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Abstract. Generalized trigonometric functions and generalized hyperbolic functions can be con-
verted to each other by the duality formulas previously discovered by the authors. In this paper,
we apply the duality formulas to prove dual pairs of Wilker-type inequalities, Huygens-type
inequalities, and (relaxed) Cusa-Huygens-type inequalities for the generalized functions. In ad-
dition, multiple- and double-angle formulas not previously obtained are also given.

1. Introduction

Generalized trigonometric functions (GTFs) and generalized hyperbolic functions
(GHFs) are natural mathematical generalizations of the trigonometric and hyperbolic
functions, respectively. They have been applied not only to generalize π and the com-
plete elliptic integrals, but also to analyze nonlinear differential equations involving
p -Laplacian (see monographs [3, 6] and survey [15], and the references given there).

Although GTFs and GHFs have been actively studied, they have been treated sep-
arately (e.g., [3, 5, 7, 9, 14, 15]). In our previous work [8], the duality formulas that can
transform GTFs and GHFs into each other are proved. As an application, we were able
to construct generalized inequalities of the classical Mitrinović-Adamović inequalities
to GTFs and GHFs such that they are dual pairs to each other in the sense explained in
the next section.

In this paper, following [8], we will generalize the old and vigorously studied
Wilker inequalities, Huygens inequalities and (relaxed) Cusa-Huygens inequalities to
GTFs and GHFs. In fact, previous works, e.g., [5, 7, 9, 14, 15], have made various
generalizations of these inequalities, but the trigonometric and hyperbolic versions are
not in dual pairs. On the other hand, the pairs we create in the present paper are dual to
each other.
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This paper is organized as follows. Section 2 summarizes the definitions of GTFs
and GHFs and their properties, including the duality formulas obtained in [8]. Here, the
conditions imposed on the parameters contained in these functions are more extended
than usual. This extension reveals the duality between both generalized functions. In
Section 3, we generalize the classical Wilker inequalities, Huygens inequalities, and
(relaxed) Cusa-Huygens inequalities to GTFs and GHFs. It should be noted that the
pairs of inequalities obtained there are dual to each other. In Section 4, as a further
application of the duality formulas, we provide multiple- and double-angle formulas
for GTFs and GHFs. Although some formulas have already been obtained in previous
studies (cf. [12] and Table 1 in Section 4), we give formulas for parameters for which
no formulas were previously known.

2. Preparation

In this section, we summarize the definitions and some properties of GTFs and
GHFs (see [8] for more details). The relationship between GTFs and GHFs can be
seen by making the range of parameters in the functions wider than the conventional
definition.

Let us assume q
q+1

< p < ∞, 0 < q < ∞, (2.1)

and

Fp,q(y) :=
∫ y

0

dt

(1− tq)1/p
, y ∈ [0,1).

We will denote by sinp,q the inverse function of Fp,q , i.e.,

sinp,q x := F−1
p,q (x).

Clearly, sinp,q x is monotone increasing on [0,πp,q/2) onto [0,1) , where

πp,q : = 2Fp,q(1) = 2
∫ 1

0

dt

(1− tq)1/p

=

{
(2/q)B(1−1/p,1/q), 1 < p < ∞,

∞, q/(q+1) < p � 1,

and B is the beta function. In almost all literature dealing with GTFs, the parameters
p, q are assumed to be p, q > 1, but we here allow them to be p, q � 1. Note that the
condition q/(q+1) < p � 1 implies that sinp,q is monotone increasing on the infinite
interval [0,∞) and no longer similar to sinx , but to tanhx (Figure 1).

Since sinp,q ∈C1(0,πp,q/2) , we also define cosp,q by

cosp,q x :=
d
dx

(sinp,q x).

Then, it follows that
cosp

p,q x+ sinq
p,q x = 1. (2.2)
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Figure 1: The graphs of sinp,q x : p > 1 (left) and q/(q+1) < p � 1 (right).

