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SHARP ESTIMATES FOR m-LINEAR p-ADIC HARDY
AND HARDY-LITTLEWOOD-POLYA OPERATORS
ON p-ADIC CENTRAL MORREY SPACES

YANGKENDI DENG, DUNYAN YAN AND MINGQUAN WET*

(Communicated by V. Dmitrievi¢ Stepanov)

Abstract. In this paper, we consider the mapping property of both m-linear p-adic Hardy op-
erator ./, and Hardy-Littlewood-PSlya operators T on p-adic central Morrey-type spaces
Brih (Q’;) X -+ X BPmm (Q’;) . The obtained bounds turn to be sharp when Ay p; =+ = Ay py -

1. Introduction

In recent years, the applications of p-adic analysis in the fields of quantum me-
chanics, probability theory, dynamics and other mathematical physics have attracted
widespread attentions [13, 14].

For a prime number p, let Q, be the field of p-adic numbers, which is defined as
the completion of the field of rational numbers Q with respect to the non-Archimedean
p-adic norm |- |,. This norm is defined as follows: |0|, = 0; if any nonzero rational
number x is represented as x = p¥(m/n), where m, n are integers which are indivisible
by p, and 7 is an integer, then |x|, = p~7. It’s easy to show that the norm satisfies the
following properties:

|x)"p:|x|pb"pa |x‘|’)’|p<max{|x|pa|)’|p}-

From the standard p-adic analysis, we see that any nonzero p-adic number x € Q,
can be uniquely represented in the canonical series x = pYZ;":O ajp’, where y € Z,
aj€{0,1,---,p—1} and ag # 0, so we have |x|, =p~7.

Let Q, =Q,\ {0} and Z, = {x € Qp : |x[, < 1}.

The space Q7 , which is called n-dimensional p-adic field, consists of points x =
(xX1,%2,°++, %), where x; € Qp, j=1,2,---,n. The p-adic norm on Q) is

— . 7
[x|p := [max xjlpsx € Q).
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Denote by
By(a) ={xe€ Q) :|x—al, <p"}
the ball with center at a € Q, and radius pY, and
Sy(@) = {xe @: [x—al, = p'} = By(a) \ By1(a)

the sphere with center at a € Q), and radius p.

Since Q7 is a locally compact commutative group under addition, it follows from
the standard analysis that there exists a Haar measure dx on Q" , which is unique up to
positive constant multiple and is translation invariant. We normalize the measure dx by
the equality

dx = [Bo(0)|n = 1,
By (0)

where |E|gy denotes the Haar measure of a measurable subset E of Q). By simple
calculation, we can obtain that

By(a)lu = p™, |Sy(a)lu =p™(1—p~"),
for any a € Q;’,. For more information about the p-adic field, we refer readers to [12]
and [14].
The famous Hardy’s integral inequality yields that
q
[Hfllzor+) < ﬁ\\fﬂm(u@ﬂ,

where 1 < g < e and the classical Hardy operator H is defined by

Hiw = [ o,

in which f is a nonnegative integrable function on R™, and the constant q 1 is the

best possible (see [8]). That is,

q
|H || Lo+ )—Lar+) = g

In [5], the n-dimensional Hardy operator was introduced by Faris. For any non-
negative locally integrable function f on R",

Hf() = —

T Qulx] i<y

fy)dy, xeR"\ {0},
where Q, is the volume of the unit ball in R”. The norm of .7’ on L?(R") obtained
by Christ and Grafakos is

_ 4
H’%ﬂ”L‘l(R”)—»Lq(R”) = q— 1
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which is equal to that of the classical Hardy operator (see [4]). In [7], Fu et al. intro-
duced the m-linear Hardy operator, which is defined by

1
an‘x‘mn

A (fi S ) = S F100) o) o

where x € R\ {0} and f,---, f, are nonnegative locally integrable functions on R”.
Similarly, in [15], Fu et al. defined the m-linear p-adic Hardy operator as follows:

DEFINITION 1. Let m be a positive integer and fi,---, f;, be nonnegative locally
integrable functions on Q7. The m-linear p-adic Hardy operator is defined by

1

R

HE G I = [ RO Sl ()

where x € Q}\ {0}.

