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PARTIAL DETERMINANT INEQUALITIES FOR

POSITIVE SEMIDEFINITE BLOCK MATRICES

YONGTAO LI, XIQIN LIN AND LIHUA FENG ∗

(Communicated by J. Mićić Hot)

Abstract. We present some inequalities related to partial determinants for positive semidefinite
block matrices. Firstly, we introduce the definition of partial matrix functions corresponding to
partial traces and partial determinants, and then we provide a unified extension of a recent result
of Lin [10], Chang-Paksoy-Zhang [4] and Lin-Sra [12]. Secondly, we give a new generalization
of a result of Paksoy-Turkmen-Zhang [15]. Finally, we conclude with an interesting conjecture
involving partial determinants.

1. Introduction

Let A and B be n×n positive semidefinite matrices. It is easy to prove by simul-
taneous diagonalization argument (see [20, p. 210] or [8, p. 485]) that

det(A+B) � det(A)+det(B). (1)

There are various extensions and improvements on (1) in the literature. The earliest
improvements could be tracked back to Haynsworth [7] and later Hartfiel [6]; see [9]
and [13] for recent refinements; and see, e.g., [3, 4, 10, 12, 15] for more extensions. An
attractive extension of (1) is the following (assuming that C is also an n -square positive
semidefinite matrix)

det(A+B+C)+detC � det(A+C)+det(B+C). (2)

Inequality (2) can be found e.g., in [20, p. 215, Problem 36] and [11, Lemma 2.5].
Setting C = 0, (2) reduces to (1). However, this is not the merely relation between

(1) and (2). Recently, Lin [10] investigated one more connection between them. That is,
the difference in (1) is dominated by the difference in (2). More precisely, Lin proved
the following result.

det(A+B+C)+detC− (
det(A+C)+det(B+C)

)
� det(A+B)− (detA+detB).

(3)
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After years, the above mentioned results (1), (2) and (3) had been extended to
the generalized matrix function. Let G be a subgroup of the symmetric group Sn on
n letters and let χ be an irreducible character of G . For any n× n complex matrix
A = [ai j]ni, j=1 , the generalized matrix function of A (also known as immanant) afforded
by G and χ is defined as

dG
χ (A) := ∑

σ∈G

χ(σ)
n

∏
i=1

aiσ(i).

Generally speaking, some specific representations of finite groups lead to some
acquainted functionals on the matrix space. For instance, if G = Sn and χ is the signum
function with value ±1, then the generalized matrix function becomes the usual matrix
determinant; By setting χ(σ) ≡ 1 for each σ ∈ G = Sn , we get the permanent of the
matrix; Setting G = {e} ⊂ Sn , one defines the product of the main diagonal entries of
the matrix, which is also known as the Hadamard matrix function.

Now, we list briefly some extensions of (1), (2) and (3) to the generalized matrix
function. For example, a remarkable extension (e.g., [14, p. 228]) says that

dG
χ (A+B) � dG

χ (A)+dG
χ (B). (4)

In 2014, Paksoy, Turkmen and Zhang [15] provided a natural extension of (2) and (4)
for triple matrices, using tensor products, their treatments are embedding the vectors of
Gram matrices into a “sufficiently large” inner product space. More precisely, if A,B
and C are positive semidefinite, they obtained

dG
χ (A+B+C)+dG

χ(C) � dG
χ (A+C)+dG

χ (B+C). (5)

Soon later, Chang, Paksoy and Zhang [4, Theorem 3] (Berndt and Sra [3] indepen-
dently) presented a further improvement on (5) by considering the tensor products of
operators as words on certain alphabets. They obtained an analogue of (3) and con-
firmed a conjecture of Lin [10], which states that

dG
χ (A+B+C)+dG

χ(A)+dG
χ (B)+dG

χ (C)

� dG
χ (A+B)+dG

χ(A+C)+dG
χ (B+C).

(6)

We remark here that (6) is indeed an improvement on (5) since

dG
χ (A+B+C)+dG

χ(C)−
(
dG

χ (A+C)+dG
χ(B+C)

)
� dG

χ (A+B)−
(
dG

χ (A)+dG
χ (B)

)
� 0.