In case (p,q) = (2,2) , it is obvious that sinp,q, cosp,q and πp,q are reduced to the
ordinary sin, cos and π , respectively. Therefore these functions and the constant are
called generalized trigonometric functions (GTFs) and the generalized π , respectively.
It is easy to check that u = sinp,q x is a solution of the initial value problem of p -
Laplacian

(|u′|p−2u′)′ +
(p−1)q

p
|u|q−2u = 0, u(0) = 0, u′(0) = 1, (2.3)

which is closely related to the eigenvalue problem of p -Laplacian.
In a similar way, we assume (2.1) and

Gp,q(y) :=
∫ y

0

dt

(1+ tq)1/p
, y ∈ [0,∞).

We will denote by sinhp,q the inverse function of Gp,q , i.e.,

sinhp,q x := G−1
p,q(x).

Clearly, sinhp,q is monotone increasing on [0,πr,q/2) onto [0,∞) , where r is the posi-
tive constant determined by

1
p

+
1
r

= 1+
1
q
, i.e., r =

pq
pq+ p−q

. (2.4)

Indeed, by 1+ tq = 1/(1− sq) ,

lim
y→∞

Gp,q(y) =
∫ ∞

0

dt

(1+ tq)1/p
=
∫ 1

0

ds

(1− sq)1/r
=

πr,q

2
.

The important point to note here is that for a fixed q ∈ (0,∞) , if r = rq(p) is regarded
as a function of p , then

rq is bijective from (q/(q+1),∞) to itself, and (2.5)

rq(rq(p)) = p. (2.6)
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Figure 2: The graphs of sinhp,q x : r � 1 (left) and r > 1 (right).

In particular, πr,q has been defined under (2.1). If r > 1, i.e., p < q , then sinhp,q is
defined in the bounded interval [0,πr,q/2) with limx→πr,q/2 sinhp,q x = ∞ and no longer
similar to sinhx , but to tanx (Figure 2).

Since sinhp,q ∈C1(0,πr,q/2) , we also define coshp,q by

coshp,q x :=
d
dx

(sinhp,q x).

Then, it follows that
coshp

p,q x− sinhq
p,q x = 1. (2.7)

In case (p,q) = (2,2) , it is obvious that sinhp,q, coshp,q and the interval [0,πr,q/2)
are reduced to sinh, cosh and [0,∞) , respectively. Therefore these functions are called
generalized hyperbolic functions (GHFs). Just as sinp,q x satisfies (2.3), u = sinhp,q x
is a solution of the initial value problem of p -Laplacian

(|u′|p−2u′)′ − (p−1)q
p

|u|q−2u = 0, u(0) = 0, u′(0) = 1.

We generalize the tangent and hyperbolic tangent functions in two ways. These
functions are often generalized as

tanp,q x :=
sinp,q x

cosp,q x
, tanhp,q x :=

sinhp,q x

coshp,q x

(e.g., [3, 4, 5, 6, 7, 9, 14, 15]). However, for practical purposes, the following modified
functions are more convenient than the functions above:

tamp,q x :=
sinp,q x

cosp/q
p,q x

, tamhp,q x :=
sinhp,q x

coshp/q
p,q x

.
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These modified functions were first introduced in [8, 12] with the symbols τp,q, τ̃p,q ,
respectively. Note that if p = q , then tamp,q x = tanp,q x and tamhp,q x = tanhp,q x .

In [8], we proved the following duality properties between GTFs and GHFs. This
property remains important in the present paper.

THEOREM 2.1. [8] Let p and q satisfy (2.1) and r be the positive number
defined as (2.4). Then, for x ∈ [0,πp,q/2) ,

sinp,q x =
sinhr,q x

coshr/q
r,q x

= tamhr,q x,

cosp,q x =
1

coshr/p
r,q x

,

tamp,q x = sinhr,q x.

THEOREM 2.2. [8] Let p and q satisfy (2.1) and r be the positive number
defined as (2.4). Then, for x ∈ [0,πr,q/2) ,

sinhp,q x =
sinr,q x

cosr/q
r,q x

= tamr,q x,

coshp,q x =
1

cosr/p
r,q x

,

tamhp,q x = sinr,q x.

REMARK 2.3. In [8], we have supposed q to be 1 < q < ∞ . However, the proofs
therein are perfectly valid in the case 0 < q < ∞ as well. The same is true for Theorem
2.4 below.

