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MORE RESULTS ON WEIGHTED MEANS

SHIGERU FURUICHI ∗ AND MEHDI EGHBALI AMLASHI

(Communicated by M. Krnić)

Abstract. We give a refined Young inequality which generalizes the inequality by Zou–Jiang.
We also show the upper bound for the logarithmic mean by the use of the weighted geometric
mean and the weighted arithmetic mean. Furthermore, we show some inequalities among the
weighted means. Based on the obtained essential scalar inequalities, we give some operator
inequalities. In particular, we give a generalization of the result by Zou–Jiang, that is, we show
the operator inequalities with the operator relative entropy with the weighted parameter. Finally,
we give the further generalized inequalities by the Tsallis operator relative entropy.

1. Introduction

The logarithmic mean is defined by

L(a,b) :=
a−b

loga− logb
=
∫ 1

0
atb1−tdt, a �= b (1)

for two positive numbers a and b . (We usually define L(a,b) = a , if a = b .) It is
known the inequality:

L(a,b) � 2
3
G(a,b)+

1
3
A(a,b), (2)

which is called the classical Pólya inequality in [14], where A(a,b) :=
1
2
(a+b) , G(a,b)

:=
√

ab . It is also known the inequality [10]:

G(a,b) � L(a,b) �
(

a1/3 +b1/3

2

)3

. (3)

We have the following relation [5, Lemma 1.1]:

L(a,b) �
(

a1/3 +b1/3

2

)3

� 2
3
G(a,b)+

1
3
A(a,b), (4)
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which is a refinement of the Pólya inequality.
Recently, the weighted logarithmic mean is introduced in [11] as

Lv(a,b) :=
1

loga− logb

(
1− v

v
(a−a1−vbv)+

v
1− v

(a1−vbv −b)
)

(5)

and studied in [6, 12]. In [6, Corollary 2.2] and [12, Theorem 2.2], the following
inequality is shown.

Lv(a,b) � 1
2
Gv(a,b)+

1
2
Av(a,b), (6)

where Av(a,b) := (1−v)a+vb is the weighted arithmetic mean and Gv(a,b) := a1−vbv

is the weighted geometric mean. However, the following inequality does not hold in
general.

Lv(a,b) � 2
3
Gv(a,b)+

1
3
Av(a,b), (7)

since we have counter-examples. See [11] for example.
We have the following relation for a,b > 0 and 0 � v � 1,

Hv(a,b) � Gv(a,b) � Lv(a,b) � Av(a,b), (8)

where Hv(a,b) :=
{
(1− v)a−1 + vb−1

}−1
is the weighted harmonic mean. The in-

equality Gv(a,b) � Av(a,b) is often called the Young inequality. Many refinements
and reverses for this inequality have been studied. See [3, Chapter 2] for example. See
also [7, 8] for the recent advanced results. In the paper [4], one of authors studied
some inequalities on the weighted means, especially the weighted logarithmic mean.
In this paper, we give the further results on the weighted mean and obtain some new
inequalities for them.

2. Main results

We firstly give a new refinement of the Young inequality which is a generalization
for the known result by using the weighted parameter v ∈ [0,1] .

THEOREM 1. For a,b > 0 and 0 � v � 1 , we have

Gv(a,b) �
{

1+
μ2

2
(loga− logb)2

}
Gv(a,b) � Av(a,b), (9)

where μ := min{1− v,v} .

Proof. The first inequality of (9) is trivial. To prove the second inequality of (9),

we assume 0 � v � 1
2

and set

fv(t) := (1− v)t + v− t1−v− v2

2
(logt)2 t1−v, t > 0.
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Then we have

d fv(t)
dt

=
gv(t)
2tv

, gv(t) := 2(1− v)(tv−1)−2v2 logt− v2(1− v)(logt)2 .

We also have

dgv(t)
dt

=
2v
t

hv(t), hv(t) := (1− v)(tv− logtv)− v.

Since
dhv(t)

dt
=

v(1− v)(tv−1)
t

, we have hv(t) � hv(1) = 1− 2v � 0 which implies

dgv(t)
dt

� 0. Thus we have gv(t) � gv(1) = 0 for t � 1, and gv(t) � gv(1) = 0 for

0 < t � 1, so that we have
d fv(t)

dt
� 0 for t � 1, and

d fv(t)
dt

� 0 for 0 < t � 1.

Therefore we have fv(t) � fv(1) = 0. The case 1/2 � v � 1 can be proven similarly.
Finally, putting t := a/b and then multiplying b > 0 to both sides, we obtain the desired
result. �

REMARK 1. It is remarkable that Theorem 1 recovers the following inequality
[15]: {

1+
1
8

(loga− logb)2
}

G(a,b) � A(a,b) (10)

when v = 1/2. In addition, the following reverse of the second inequality in (9):

Av(a,b) �
{

1+
λ 2

2
(loga− logb)2

}
Gv(a,b), λ := max{1− v,v}

does not hold in general, because of (10).
The authors have been unaware the paper [8] until the review. Although our gen-

eralization given in Theorem 1 for (10) is natural and simple, we have to point out that
the inequality given in [8, (2.1)] is better than our one.

Considering r -logarithmic function which is defined by lnr x :=
xr −1

r
for x > 0

and r �= 0, we find the following corollary of Theorem 1. We note that lim
r→0

lnr x = logx .