On the other hand, Lin and Sra [12] presented a further extension of (1) for posi-
tive semidefinite block matrices. Before starting their result, we first fix the following
standard notation. The set of m×n complex matrices is denoted by Mm×n . If m = n ,
we use Mn instead of Mn×n , and if n = 1, we use Cm instead of Mm×1 . The identity
matrix of Mn is denoted by In , or simply by I if no confusion is possible. We use
Mm(Mn) for the set of m×m block matrices with each block being an n× n matrix.



PARTIAL DETERMINANT INEQUALITIES FOR POSITIVE SEMIDEFINITE BLOCK MATRICES 1437

The element of Mm(Mn) is usually written as A = [Ai j]mi, j=1 , where Ai j ∈ Mn for all
i, j . If A = [Ai j]mi, j=1 ∈ Mm(Mn) , we denote

det2(A) := [detAi j]mi, j=1 ∈ Mm. (7)

By convention, if X ∈ Mn is positive semidefinite, then we write X � 0. For two
Hermitian matrices A and B of the same size, A � B stands for A−B � 0. It is easy
to verify that “ � ” is a partial ordering on the set of Hermitian matrices, referred as
Löwner ordering; see, e.g., [18, Chapter 1] and [19] for related topics.

Under the above definition (7), Lin-Sra’s extension of (1) can be listed below. If
A,B ∈ Mm(Mn) are positive semidefinite block matrices, then the following inequality
in the Löwner partial order holds.

det2(A+B) � det2(A)+det2(B). (8)

Clearly, when m = 1, (8) reduces to (1).
The paper is organized as follows. In Section 2, we briefly review some basic

definitions and properties of the tensor product in multilinear algebra theory. In Section
3, we will extend the above-cited results to the block positive semidefinte matrices,
our result is a unified extension of (6) and (8) (Theorem 3.7 and Corollary 3.8). As
an application, some new inequalities related to the trace, determinant and permanent
are also included. In Section 4, we present a new extension of (5) which involves both
determinants and partial determinants (Theorem 4.2 and Corollary 4.3). At the end of
the paper, we conclude with an interesting conjecture.

2. Preliminaries

In this section, we first review some basic definitions and notations of multilinear
algebra theory [14]. Let X ⊗Y denote the Kronecker product (also called tensor prod-
uct) of X with Y , that is, if X = [xi j]mi, j=1 ∈ Mm and Y ∈ Mn , then X ⊗Y ∈ Mm(Mn)
whose (i, j)-block is xi jY . Let ⊗rA := A⊗ ·· ·⊗A denote the r -fold tensor power of
A . We denote by ∧rA the r th antisymmetric tensor power (or r th Grassmann power)
of A , which is the same as the r th multiplicative compound matrix of A , and denote by
∨rA the r th symmetric tensor power of A ; see [1, p. 18] for more details. We denote by
er(A) and sr(A) the r th elementary symmetric and r th complete symmetric function
of the eigenvalues of A (see [8, p. 54]), respectively. Trivially, e1(A) = s1(A) = tr(A)
and en(A) = det(A) for A ∈ Mn .

Let V be an n -dimensional Hilbert space and ⊗nV be the tensor product space
of n copies of V . Let G be a subgroup of the symmetric group Sn and χ be an
irreducible character of G . The symmetrizer induced by χ on the tensor product space
⊗nV is defined by its action as

S(v1⊗·· ·⊗ vn) :=
1
|G| ∑

σ∈G

χ(σ)vσ−1(1)⊗·· ·⊗ vσ−1(n). (9)

All elements of the form (9) span a vector space, denoted by Vn
χ (G) ⊂ ⊗nV , which is

called the space of the symmetry class of tensors associated with G and χ (see [14, p.
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154, 235]). It is easy to verified that Vn
χ (G) is an invariant subspace of ⊗nV under the

tensor operator ⊗nA . For a linear operator A on V , the induced operator K(A) of A
with respect to G and χ is defined to be K(A) = (⊗nA)

∣∣
Vn

χ (G) , the restriction of ⊗nA

on Vn
χ (G) .
The induced operator K(A) is closely related to the generalized matrix function.

Let e1,e2, . . . ,en be an orthonormal basis of V and P be a matrix representation of the
linear operator A on V with respect to the basis e1, . . . ,en . Then

dG
χ

(
PT)

=
|G|

deg(χ)
〈K(A)e∗,e∗〉, (10)

where deg(χ) is the degree of χ and e∗ := e1 ∗ e2 ∗ · · · ∗ en is the decomposable sym-
metrized tensor of e1, . . . ,en (see [14, p. 227, 155]).