Theorems 2.1 and 2.2 tell us the counterparts to GHFs of the properties already
known for GTFs, and vice versa. For example, Theorem 2.1 immediately converts
(2.2) into (2.7) (with p replaced by r ); that is,

cosp
p,q x+ sinq

p,q x = 1 (2.8)

into

coshr
r,q x− sinhq

r,q x = 1; (2.9)

and Theorem 2.2 (with (2.6)) does vice versa. Hence, it follows from (2.5) that (2.8)
and (2.9) correspond one-to-one. In this sense, we say that inequalities (2.8) and (2.9)
(i.e., (2.7) with p replaced by r ) are dual to each other.

Moreover, using our theorems, the authors [8, Theorem 1.3] have shown the gen-
eralization of Mitrinović-Adamović inequalities. The generalized inequalities will be
applied in the next section, and are discussed now. The classical Mitrinović-Adamović
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inequalities are as follows:

cos1/3 x <
sinx
x

< 1, x ∈
(
0,

π
2

)
,

cosh1/3 x <
sinhx

x
< coshx, x ∈ (0,∞) .

The latter is also called the Lazarević inequality. Klén et al. [5, Theorems 3.6 and 3.8]
extend these inequalities to the one-parameter case: for p ∈ (1,∞) ,

cos1/(p+1)
p x <

sinp x
x

< 1, x ∈
(
0,

πp

2

)
,

cosh1/(p+1)
p x <

sinhp x

x
< coshp x, x ∈ (0,∞) ,

where sinp x := sinp,p x and the other functions are defined in the same way. Moreover,
Ma et al. [7, Lemma 2] obtain the inequalities for the two-parameter case: for p, q ∈
(1,∞) ,

cos1/(q+1)
p,q x <

sinp,q x

x
< 1, x ∈

(
0,

πp,q

2

)
, (2.10)

cosh1/(q+1)
p,q x <

sinhp,q x

x
< coshp,q x for appropriate x. (2.11)

The proofs of Klén et al. [5] and Ma et al. [7] are similar, and both prove the inequalities
for the trigonometric case and the hyperbolic case separately in the same way.

However, (2.10) and (2.11) (with p replaced by r ) are not dual to each other. A
dual pair of Mitrinović-Adamović-type inequalities is as follows:

THEOREM 2.4. (Mitrinović-Adamović-type inequalities with duality, [8]) Let p
and q satisfy (2.1) and r be the positive number defined as (2.4). Then,

cos1/(q+1)
p,q x <

sinp,q x

x
< 1, x ∈

(
0,

πp,q

2

)
, (2.12)

cosh1/(q+1)
p,q x <

sinhp,q x

x
< coshp/q

p,q x, x ∈
(
0,

πr,q

2

)
. (2.13)

Moreover, (2.12) and (2.13) (with p replaced by r ) are dual to each other.

REMARK 2.5. If p = q , then (2.12) and (2.13) are equal to (2.10) and (2.11);
hence, to the one-parameter ones above.

In our approach in [8], Theorem 2.4 allows us to obtain the inequalities over the
wider range (2.1) of parameters, and (2.13) immediately follows from (2.12) by Theo-
rem 2.1.
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3. Dual pairs of inequalities

In this section, we generalize the Wilker, Huygens, and (relaxed) Cusa-Huygens
inequalities for GTFs and GHFs to a form with duality using our duality formulas (The-
orems 2.1 and 2.2), just as we generalized the Mitrinović-Adamović inequalities as
Theorem 2.4.

3.1. Wilker-type inequalities

The classical Wilker inequalities are as follows:

(
sinx
x

)2

+
tanx

x
> 2, x ∈

(
0,

π
2

)
,

(
sinhx

x

)2

+
tanhx

x
> 2, x ∈ (0,∞) .

Klén et al. [5, Corollary 3.19] and Yin et al. [14, Theorem 3.1] extend these inequalities
to the one-parameter case: for p ∈ (1,∞) ,

(
sinp x

x

)p

+
tanp x

x
> 2, x ∈

(
0,

πp

2

)
,(

sinhp x

x

)p

+
tanhp x

x
> 2, x ∈ (0,∞) .

