kantorovich constant K(h) :=
(h+1)2

4h
� 1 for h :=

M
m

� 1 with 0 < m � M

throughout the paper and several lemmas which we list them as follows:

LEMMA 2.1. ([12]) Let A ∈ Mn be accretive. Then

ℜ(A−1) � ℜ−1(A). (2.1)

The next lemma is a reverse of (2.1).

LEMMA 2.2. ([13]) Let A ∈ Mn with W (A) ⊂ Sα . Then the following inequality
holds:

ℜ−1(A) � sec2(α)ℜ(A−1). (2.2)

LEMMA 2.3. ([4]) Let A,B ∈ Mn be positive. Then

‖AB‖ � 1
4
‖A+B‖2. (2.3)

LEMMA 2.4. (Choi inequality [3, p. 41]) Let A ∈ Mn be positive and let Φ be a
positive unital linear map. Then we have

Φ−1(A) � Φ(A−1). (2.4)

LEMMA 2.5. ([5]) Let A,B ∈ Mn be positive and let r be a positive number.
Then A � rB is equivalent to ‖A1/2B−1/2‖ � r1/2 .

THEOREM 2.1. Let A,B ∈ Mn be sector, that is, W(A),W (B) ⊂ Sα for some
α ∈ [

0, π
2

)
and 0 � v � 1 . Then for every positive unital linear map Φ , we have

the following.

(i) If 0 < mIn � ℜ(A−1),ℜ(B−1) � MIn. Then,

Φ2 (ℜ(A�vB)) � sec8(α)K2(h)Φ2 (ℜ(A!vB)) . (2.5)

(ii) If 0 < mIn � ℜ(A),ℜ(B) � MIn. Then,

K−2(h)cos8(α)Φ2 (ℜ(A∇vB)) � Φ2 (ℜ(A�vB)) . (2.6)

Proof.
(i) From 0 < mIn � ℜ(A−1),ℜ(B−1) � MIn, we get

ℜ(A−1)+Mmℜ(A−1)−1 � M +m.
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ℜ(B−1)+Mmℜ(B−1)−1 � M +m.

If we multiply both sides of the first inequality and the second inequality, respectively,
by 1− v and v , we obtain

(1− v)ℜ(A−1)+ (1− v)Mmℜ(A−1)−1 � (1− v)(M +m).

vℜ(B−1)+ vMmℜ(B−1)−1 � v(M +m).

As the inverse of every sector matrix is sector again and every sector matrix is accretive
as explained in Introduction, it follows that

Mmℜ((1− v)A+ vB)+ ℜ((1− v)A−1+ vB−1)
� Mm((1− v)ℜ−1(A−1)+ vℜ−1(B−1))+ ℜ((1− v)A−1 + vB−1) (by 2.1)

� M +m. (2.7)

Thus we have,

‖Φ(ℜ(A�vB))MmΦ−1 (ℜ(A!vB))‖
� 1

4
‖MmΦ(ℜ(A�vB))+ Φ−1 (ℜ(A!vB))‖2 (by (2.3))

� 1
4
‖MmΦ(ℜ(A�vB))+ Φ

(
ℜ−1(A!vB)

)‖2(by (2.4))

� 1
4
‖MmΦ(ℜ(A�vB))+ sec2(α)Φ

(
ℜ((1− v)A−1 + vB−1)

)‖2 (by (2.2))

� 1
4
‖sec2(α)MmΦ(ℜ((1− v)A+ vB))+ sec2(α)Φ

(
ℜ((1− v)A−1 + vB−1)

)‖2

(by (1.4))

=
1
4

sec4(α)‖Φ
(
Mmℜ((1− v)A+ vB)+ ℜ((1− v)A−1+ vB−1)

)‖2

� sec4(α)
4

(M +m)2 (by (2.7) ).

(ii) In a similar way, we have

Mm
(
(1− v)ℜ−1(A)+ vℜ−1(B)

)
+(1− v)ℜ(A)+ vℜ(B) � M +m (2.8)

from the conditions on ℜ(A) and ℜ(B) in (ii). Thus we have

‖sec4(α)Φ−1 (ℜ(A�vB))MmΦ(ℜ(A∇vB))‖
� 1

4
‖MmΦ−1 (ℜ(A�vB))+ sec4(α)Φ(ℜ(A∇vB))‖2 (by (2.3))

� 1
4
‖MmΦ

(
ℜ−1(A�vB)

)
+ sec4(α)Φ(ℜ(A∇vB))‖2 (by (2.4))

� 1
4
‖sec2(α)MmΦ

(
ℜ

(
(A�vB)−1))+ sec4(α)Φ(ℜ(A∇vB))‖2 (by (2.2))

=
1
4
‖sec2(α)MmΦ

(
ℜ(A−1�vB

−1)
)
+ sec4(α)Φ(ℜ(A∇vB))‖2
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� 1
4
‖sec4(α)MmΦ