In [15], Fu et al. obtained the sharp estimate of the p-adic Hardy operator on
Lebesgue spaces with power weights. Recently, there are amounts of paper dealing
with sharp strong and weak estimates of the p-adic Hardy type operators on various
function spaces, see for example [2, 9, 11, 10, 6]. Inspired by [15], we will consider the
sharp estimate of the m-linear p-adic Hardy operator on the product of p-adic central
Morrey spaces.

For k € Z, we denote the ball and the sphere in the n-dimensional p-adic field by
By ={xeQ}:|x[, < pKyand §; = {x € Q:fxlp = pk}. The p-adic central Morrey
space is defined as follows.

DEFINITION 2. Let 1 < g < e and —1/g < A < 0. The p-adic central Morrey
space B%* (Q7}) is defined by

1/q
1
f A(on) -— Sup 7/ fx qu < oo,
Wl =300 e ), )

It is clear that B%~!/ Q) =L1(Q}). If 1 < q1 < g2 <o, by the Holder’s inequality.

A mn Ay
B (Qy,) € B (QY)
holds for —1 /g < A < 0.

Noting that the definition is very similar to that of central Morrey spaces on R”,
which was introduced in [7]. For more about Morrey spaces, we refer the reader to
[1, 16] and the references therein.

The Hardy-Littlewood-Pdlya operator, which is the sum of the Hardy operator and
its dual operator, was defined in [3] by

Tf(x):/ommfidy.

ax(x,y)
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The authors [3] also obtained the norm of the Hardy-Littlewood-P6lya operator on
LI(RT):
2

||Tf(x)||Lq(R+)4>Lq(R+) e %,

where 1 < g < eo.
On p-adic field, Fu et al. [15] also defined the m-linear p-adic Hardy-Littlewood-
Pélya operator.

DEFINITION 3. Let m be an integer and fi,---,f,, be nonnegative locally in-
tegrable functions on Q,. The m-linear p-adic Hardy-Littlewood-Pélya operator is
defined by

fl )’1 fm(}’m)

Tp(fla : 7f /
" " Qp @p max ‘X‘vajl‘m : v|ym|P)}m

dy;---dym.

In this paper, we are also interested in the mapping property of T,X on central
Morrey spaces, which can be seen as a generalization of the results in [15].

In Section 2, we will furnish the estimate of the m-linear p-adic Hardy operator
and the m-linear p-adic Hardy-Littlewood-Pdlya operator on the product of p-adic
central Morrey spaces, and then obtain the sharp bound for the particular case A;p; =

= AmPm-

2. Main results

This section contains two main theorems and their proofs. Our first result below
discovers the upper bound for the m-linear p-adic Hardy operator on p-adic central
Morrey-type spaces.

THEOREM 1. Let m € Z*, fi € Bi4(Qh), 1 < gi <oo, —1/g; <2 <0, i =
Loom, 1<g<oo, 1/q=2"1/qi, A =XF | A (Itis easy to see that —1/q < A <
0). Then

H'%jnp(fl P 7fm) HBq,l(@lll)) < C)fol HBqlvkl (QZ) T Hﬁn”B‘imJ&m (Q"l))7 (2)
where
1— p—n m
Cop= a2
I (1 - p02)
i=1
Moreover, if A\p1 = -+ = AupPm, the constant C y is the best possible.

Proof. The proof of the case when m = 1 is similar to and even simpler than that
of the case when m > 2, so for simplicity, we will only discuss the case m > 2.
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(I) When m = 2.