Moreover, Neuman [9, Corollary 6.3 (6.13)] obtains the inequalities for the two-parameter
case: for p, q ∈ (1,∞) ,(

sinp,q x
x

)q

+
tanp,q x

x
> 2, x ∈

(
0,

πp,q

2

)
, (3.1)(

sinhp,q x

x

)q

+
tanhp,q x

x
> 2 for appropriate x. (3.2)

However, (3.1) and (3.2) (with p replaced by r ) are not dual to each other. A dual
pair of Wilker-type inequalities is as follows:

THEOREM 3.1. (Wilker-type inequalities with duality) Let p and q satisfy (2.1)
and r be the positive number defined as (2.4). Then,(

sinp,q x

x

)p

+
(

tamp,q x

x

)r

> 2, x ∈
(
0,

πp,q

2

)
, (3.3)(

sinhp,q x

x

)p

+
(

tamhp,q x

x

)r

> 2, x ∈
(
0,

πr,q

2

)
. (3.4)

Moreover, (3.3) and (3.4) (with p replaced by r ) are dual to each other.
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REMARK 3.2. If p = q , then (3.3) and (3.4) are equal to (3.1) and (3.2); hence,
to the one-parameter ones above, respectively.

Proof. We prove (3.3). From the inequality of arithmetic and geometric means
and (2.12) in Theorem 2.4, it follows that(

sinp,q x
x

)p

+
(

tamp,q x
x

)r

� 2

(
sinp,q x

x

)p/2( tamp,q x
x

)r/2

= 2

(
sinp,q x

x

)p/2+r/2
(

1

cosp/q
p,q x

)r/2

> 2

(
sinp,q x

x

)p/2+r/2( sinp,q x
x

)−rp(q+1)/(2q)

= 2.

Next we show (3.4). For any x∈ (0,πp,q/2) , we have proved (3.3). Then, Theorem
2.1 gives the dual inequality to (3.3):(

tamhr,q x
x

)p

+
(

sinhr,q x
x

)r

> 2.

Owing to (2.5) and (2.6), this means (3.4). �

3.2. Huygens-type inequalities

The classical Huygens inequalities are as follows:

2sinx
x

+
tanx

x
> 3, x ∈

(
0,

π
2

)
,

2sinhx
x

+
tanhx

x
> 3, x ∈ (0,∞) .

Klén et al. [5, Theorem 3.16] extend these inequalities to the one-parameter case: for
p ∈ (1,∞) ,

psinp x
x

+
tanp x

x
> p+1, x ∈

(
0,

πp

2

)
,

psinhp x
x

+
tanhp x

x
> p+1, x ∈ (0,∞) .

Moreover, Neuman [9, Corollary 6.3 (6.14)] obtains the inequalities for the two-parameter
case: for p, q ∈ (1,∞) ,

qsinp,q x

x
+

tanp,q x

x
> q+1, x ∈

(
0,

πp,q

2

)
, (3.5)

qsinhp,q x

x
+

tanhp,q x

x
> q+1 for appropriate x. (3.6)

However, (3.5) and (3.6) (with p replaced by r ) are not dual to each other. A dual
pair of Huygens-type inequalities is as follows:
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THEOREM 3.3. (Huygens-type inequalities with duality) Let p and q satisfy (2.1)
and r be the positive number defined as (2.4). Then,

psinp,q x
x

+
r tamp,q x

x
> p+ r, x ∈

(
0,

πp,q

2

)
, (3.7)

psinhp,q x

x
+

r tamhp,q x

x
> p+ r, x ∈

(
0,

πr,q

2

)
. (3.8)

Moreover, (3.7) and (3.8) (with p replaced by r ) are dual to each other.

REMARK 3.4. If p = q , then (3.7) and (3.8) are equal to (3.5) and (3.6); hence,
to the one-parameter ones above, respectively.

Proof. Let α, β be

α =
p(q+1)

pq+ p−q
= 1+

r
p
, β =

p(q+1)
q

= 1+
p
r
.

Since α, β > 1 and 1/α + 1/β = 1, the following Young inequality holds true for
positive numbers A, B :

A+B � (αA)1/α(βB)1/β .

Therefore, by this inequality and (2.12) in Theorem 2.4,

psinp,q x

x
+

r tamp,q x

x
�
(

α
psinp,q x

x

)1/α(
β

r tamp,q x

x

)1/β

= (α p)1/α(β r)1/β sinp,q x

x

(
1

cosp/q
p,q x

)1/β

> (p+ r)1/α(r+ p)1/β sinp,q x

x

(
sinp,q x

x

)−p(q+1)/(βq)

= p+ r.