(
ℜ((1− v)A−1 + vB−1)

)
+ sec4(α)Φ(ℜ(A∇vB))‖2 (by (1.4))

� 1
4
‖sec4(α)MmΦ

(
((1− v)ℜ−1(A)+ vℜ−1(B))

)
+ sec4(α)Φ(ℜ((1− v)A+ vB))‖2

(by (2.1))

� sec8(α)
4

(M +m)2. (by (2.8))

Thus we have the desired results (i) and (ii) by Lemma 2.5. �

REMARK 2.1. The inequalities given in Theorem 2.1 give reverses for the in-
equalities (1.4) when Φ is an identity map. In addition, our inequality (2.6) recovers
the inequality (1.3) for α = 0 and Φ is an identity map.

REMARK 2.2. For v = 1
2 , the inequalities (2.5) and (2.6) recover [17, Theorem

2.18] and [17, Theorem 2.10] , respectively. This shows that our results contain the
wide class of inequalities.

3. Applications

Making use of the inequalities (2.5) and (2.6), we prove some determinant in-
equalities. For proving the results of this section, we need to state the following useful
lemmas which the first lemma is known as the Ostrowski-Taussky inequality and sec-
ond lemma is a its reverse.

LEMMA 3.1. ([9]) Let A ∈ Mn be accretive. Then

det(ℜA) � |detA|. (3.1)

LEMMA 3.2. ([12]) Let A ∈ Mn such that W (A) ⊂ Sα . Then

|detA| � secn(α)det(ℜA). (3.2)

COROLLARY 3.1. Let A,B ∈ Mn with W (A),W (B) ⊂ Sα and 0 � v � 1 .

(i) If 0 < mIn � ℜ(A−1),ℜ(B−1) � MIn , then we have

|det(A�vB)| � sec5n(α)Kn(h)|det(A!vB)|. (3.3)

(ii) If 0 < mIn � ℜ(A),ℜ(B) � MIn , then we have,

|det(A�vB)| � cos5n(α)K−n(h)|det(A∇vB)|. (3.4)
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Proof. First, we prove (3.3). Since det(cA) = cn detA for scalar c > 0 and A∈Mn

in general, we have

|det(A�vB)| � secn(α)det(ℜ(A�vB)) (by (3.2))

� sec5n(α)Kn(h)det(ℜ(A!vB)) (by (2.5))

� sec5n(α)Kn(h)|det(A!vB)| (by (3.1)).

The inequality (3.4) can be proven similarly

|det(A�vB)| � det(ℜ(A�vB)) (by (3.1))

� cos4n(α)K−n(h)det(ℜ(A∇vB)) (by (2.6))

� cos5n(α)K−n(h)|det(A∇vB)| (by (3.2)).

This proves the results as desired. �

PROPOSITION 3.1. Let A,B ∈ Mn with W (A),W (B) ⊂ Sα . Then

|det(A�B)| � sec4n(α)
2n |det(In +A)| · |det(In +B)|.

Proof. To prove the assertion, compute

|det(A�B)| � secn(α)det(ℜ(A�B)) (by (3.2))

� sec3n(α)
2n det(ℜ(A+B)) (by [13, Eq. (10)])

� sec3n(α)
2n |det(A+B)| (by (3.1))

� sec4n(α)
2n |det(In +A)| · |det(In +B)| (by [16, Eq. (13)]). �

Note that we have the following inequality for the weighted means

|det(A�vB)| � sec3n(α)|det(A∇vB)|
from (3.2), (1.4) and (3.1).

A norm ‖ · ‖u is called an unitarily invariant norm if ‖X‖u = ‖UXV‖u for any
unitary matrices U,V and any X ∈ Mn . We use the symbols v j(X) and s j(X) as the
j -th largest eigenvalue and singular value of X , respectively. The following lemmas
are known.

LEMMA 3.3. (Fan-Hoffman [2, Proposition III.5.1]) Let A ∈ Mn. Then

v j(ℜA) � s j(A), ( j = 1, · · · ,n). (3.5)

LEMMA 3.4. ([6]) Let A ∈ Mn with W (A) ⊂ Sα . Then

s j(A) � sec2(α)v j(ℜA), ( j = 1, · · · ,n). (3.6)



ON A REVERSE OF THE TAN-XIE INEQUALITY 1431

LEMMA 3.5. ([19]) Let A ∈ Mn with W (A) ⊂ Sα . Then

‖A‖u � sec(α)‖ℜ(A)‖u. (3.7)

COROLLARY 3.2. Let A,B ∈ Mn be sector, that is, W (A),W (B) ⊂ Sα for some
α ∈ [

0, π
2

)
and 0 � v � 1 .