Now, we list some basic properties of tensor product for our latter use.

PROPOSITION 2.1. (see [1, pp. 16–20]) Let A,B and C be n×n matrices. Then

(1) ⊗r(AB) = (⊗rA)(⊗rB),∧r(AB) = (∧rA)(∧rB) and ∨r(AB) = (∨rA)(∨rB) .

(2) tr(⊗rA) = (trA)r := pr(A), tr(∧rA) = er(A) and tr(∨rA) = sr(A) .

(3) det(⊗rA)= (detA)rnr−1
,det(∧rA)= (detA)(

n−r
r−1) and det(∨rA)= (detA)

r
n (n+r−1

r ) .

Furthermore, if A,B and C are positive semidefinite matrices, then

(4) A⊗B,A∧B and A∨B are positive semidefinite.

(5) ⊗r(A+B) � ⊗rA+⊗rB,∧r(A+B) � ∧rA+∧rB and ∨r(A+B) � ∨rA+∨rB.

Finally, we introduce the definition and notation of the partial traces, which comes
from Quantum Information Theory [16, p. 12]. Given A ∈ Mm(Mn) , the first partial
trace map A �→ tr1(A) ∈ Mn is defined as the adjoint map of the imbedding map X �→
Im ⊗X ∈ Mm ⊗Mn . Correspondingly, the second partial trace map A �→ tr2(A) ∈ Mm

is similarly given as the adjoint map of the imbedding map Y �→ Y ⊗ In ∈ Mm ⊗Mn .
Therefore, we have

〈Im ⊗X ,A〉= 〈X , tr1(A)〉, ∀ X ∈ Mn,

and
〈Y ⊗ In,A〉 = 〈Y, tr2(A)〉, ∀ Y ∈ Mm.

Assume that A = [Ai j]mi, j=1 with each Ai j ∈ Mn , the visualized equivalent forms of the
first and second partial trace are actually given in [2, Proposition 4.3.10] as

tr1(A) =
m

∑
i=1

Aii and tr2(A) =
[
trAi j

]m
i, j=1.

Under the above definition, it follows that both tr1(A) and tr2(A) are positive semidef-
inite whenever A is positive semidefinite; see, e.g., [20, p. 237].
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3. Partial matrix functions

We now define the first and second partial matrix function, which first appeared
in the form of determinant function in [5]. We here introduce a slightly more general
setting. Before giving our definition, we first demonstrate our motivation.

For A = [Ai j]mi, j=1 ∈ Mm(Mn) , suppose that Ai j =
[
ai j

rs
]n
r,s=1 . Setting

Grs :=
[
ai j

rs

]m
i, j=1 ∈ Mm.

Then we can verify that

tr1(A) =
m

∑
i=1

Aii =
m

∑
i=1

[
aii

rs

]n
r,s=1 =

[
m
∑
i=1

aii
rs

]n

r,s=1
=

[
trGrs

]n
r,s=1.

Motivated by this relation, we now introduce the following definition.

DEFINITION 3.1. Let Φ : Mp → Mq be a matrix function. The first and second
partial matrix functions of Φ on A = [Ai j]mi, j=1 ∈ Mm(Mn) are defined by

Φ1(A) :=
[
Φ(Grs)

]n
r,s=1 and Φ2(A) :=

[
Φ(Ai j)

]m
i, j=1.

Clearly, when Φ = tr , this definition coincides with that of the partial traces; when
Φ = det, it identifies with the partial determinants, which were first introduced by Choi
in [5] recently. We denote by Ã := [Grs]nr,s=1 ∈ Mn(Mm) , and then it is easy to see that

˜̃A = A and Φ1(A) = [Φ(Grs)]nr,s=1 = Φ2(Ã) . (11)

Moreover, one could observe the following result.

LEMMA 3.2. (see [5, Theorem 7]) For A ∈ Mm(Mn) , Ã and A are unitarily
similar.

Let A = [Ai j]mi, j=1 ∈ Mm(Mn) be a positive semidefinite block matrix. It is well
known that both det2(A) = [detAi j]mi, j=1 and tr2(A) = [trAi j]mi, j=1 are positive semidef-
inite matrices; see, e.g., [20, p. 221, 237]. Whereafter, Zhang [21, Theorem 3.1]
extends the positivity to the generalized matrix function via the generalized Cauchy-
Binet formula, more precisely, he obtained that dG

χ 2(A) = [dG
χ (Ai j)]mi, j=1 is also positive

semidefinite.
Next, we extend the positivity to more matrix functionals.