Set
1

G0 =y [, Al a8, ve ) i=12

1—p"
On the one hand, we have

2 (81,82)(x)

1
- [ £10)8202)dy dya
2 )12 <l

] 1(/ 3
= fillyil, &) d&; ) dy1dys
(1—pm)2 [x|2 |<y17yz>|p<|x|p,gl Elp=1” P T

S ([ sl e) o
——— ' T . i\<i 1 o) 1 2
(L=p=)2 |x2" Jiow s o<l i1 \Jlzilp=lyil, P

1

1

1
=T 2n / f1(z1)f2(z2) dz1 dzo
‘X‘P ‘(Zl,Zz)‘,;Q‘X‘,,

=2 (f1,/2)(x).

On the other hand, by the Holder’s inequality, we obtain

”gi”quﬂi(Qg)

1/qi
P i T
=su . . .
vz \ |Byl e Sy [ 1= p7 Jigy 7

() sy alas) )
<sup — — / (/ ilxl, G i)
Yz |BV|}{+L% I=p By \/I&ilp=1 g

. 1 ( 1 )%’
S sup — -
vez \ |By|5; 4 \ 1= p™"

8 /B, </5i|p1 by 2l déi) </|f;~p1d§i) qi_ldX)

1/q;

| | 1/q;
=sup 77,”/ (/ f’(Z')|qidZ') |x[," dx
YEZ <|BY|}{+MI 1—-p By \Y|zilp=l|xlp B l b
1/q;
i o ([ )l ’
=SUp | 1o T X ilzi) [ dzi
vz \ | Byl 4 L= ™" Sy \Jslp=tay

:||ﬁ||qu’ki(@Z)7 i=1,2.

2
Y Vi "dy') fi(z1)f2(z2)dz1 dzo
(L—p™)% |x[2" /I(ZhZz)Ipé\X\p E </y,~,,z,-|p bil," &

1451
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The above two formulas yield that

14" (f1: 12) | g 174" (1, 82) 8o ()

Ilf1 ||BqM1 (@) ||f2||342‘/12(@;) b g1 HBq1~M (@) H82H342M(Qg) .

So the operator .7 and its restriction to the functions g satisfying g(x) = g(|x|;1)
have the same operator norm on B‘M(QZ). In the following, we may assume that
fi € BB4(Qn), i = 1,2, which satisfy that f;(x) = fi(Jx[,). i=1,2.
By changing of variables again, we get
q 1/q
“

1" (f15 2 | g ()
q 1/q
dx)

1 / 1 /
e fi(z1)f2(z2) dz1 dzz
YGZ <|B |l+lq ‘x‘%ﬂ |(Zlaz2)‘p<‘x‘p
q 1/q

]t
o e fillxl, z) fa(x],  22) dzy dza
VEZ <|B 1E24 gy | ) < P P
Then using the Minkowski’s integral inequality and the Holder’s inequality with ¢/¢; +
q/q> =1, we get
q 1/‘1
dx

1 § |
o 7/ / Szl %) f2(|z2],  x) dzy dzp
vez <|BY| 1+1q l(z1.22)[p<1 r P
H%p(fhfz)”l;%l((@r;])

1
e
S [

7’€Z<BYH+ /By

/ fillzil, ') Azl ' %) dzi dz
|(z1.22)[p<1

1/q
Ssup ( Al )f2(|22|_1x)qu> dzy dzp
ez \Bylzlq/"” |(21,22)]p<1 P el
1 ﬁ | ’q 1/q;
<S“P7/ (/ fillzil, [ dx ) dzy dzp
\VEZ ‘By|}_1/q+l [(z1,22 ‘p\ i=1 ' lp
1/qi
=sup (e [ lhComa
vl l(zl@)lpgli:l |BY10gp|Zi\p|}-I+)Liqi BYlogp\Zi\p
x |21 [141 2222 dzy dz
< z nllz nlde dZ . . 3
<[l el il g e G

It is easy to see that fl(zmz)\p<1 |21|Z)Ll \Zz\Z}LZ dzydzp is a finite constant, and we will
prove that it’s equal to C» soon.
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(II) When m > 3,
The proof in this case is similar to that of the previous case. We derive from
formula (3) that