Next we show (3.8). For any x∈ (0,πp,q/2) , we have proved (3.7). Then, Theorem
2.1 gives the dual inequality to (3.7):

p tamhr,q x

x
+

r sinhr,q x

x
> p+ r.

Owing to (2.5) and (2.6), this means (3.8). �

3.3. Relaxed Cusa-Huygens-type inequalities

The classical Cusa-Huygens inequalities are as follows:

sinx
x

<
2+ cosx

3
, x ∈

(
0,

π
2

)
,

sinhx
x

<
2+ coshx

3
, x ∈ (0,∞) .
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Ma et al. [7, Theorems 2 and 3] obtain the inequalities for the two-parameter case: for
p, q ∈ (1,2] ,

sinp,q x

x
<

q+ cosp,q x

q+1
, x ∈

(
0,

πp,q

2

)
, (3.9)

sinhp,q x
x

<
q+ coshp,q x

q+1
for appropriate x. (3.10)

The inequalities for the one parameter p = q ∈ (1,2] are given by Klén et al. [5, The-
orems 3.22 and 3.24]. Unfortunately, these generalized inequalities are shown only for
p, q ∈ (1,2] , and (3.9) and (3.10) (with p replaced by r ) are not dual to each other.

We hope to find inequalities that hold for p, q satisfying (2.1) and are dual to each
other. Therefore, consider the following relaxed inequalities instead of the classical
Cusa-Huygens inequalities:

sinx
x

<

√
2+ cos2 x

3
, x ∈

(
0,

π
2

)
,

sinhx
x

<

√
2+ cosh2 x

3
, x ∈ (0,∞) .

Neuman [9, Theorem 6 (6.7), (6.9)] generalizes the inequalities to the two-parameter
case: for p, q ∈ (1,∞) ,

sinp,q x
x

<

(
q+ cosp

p,q x
q+1

)1/p

, x ∈
(
0,

πp,q

2

)
, (3.11)

sinhp,q x

x
<

(
q+ coshp

p,q x

q+1

)1/p

for appropriate x. (3.12)

However, (3.11) and (3.12) (with p replaced by r ) are not dual to each other. A
dual pair of Cusa-Huygens-type inequalities is as follows:

THEOREM 3.5. (Relaxed Cusa-Huygens-type inequalities with duality) Let p and
q satisfy (2.1) and r be the positive number defined as (2.4). Then,

sinp,q x

x
<

(
p+ rcosp

p,q x
p+ r

)1/q

, x ∈
(
0,

πp,q

2

)
, (3.13)

sinhp,q x
x

<

(
p+ rcoshp

p,q x

p+ r

)1/q

, x ∈
(
0,

πr,q

2

)
. (3.14)

Moreover, (3.13) and (3.14) (with p replaced by r ) are dual to each other.

REMARK 3.6. If p = q , then (3.13) and (3.14) are equal to (3.11) and (3.12),
respectively.
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Proof. We prove
(p+ r+ rxq)sinq

p,q x

xq < p+ r,

which is equivalent to (3.13). Let f (x) := p+ r− (p+ r+ rxq)sinq
p,q x/xq . Then,

f ′(x) =
qsinq

p,q x

xq+1

(
p+ r− (p+ r)xcosp,q x

sinp,q x
− rxq+1 cosp,q x

sinp,q x

)
.

From (2.12) in Theorem 2.4, it follows that

xcosp,q x

sinp,q x
< cosq/(q+1)

p,q x,
xq+1 cosp,q x

sinp,q x
< 1− cosp

p,q x.

Therefore,

f ′(x) >
qsinq

p,q x

xq+1

(
p− (p+ r)cosq/(q+1)

p,q x+ rcosp
p,q x
)

.

Now let g(t) = p− (p+ r)tq/(q+1)+ rt p . Then,

g′(t) = prt−1/(q+1)(t p−q/(q+1)−1)

Since q/(q+1) < p , we see g′(t) < 0. Therefore, g(t) > limt→1−0 g(t) = 0 and

f ′(x) >
qsinq

p,q x

xq+1 g(cosp,q x) > 0.