(i) If 0 < mIn � ℜ(A−1),ℜ(B−1) � MIn. Then,

s j(A�vB) � sec6(α)K(h)s j(A!vB),

(ii) If 0 < mIn � ℜ(A),ℜ(B) � MIn. Then,

cos6(α)K−1(h)s j(A∇vB) � s j(A�vB).

Proof. A simple computation shows that

s j(A�vB) � sec2(α)s j(ℜ(A�vB)) (by (3.6))

� sec6(α)K(h)s j(ℜ(A!vB)) (by (2.5))

� sec6(α)K(h)s j(A!vB) (by (3.5)).

It is easy to observe that

s j(A�vB) � s j(ℜ(A�vB)) (by (3.5))

� cos4(α)K−1(h)s j(ℜ(A∇vB)) (by (2.6))

� cos6(α)K−1(h)s j(A∇vB) (by (3.6)). �

REMARK 3.1. In the special case such that α = π
4 , we have the following in-

equalities for accretive–disipative matrices A,B ∈ Mn and 0 � v � 1.

(i) If 0 < mIn � ℜ(A−1),ℜ(B−1) � MIn. Then,

s j(A�vB) � 8K(h)s j(A!vB).

(ii) If 0 < mIn � ℜ(A),ℜ(B) � MIn. Then

1
8
K−1(h)s j(A∇vB) � s j(A�vB).

We should emphasise that a matix A is called an accretive–disipative matrix when both
ℜA and ℑA are positive definite. An accretive–disipative matrix never includes the
information on angle α , whereas a sector matrix has an information on angle α ∈[
0, π

2

)
and an imaginary part ℑA of a sector matrix is not necessary positive definite.

Considering the complex plane, {z ∈ C : ℜz > 0,ℑz > 0} ⊂ lim
α→π/2

Sα . Thus one may

regard that an accretive–disipative matrix is a special case of a sector matrix.
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COROLLARY 3.3. Let A,B ∈ Mn with W (A),W (B) ⊂ Sα . Then for any unitarily
invariant norm ‖ · ‖u on Mn , we have the following inequalities.

(i) If 0 < mIn � ℜ(A−1),ℜ(B−1) � MIn , then we have

‖A�vB‖u � sec5(α)K(h)‖A!vB‖u.

(ii) If 0 < mIn � ℜ(A),ℜ(B) � MIn , then we have

‖A�vB‖u � cos5(α)K−1(h)‖A∇vB‖u

Proof. We can show that the following chain of inequalities for a unitarily invari-
ant norm:

‖A�vB‖u � sec(α)‖ℜ(A�vB)‖u (by (3.7))

� sec5(α)K(h)‖ℜ(A!vB)‖u (by (2.5))

� sec5(α)K(h)‖A!vB‖u.

This proves the first inequality. The second inequality can be proven similarly

‖A�vB‖u � ‖ℜ(A�vB)‖u � cos4(α)K−1(h)‖ℜ(A∇vB)‖u (by (2.6))

� cos5(α)K−1(h)‖A∇vB‖u. (by (3.7)) �

REMARK 3.2. In the special case such that α = π
4 , we have the following in-

equalities for accretive-disipative matrices A,B ∈ Mn and any unitarily invariant norm
‖ · ‖u on Mn ,

4
√

2K−1(h)‖A∇vB‖u � ‖A�vB‖u � 1

4
√

2
K(h)‖A!vB‖u.

PROPOSITION 3.2. Let A,B ∈ Mn such that W (A),W (B) ⊂ Sα . Then

‖A�B‖u � sec5(α)
2

‖In +A‖u · ‖In +B‖u.

Proof.

‖A�B‖u � sec3(α)
2

‖A+B‖u (by [13, Eq. (14)])

� sec5(α)
2

‖In +A‖u · ‖In +B‖u (by [16, Corollary 2.8]). �
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4. Conclusion

As we have seen, we obtained some mean inequalities for sector matrices. As
for recent advanced studies on this subject, new inequalities of the Heinz mean (which
interpolates an arithmetic mean and a geometric mean) for sector matrices was estab-
lished in [18]. It is known that there exists other parameter extended means such as
Stolarsky mean, binomial mean and Heron mean and so on. The studies on inequalities
for such means of sector matrices will be an interesting future works.

In addition, we have some constants appearing in refined and reverse Young in-
equalties [7, Chapter 2]. For example, we have

S

(
b
a

)
a1−vbv � (1− v)a+ vb � S

((
b
a

)r)
a1−vbv

for a,b > 0 where S(h) :=
h1/h−1

e logh1/h−1
is Specht ratio and r := min{v,1− v} for 0 �

v � 1. It is also known that we have the relation S(h) � K(h) for h > 0. Therefore
it is not so easy to replace Kantorovich constant K(h) in Theorem 2.1 by Specht ratio
S(h) . To obtain the inequalties in Theorem 2.1 with Specht ratio S(h) , we will have to
establish a new method. We also leave it to our future work.
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