Hf%pn{?(fh”'»ﬁn)HBM(erg)

</ ‘Zl |;1¢)Ll te |Zm|;)Lm le o 'dZmel HBql,ll (Q;’,) e ||fm||qu>lm (Q’;,)

(Zl"'me)‘pg

Let
Dy ={(z1,-+,zm) €@y x--- x Qy: |z1]p < L]zlp < lzilp, 1 <k <}
Di:{(ZI,"',Zm)EQHX"'XQH:

‘Zz‘p 1|ZJ|P<|ZI‘17a|Zk‘17 |Zi|p71
Dm:{(zla"'azm)e(@; "'XQ;:‘Zm‘p

It is obvious that

<j<i<k<m);
< Llzjlp < lzmlp, 1 < j <m}.

m
UDj:{(Zla"'7Zm)EQZX"'XQZ:|(Zla"'7zm)|17< 1}7
j=1

and D,‘ﬂDj =d.
Let

]j;:/ |Z1|?,)Ll""Zm‘;l”’dzy“dZm
Dj
Now, we begin to calculate each I;,j =1,---,m.

h= [ Rl el da - d
D

‘Zl‘pgl H ‘Zk‘pg‘Zl‘p P
720 § (Ot R
/\Zl\p<1 aly H( pn(1+4) 21l dz;

(1 _p—n)m ! / n(m—1+A1)
pr— d
0 (- p ) Sy 7 !

1<k<m
_ (d=p™)" 1
T 1= pfn(erl) Im a _pfn(1+/lk)) ’
1<k<m
Similarly, we can obtain
(L—p™)" 1 .
Ij= l_p—n(m-HL) ' i—1 y J=2,m.

m o« _p—n(1+zk))jn pr(1+4)
I <k<m kot j k=1
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Then, we have

niy nim
z ez dzy---dz
/(217"7Zm)|p<1| Lip ‘ m‘p 1 m
m 1— p—mym
:Eli: _ (1-p™)
i=1 H (1 —p_n(l""}tk))
k=1
=Cuw,

0 (2) is proved.
Finally, when A1q; = -+ = Agm, we can get Ag = A1q1 = - = Anqm.
We set fi(x) = |x|Z)L" . It is easy to see that

%p(fla'“7fm)(x) :C%‘x‘;}La

and then

1_p—n 1/q
1760 (fis = ) | o ) = Core (m) :

By direct computation, there holds

l_p—n l/qi
1ill iy = (m) ’

SO

Hﬁ(fla 7fm)HBq,k(@g)
||f1 ||B‘11‘)Ll (Qg) e HﬁﬂHB‘ImJLm (Q;’,)

=Cy.

We are done. [

Our second result is mainly about the estimate of 7;5 on p-adic central Morrey-
type spaces.

THEOREM 2. Let m € Z*, f; € Bi%(Q,), 1 <qi <o, —1/qi < i <0, i =
L--om, 1<g<eo, 1/q=3"1/qi, A=3Y" A (also —1/qg< A <O0). Then

HTnI;(fl:'"afm)||3q~,7t((@p) < CTHfIHBqu (Q,,)”' Hfm”qu,M(@p)a “4)
where .
Cr = (l—pm) i-pm
(1=p*) T (1—p~(At1)
=1

Moreover; if A py =+ = AmPm, the constant Cr is the best possible.
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Proof. We will only discuss the case m > 2, since m = 1 is much simpler.