PROPOSITION 3.3. Let A ∈ Mm(Mn) be positive semidefinite. If Φ is one of the
functionals tr,det,per,dG

χ , pr,er and sr , then Φ1(A) and Φ2(A) are positive semidefi-
nite.

Proof. By making full use of the relation (11) and Lemma 3.2, we only need to
show that Φ2(A) is positive semidefinite. This is similar as the lines in [21, Theorem
3.1], we omit the details. �

The following Lemma 3.4 plays a prominent role in our extension (Theorem 3.7),
it could be found in [3] or [4], we here provide a proof for convenience.
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LEMMA 3.4. Let A,B,C be positive semidefinite matrices of the same size. Then
for every positive integer r , we have

⊗r (A+B+C)+⊗rA+⊗rB+⊗rC

� ⊗r(A+B)+⊗r(A+C)+⊗r(B+C).

The similar result is true for ∧r and ∨r .

Proof. The proof is by induction on r . The base case r = 1 holds with equality,
and the case r = 2 is easy to verify. Assume the required result holds for r = m � 2,
that is

⊗m (A+B+C)+⊗mA+⊗mB+⊗mC

� ⊗m(A+B)+⊗m(A+C)+⊗m(B+C).

For r = m+1, we get from Proposition 2.1 that

⊗m+1 (A+B+C)

=
(⊗m(A+B+C)

)⊗ (A+B+C)

�
(⊗m(A+B)+⊗m(A+C)+⊗m(B+C)−⊗mA−⊗mB−⊗mC

)
⊗ (A+B+C)

= ⊗m+1(A+B)+⊗m+1(A+C)+⊗m+1(B+C)

−⊗m+1A−⊗m+1B−⊗m+1C

+
(⊗m(A+B)

)⊗C+
(⊗m(A+C)

)⊗B+
(⊗m(B+C)

)⊗A

− (⊗mA
)⊗ (B+C)− (⊗mB

)⊗ (A+C)− (⊗mC
)⊗ (A+B).

It remains to show that(⊗m(A+B)
)⊗C+

(⊗m(A+C)
)⊗B+

(⊗m(B+C)
)⊗A

�
(⊗mA

)⊗ (B+C)+
(⊗mB

)⊗ (A+C)+
(⊗mC

)⊗ (A+B).

This follows immediately by the superadditivity (5) in Proposition 2.1. �

COROLLARY 3.5. Let A,B,C be positive semidefinite matrices of the same size.
Then for each positive integer r , we have

⊗r(A+B+C)+⊗rC � ⊗r(A+C)+⊗r(B+C).

Proof. By Lemma 3.4, we have

⊗r (A+B+C)+⊗rC−⊗r(A+C)−⊗r(B+C)
� ⊗r(A+B)−⊗rA−⊗rB.

By Proposition 2.1, the desired inequality immediately follows. �
To show our main result (Theorem 3.7), we require one more lemma.



PARTIAL DETERMINANT INEQUALITIES FOR POSITIVE SEMIDEFINITE BLOCK MATRICES 1441

LEMMA 3.6. ([2, p. 93]) Let A = [Ai j]mi, j=1 ∈ Mm(Mn) . Then [⊗rAi j]mi, j=1 is a
principal submatrix of ⊗rA for every positive integer r .

Now, we present our main result, which is a unified extension of (6) and (8).

THEOREM 3.7. Let A,B,C ∈ Mm(Mn) be positive semidefinite. If Φ is one of the
functionals tr,det,per,dG

χ , pr,er and sr , then

Φ1(A+B+C)+ Φ1(A)+ Φ1(B)+ Φ1(C)
� Φ1(A+B)+ Φ1(A+C)+ Φ1(B+C),

and
Φ2(A+B+C)+ Φ2(A)+ Φ2(B)+ Φ2(C)

� Φ2(A+B)+ Φ2(A+C)+ Φ2(B+C).

In particular, we have

Φ(A+B+C)+ Φ(A)+ Φ(B)+ Φ(C)
� Φ(A+B)+ Φ(A+C)+ Φ(B+C).