Moreover, f (x) > limx→+0 f (x) = 0, which means (3.13).
Next we show (3.14). For any x ∈ (0,πp,q/2) , we have proved (3.13). Then,

Theorem 2.1 gives the dual inequality to (3.13):

sinhr,q x

xcoshr/q
r,q x

<

(
p+ rcosh−r

r,q x

p+ r

)1/q

;

hence,
sinhr,q x

x
<

(
pcoshr

r,q x+ r

p+ r

)1/q

.

Owing to (2.5) and (2.6), this means (3.14). �

4. Multiple- and double-angle formulas

Several multiple- and double-angle formulas for GTFs and GHFs are already
known (see [8, Theorems 1.4 and 1.6] and [12, Theorem 1.1] for multiple-angle formu-
las; Table 1 for double-angle formulas). In this section, we apply the duality formulas
(Theorems 2.1 and 2.2) to obtain multiple- and double-angle formulas which are not
covered in [8] and [12], for these generalized functions.

The multiple-angle formulas in the following theorem assure that GTFs for (2q/
(2+ q),q/2) can be represented in terms of GTFs for (2q/(2+ q),q) . Moreover, the
counterparts to GHFs are obtained as their dual inequalities.
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Table 1: The parameters for which the double angle formulas of GTF have been obtained.

q (q/(q−1),2) (2,q) (q/(q−1),q)
2 (2,2) Abu al-Wafa (2,2) Abu al-Wafa (2,2) Abu al-Wafa

3 (3/2,2) Miyakawa-Takeuchi [8] (2,3) Cox-Shurman [1] (3/2,3) Dixon [2]

4 (4/3,2) Sato-Takeuchi [10] (2,4) Fagnano (4/3,4) Edmunds et al. [4]

6 (6/5,2) Takeuchi [13] (2,6) Shinohara [11] (6/5,6) Takeuchi [13]

q (2q/(2+q),q/2) (2q/(2+q),q) (q/2,q)
2 (1,1) Napier (1,2) V. Riccati (1,2) V. Riccati

3 (6/5,3/2) Theorem 4.4 (6/5,3) Miyakawa-Takeuchi [8] (3/2,3) Dixon [2]

4 (4/3,2) Sato-Takeuchi [10] (4/3,4) Edmunds et al. [4] (2,4) Fagnano

6 (3/2,3) Dixon [2] (3/2,6) Miyakawa-Takeuchi [8] (3,6) Miyakawa-Takeuchi [8]

THEOREM 4.1. Let 0 < q < ∞ . Then, for

x ∈ [0,π2q/(2+q),q/2/(22/q+1)) = [0,π2q/(2+q),q/2),

sin2q/(2+q),q/2(2
2/qx) =

22/q sin2q/(2+q),q x

(1+ sinq/2
2q/(2+q),q x)2/q

,

cos2q/(2+q),q/2(2
2/qx) =

⎛
⎝1− sinq/2

2q/(2+q),q x

1+ sinq/2
2q/(2+q),q x

⎞
⎠

1/q+1/2

.

Moreover, for same x ,

sinh2q/(2+q),q/2(2
2/qx) = 22/q sinh2,q x(cosh2,q x+ sinhq/2

2,q x)2/q,

cosh2q/(2+q),q/2(2
2/qx) = (cosh2,q x+ sinhq/2

2,q x)2/q+1.

Proof. The former half is shown as follows. Let y∈ [0,∞) . Setting tq = uq/(4(1−
uq/2)) in

sinh−1
2,q y =

∫ y

0

dt√
1+ tq

,

we have

sinh−1
2,q y = 2−2/q−1

∫ 22/qy/(yq/2+
√

yq+1)2/q

0

2(1−uq/2)1/2

2−uq/2
· 2−uq/2

(1−uq/2)1/q+1
du

= 2−2/q
∫ 22/qy/(yq/2+

√
yq+1)2/q

0

du

(1−uq/2)1/q+1/2
;
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that is,

sinh−1
2,q y = 2−2/q sin−1

2q/(2+q),q/2

(
22/qy

(yq/2 +
√

yq +1)2/q

)
. (4.1)

Letting y → ∞ in (4.1) and using rq(2) = 2q/(2+q) , we get

π2q/(2+q),q

2
=

π2q/(2+q),q/2

22/q+1
.