(I) When m = 2.
By the change of variables y; = xz;, i = 1,2, we have

Hsz(fhfZ)HB‘l‘l(Qp)
J11)f2(32)

1 q 1/q
0y )
Tt B, |1/q” ( By |0, Jo, [max (Ix|p, [yi[p, [v21p
q 1/q
<sup— 1/q+}L (/ (/ A1) 200)l dyldyg) dx)
1€ |By | B, \Ja, Ja, [max (|x],, [yi]p, [2[)]?

q 1/q
1/ +2 </ </ / () o)l dz 1dz2> dx) .
YEZ |B | ! By \/Qp Qp max (1 |Zl‘pa‘z2|p)]

Then using the Minkowski’s integral inequality and the Holder’s inequality with
q/q1+q/q2 =1, we get

||T2p(fl7f2)HBq.l QP

g dyidy,

1/‘1 1
<sup / / (/ f1(xz1) fa(xz2 dx) dz;dz
et By \1/‘1“ ,Jo, \ s | ()l (max (1, |21, [22])]?

Y

2 1/qi 1
<sup / / (/ | fi(xzi) ) dzydz
7€Z ‘B ‘l/ﬁl Qp/Qp =1 [max(17|11|pv|z2‘p)}2

1/qi
s [ [T [ @
yEZ Qp /Qp =1 |B’)/10gp|Z,\p H B}’logp\z,‘\p
21 M |zo] 2
dz;dzp
[max (1, |z1]p, |22],)]?

< 202 il il g 2l s )
Q, Jo, [max (1,[z1]p,|z2],)] P P

21 M |z 22

[max (1, [z1]p, [22[5)]
will prove that it’s equal to Cr later.

(IT) When m > 3,

The proof in this case is similar to that of the previous case. Like the formula (5),
we can get

g/ / 122 [H1 - [z o 4zt dzullfill g s g, Il gam -
Qp Qp [max(lakl‘p""a‘zm‘p)} P

It is easy to see that f@p pr 5 dz1dz; is a finite constant, and we

7;1117(f17""fm)||34‘7t(@p)
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Let
Eo={(z1,"+*+2m) €Qpx - xQp: ||y < 1,1 <k <m};
Er={(z1,-12m) €Qpx - xQp:|z1]p > 1, |zl < |21]p, 1 <k <m};
E ={(z1,,2m) €Qp x - x Qp:
lzilp > 1, 2lp < [zilps laklp < Jzilp, 1 < <i<k<m};
En={(21,"",2m) € Qpx - X Qp: zmlp > 1,7l < l2mlp, 1 <j<m}.

It is obvious that
m
UEJZQPX"'XQP7
j=0
and E;NE; = 2. Let

A A
Z e Z
_/ |z1] |Zm| — dzy -+ -dzp.
max 1 |Z1|p7"'7|Zm|P)]

Now, we begin to calculate J;, j=0,---,m.

0=T1[ = )
1 i =
|Zl‘[)<l ©

Mma-p (Ml)).
i=1
11=/ 21|21~ mH (/ Zk;kdzk> dz;
|Zl|p \Zk‘p ‘ZI‘P
1— m—1
:—m( e
H(l_p—(kﬁ-l)) z1]p>1
i=2
_ (1_p—l)mp7L
m °
I (1 —p~ &) (1= pt)
Similarly, we can deduce that
1— —1\m A
Jj= Uor L j=2em
LI p e T
<is<m,i#j
Then, it yields that

|Z1|7Ll ...|Zm|7tm

/@p Qp max 1 |Zl|Pa"'a|Zm‘I7)]m
(1=p)"(1=p")
Jj=
20 (1=pM) I (1= p-tt1)

le . dZm

:CT7
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so (4) is proved.

Finally, when A1q; = -+ = Ajgm, there holds Ag =A1q1 = -+ = Lugm -
We set fi(x) = |x|f§" . It is easy to see that

Trf:(fla"ﬁfm)('x) :CT|X|IA7,

which implies

SO

1—p! 1/q
1T (freeo fm)lgas ) = Cr (m) '

It is not hard to calculate that

l_p_l 1/q;
||fiHqu~?Li(Q7;) = (m) ’

HTHI’l)(fla"' 7fm)HBq.x(Qp)

=Cr.
Hfl HBqu (Qp) T Hﬁn HquA,lm(@p)

Thus, we complete the proof. [
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