Proof. We only show that the desired result holds for Φ = dG
χ and Φ = er since

the rest cases of functionals can be proved similarly. Applying the relation (11) and
Lemma 3.2, it suffices to show the second desired result by exchanging the role of A
and Ã . By Lemma 3.4, we have

⊗r (A+B+C)+⊗rA+⊗rB+⊗rC

� ⊗r(A+B)+⊗r(A+C)+⊗r(B+C),

which, together with Lemma 3.6, leads to

[⊗r(Ai j +Bi j +Ci j)]mi, j=1 +[⊗rAi j]mi, j=1 +[⊗rBi j]mi, j=1 +[⊗rCi j]mi, j=1

� [⊗r(Ai j +Bi j)]mi, j=1 +[⊗r(Ai j +Ci j)]mi, j=1 +[⊗r(Bi j +Ci j)]mi, j=1.

By restricting the above inequality to the symmetry class VG
χ (V ) , we get

[K(Ai j +Bi j +Ci j)]mi, j=1 +[K(Ai j)]mi, j=1 +[K(Bi j)]mi, j=1 +[K(Ci j)]mi, j=1

� [K(Ai j +Bi j)]mi, j=1 +[K(Ai j +Ci j)]mi, j=1 +[K(Bi j +Ci j)]mi, j=1.

Combining (10), the second desired result in the case of Φ = dG
χ follows.

Along the same lines, it follows that

[∧r(Ai j +Bi j +Ci j)]mi, j=1 +[∧rAi j]mi, j=1 +[∧rBi j]mi, j=1 +[∧rCi j]mi, j=1

� [∧r(Ai j +Bi j)]mi, j=1 +[∧r(Ai j +Ci j)]mi, j=1 +[∧r(Bi j +Ci j)]mi, j=1.

By taking trace blockwise and using Proposition 2.1, it yields the second desired result
in the case of Φ = er . �

From Corollary 3.5 or Theorem 3.7, one may get the following corollary, which
can be viewed as an extension of (2) and (5).
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COROLLARY 3.8. Let A,B,C ∈ Mm(Mn) be positive semidefinite. If Φ is one of
the functionals tr,det,per,dG

χ , pr,er and sr , then

Φ1(A+B+C)+ Φ1(C) � Φ1(A+C)+ Φ1(B+C),

and

Φ2(A+B+C)+ Φ2(C) � Φ2(A+C)+ Φ2(B+C).

In particular, we have

Φ(A+B+C)+ Φ(C) � Φ(A+C)+ Φ(B+C).

REMARK. By setting Φ = det in Theorem 3.7 and Corollary 3.8, one could get
the renowned determinantal inequalities (3) and (2), respectively. We remark here that
these two inequalities could be proved by using a majorization approach of eigenvalues.
It is more elementary and totally different from our method; see, e.g., [10, Theorem 1.1]
and [20, p. 215] for more details.

4. A new extension of inequality (5)

The remaining of this section is devoted to some inequalities concerning both de-
terminant and partial determinant. Firstly, we give two inequalities (12) and (13), which
can be viewed as our starting point. It is easy to see by applying (1) to Lin-Sra’s result
(8) that

det
(
det2(A+B)

)
� det

(
det2A+det2B

)
� det

(
det2A

)
+det

(
det2B

)
. (12)

On the other hand, we can get that

det
(
tr2(A+B)

)
= det

(
tr2A+ tr2B

)
� det

(
tr2A

)
+det

(
tr2B

)
. (13)

Motivated by this observation, we will present an extension of both (12) and (13)
in the following Theorem 4.2. To preceed our result, we need to extend Corollary 3.8
to more general setting, which plays an essential role in the proof of Theorem 4.2.

PROPOSITION 4.1. Let X ,Y,W,Z ∈ Mm(Mn) be positive semidefinite. If X �
W � Y,X � Z � Y and X +Y � W +Z , then

Φ1(X)+ Φ1(Y ) � Φ1(W )+ Φ1(Z),

and

Φ2(X)+ Φ2(Y ) � Φ2(W )+ Φ2(Z).

In particular, we have

Φ(X)+ Φ(Y ) � Φ(W )+ Φ(Z).
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Proof. We only prove the first inequality, the other two inequalities can be proved
in a similar way. Let N = X +Y − (W +Z) . Then N is positive semidefinite. Note that
X � X −N and X −N � W,Z . It suffices to show

Φ1(X −N)+ Φ1(Y ) � Φ1(W )+ Φ1(Z). (14)

Let C = Y,A = W −Y and B = Z−Y . (14) is then equivalent to

Φ1(A+B+C)+ Φ1(C) � Φ1(A+C)+ Φ1(B+C),

which is a direct consequence in Corollary 3.8. �
As promised, we shall give an extension of (12) and (13).