From (4.1), we see that for x ∈ [0,π2q/(2+q),q/2/(22/q+1)) = [0,π2q/(2+q),q/2) ,

sin2q/(2+q),q/2(2
2/qx) =

22/q sinh2,q x

(sinhq/2
2,q x+ cosh2,q x)2/q

=
22/q tamh2,q x

(tamhq/2
2,q x+1)2/q

.

Theorem 2.2 with rq(2) = 2q/(2+q) shows that the right-hand side becomes

22/q sin2q/(2+q),q x

(sinq/2
2q/(2+q),q x+1)2/q

.

The formula of cos2q/(q+2),q/2 immediately follows from (2.2).
The latter half is proved as follows. By Theorem 2.2 with rq/2(2q/(2+q)) =

2q/(2+q) and the former half,

sinh2q/(2+q),q/2(2
2/qx) =

sin2q/(2+q),q/2(22/qx)

cos4/(2+q)
2q/(2+q),q/2(2

2/qx)
=

22/q sin2q/(2+q),q x

(1− sinq/2
2q/(2+q),q x)2/q

.

Theorem 2.1 with rq(2q/(2+q)) = 2 shows that the right-hand side becomes

22/q sinh2,q x(cosh2,q x+ sinhq/2
2,q x)2/q.

The formula of cosh2q/(q+2),q/2 immediately follows from (2.2). �

REMARK 4.2. If q = 2, then the formulas of sin2q/(2+q),q/2 and sinh2q/(2+q),q/2
are

1− e−2x =
2tanhx

1+ tanhx
,

e2x −1 = 2sinhx(coshx+ sinhx).

The following double-angle formula is proved by [8, Theorem 3.8].

LEMMA 4.3. [8] For x ∈ [0,π6/5,3/4) ,

sin6/5,3(2x) =
4cos1/5

6/5,3 x(3cos3/5
6/5,3 x+1)(1− cos3/5

6/5,3 x)1/3

(
16cos3/5

6/5,3 x+(3cos3/5
6/5,3 x+1)3(1− cos3/5

6/5,3 x)
)2/3

.
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Now, we are in a position to show the double-angle formula of sin6/5,3/2 .

THEOREM 4.4. For x ∈ [0,π6/5,3/2/4) ,

sin6/5,3/2(2x) = (Θ ◦Φ◦Ψ)(cos6/5,3/2 x),

where

Θ(x) =
(

2x
1+ x

)2/3

,

Φ(x) =
8
√

x(3x+1)3(1− x)
16x+(3x+1)3(1− x)

,

Ψ(x) =
2x3/5

1+ x6/5
.

Proof. From Theorem 4.1 with q = 3, for x ∈ [0,π6/5,3/2/(25/3)) = [0,π6/5,3/2) ,

sin6/5,3/2(2
2/3x) =

22/3 sin6/5,3 x

(1+ sin3/2
6/5,3 x)2/3

= Θ(sin3/2
6/5,3 x);

hence,

sin3/2
6/5,3 x = Θ−1(sin6/5,3/2(2

2/3x)) =
sin3/2

6/5,3/2(2
2/3x)

2− sin3/2
6/5,3/2(2

2/3x)
.

Thus, from (2.2),

cos3/5
6/5,3 x =

2cos3/5
6/5,3/2(2

2/3x)

1+ cos6/5
6/5,3/2(2

2/3x)
= Ψ(cos6/5,3/2 (22/3x)). (4.2)

Now, let x ∈ [0,π6/5,3/2/4) and y := x/(22/3) . It follows from Theorem 4.1 with

q = 3 that since 2y ∈ [0,π6/5,3/2/(25/3)) = [0,π6/5,3/2) , we get

sin6/5,3/2(2x) = sin6/5,3/2(2
2/3 ·2y) = Θ(sin3/2

6/5,3 (2y)). (4.3)

Here, Lemma 4.3 and (4.2) yield

sin3/2
6/5,3(2y) = Φ(cos3/5

6/5,3 y) = Φ(Ψ(cos6/5,3/2(2
2/3y))) = Φ(Ψ(cos6/5,3/2 x)).

Therefore, from (4.3), we have

sin6/5,3/2(2x) = Θ(Φ(Ψ(cos6/5,3/2 x))) = (Θ ◦Φ◦Ψ)(cos6/5,3/2 x).

The proof is completed. �
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