THEOREM 4.2. Let A,B,C ∈ Mm(Mn) be positive semidefinite. If Φ and Ψ are
two functionals selected from tr,det,per,dG

χ , pr,er and sr , then

Ψ
(
Φ1(A+B+C)

)
+ Ψ

(
Φ1(C)

)
� Ψ

(
Φ1(A+C)

)
+ Ψ

(
Φ1(B+C)

)
,

and
Ψ

(
Φ2(A+B+C)

)
+ Ψ

(
Φ2(C)

)
� Ψ

(
Φ2(A+C)

)
+ Ψ

(
Φ2(B+C)

)
.

Proof. We only prove the first inequality, the proof of the second one is similar. It
is easy to see that

Φ1(A+B+C) � Φ1(A+C) � Φ1(C),
Φ1(A+B+C) � Φ1(B+C) � Φ1(C),

and by Corollary 3.8, we have

Φ1(A+B+C)+ Φ1(C) � Φ1(A+C)+ Φ1(B+C).

Applying Proposition 4.1, we can get

Ψ
(
Φ1(A+B+C)

)
+ Ψ

(
Φ1(C)

)
� Ψ

(
Φ1(A+C)

)
+ Ψ

(
Φ1(B+C)

)
.

This completes the proof. �
Clearly, Theorem 4.2 is a versatile generalization of Paksoy-Turkmen-Zhang’s re-

sult (5). Moreover, when m = 1 or n = 1, Theorem 4.2 reduces to Corollary 3.8. In
particular, by setting Φ = Ψ = det in Theorem 4.2, we get the following corollary,
which is an extension of (12) as well as (2).

COROLLARY 4.3. Let A,B,C ∈ Mm(Mn) be positive semidefinite. Then

det
(
det1(A+B+C)

)
+det

(
det1(C)

)
� det

(
det1(A+C)

)
+det

(
det1(B+C)

)
,

and

det
(
det2(A+B+C)

)
+det

(
det2(C)

)
� det

(
det2(A+C)

)
+det

(
det2(B+C)

)
.
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Corollary 3.8 yields the following analogous result of Theorem 4.2.

COROLLARY 4.4. Let A,B,C ∈ Mm(Mn) be positive semidefinite. If Φ and Ψ
are two functionals selected from tr,det,per,dG

χ , pr,er and sr , then

Ψ
(
Φ1(A+B+C)+ Φ1(C)

)
� Ψ

(
Φ1(A+C)+ Φ1(B+C)

)
,

and
Ψ

(
Φ2(A+B+C)+ Φ2(C)

)
� Ψ

(
Φ2(A+C)+ Φ2(B+C)

)
.

5. Concluding remarks

In this paper, we give a unified extension of (6) and (8) in Theorem 3.7. The key
step of the proof of Theorem 3.7 is attributed to the inequality involving Kronecker
product in Lemma 3.4. There are some similar inequalities on symmetric tensor in [3],
so one could also present some analogous results for partial matrix function, we omit
the details.

Moreover, some new inequalities related to both determinant and partial determi-
nants are also presented in Theorem 4.2 and Corollary 4.3. Comparing Corollary 4.3
with inequality (3), we conclude at the end of the paper with the following conjecture.

CONJECTURE 5.1. Let A,B,C ∈ Mm(Mn) be positive semidefinite. Then

det
(
det2(A+B+C)

)
+det

(
det2(A)

)
+det

(
det2(B)

)
+det

(
det2(C)

)
� det

(
det2(A+B)

)
+det

(
det2(A+C)

)
+det

(
det2(B+C)

)
.

In [17], it is shown that if A ∈ Mm(Mn) is positive semidefinite, then

det(det2A) � detA. (15)

Choi [5] provided a complement for the first partial determinant

det(det1A) � detA.

We can easily extend (15) to two matrices. By (8) and (1), we get

det
(
det2(A+B)

)
� det

(
det2A+det2B

)
� det(det2A)+det(det2B) � detA+detB.

It is natural to consider similar inequalities to (15). To our best knowledge, conclusions
related to partial determinants are rare in the literature. This of course deserves further
investigation.
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