COROLLARY 1. Let 0 � v � 1 , r �= 0 and a,b > 0 . If we have the conditions
(i)r > 0 and 0 < a � b, or (ii)r < 0 and a � b > 0 , then we have the following
inequalities.

Gv(a,b) �
{

1+
μ2

2

(
lnr

a
b

)2
}

Gv(a,b) � Av(a,b), (11)

where μ := min{1− v,v} .

Proof. The first inequality of (11) is trivial. We consider the function

fv,r(t) := (1− v)t + v− t1−v− μ2

2
(lnr t)2t1−v, (t > 0, r �= 0, 0 � v � 1).



1648 S. FURUICHI AND M. E. AMLASHI

Then we have
d fv,r(t)

dr
=

μ2t1−v(1− tr)
r3 (1− tr + tr logtr) .

Putting x := 1/tr in the fundamental inequality logx � x− 1 for x > 0, we have 1−
tr + tr logtr � 0 for t > 0 and r ∈ R . Thus we have

d fv,r(t)
dr

� 0 for r > 0 and

0 < t � 1, which implies fv,r(t) � fv,0(t) � 0. The last inequality is thanks to the

second inequality of (9) with the fact lim
r→0

lnr x = logx . We also have
d fv,r(t)

dr
� 0 for

r < 0 and t � 1, which implies fv,r(t) � fv,0(t) � 0, similarly. Therefore, if we have the
conditions (i)r > 0 and 0 < t � 1, or (ii)r < 0 and t � 1, then we have the following
inequalities:

(1− v)t + v− t1−v− μ2

2
(lnr t)2t1−v � 0.

Putting t := a/b in the above and multiplying b > 0 to both sides, we get the second
inequality of (11). �

It is well known that

G(a,b) � Hzv(a,b) � A(a,b), (12)

where Hzv(a,b) := A(Gv(a,b),G1−v(a,b))=
a1−vbv +avb1−v

2
is the Heinz mean. Then

we have the following inequalities from Theorem 1.

COROLLARY 2. For a,b > 0 and 0 � v � 1 , we have

G(a,b) � Hzv(a,b) �
{

1+
μ2

2
(loga− logb)2

}
Hzv(a,b) � A(a,b).

Proof. Replacing v by 1−v in (9) and adding it to (9) and then dividing 2, we get
the result. �

The inequality

L(a,b) � 1
2
Av(a,b)+

1
2
Gv(a,b), a,b > 0, 0 � v � 1 (13)

does not hold in general, since we have counter-examples such as

1
2
A1/4 (1/2,1)+

1
2
G1/4 (1/2,1)−L(1/2,1)�−0.223091 (14)

and
1
2
A3/4 (2,1)+

1
2
G3/4 (2,1)−L(2,1) �−0.446183. (15)

However, we have the following inequality for the weighted mean.
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THEOREM 2. For a,b > 0 and 0 � v � 1 , we have

L(a,b) � 1
2
Av(a,b)+

1
2
G1−v(a,b). (16)

Proof. To prove (16), it is sufficient to prove fv(t) � 0 for t > 0 and 0 � v � 1,
where

fv(t) := tv +(1− v)t + v− 2(t−1)
logt

, t > 0.

Then we have
fv(t)
dv

= 1− t + tv logt and
d2 fv(t)

dv2 = tv (logt)2 � 0. Then fv(t) takes a

minimum value at v = vmin , that is,

fvmin(t)
dv

= 0 ⇔ tvmin =
t−1
logt

⇔ vmin = logt

(
t−1
logt

)
.

Therefore we have

fv(t) � fvmin(t) = t− (t −1)
log t

log

(
t−1
logt

)
− (t −1)

logt
.

We here prove fvmin(t) � 0 for t > 0. Then we set for t > 0 the function g(t) by

g(t) :=
t logt
t−1

− log

(
t−1
logt

)
−1.

Then we have

g′(t) =
1

t logt
− logt

(t −1)2 =
(t −1)2− t (logt)2

t(t−1)2 logt
� 0, t � 1

since we have
t−1
logt

�
√

t for t > 1. We also have g′(t) � 0 for 0 < t � 1, since we

have also
t−1
logt

�
√

t for 0 < t � 1. Thus we have g(t) � g(1) = 0 for t > 0, since

lim
t→1

t logt
t−1

= 1 and lim
t→1

t −1
log t

= 1. Multiplying
t −1
log t

> 0, (t > 0) to g(t) , we thus have

fv(t) � fvmin(t) � 0 for t > 0. �

REMARK 2. (i) Replacing v by 1−v in (16) with same procedure in the Corol-
lary 2, we get the following inequality.

L(a,b) � 1
2
A(a,b)+

1
2
Hzv(a,b). (17)

This inequality is also proven by the use of (6) with v = 1/2 and (12) as

L(a,b) � 1
2
A(a,b)+

1
2
G(a,b) � 1

2
A(a,b)+

1
2
Hzv(a,b).
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(ii) From g(t) � 0 in the proof of Theorem 2 and [2, Lemma 3], we have the bounds
of t

t
t−1 in the following

t−1
logt

� t
t

t−1

e
� t2 +1

t +1
, t > 0.

We study the properties on the function which is a representing function of the
weighted logarithmic mean.

Lv(t) :=
1

logt

(
1− v

v

(
t− t1−v)+ v

1− v

(
t1−v−1

))
. (18)

We easily see bLv (a/b) = Lv(a,b) , L1/2(t) =
t−1
logt

, lim
v→0

Lv(t) = t and lim
v→1

Lv(t) = 1.

We also see lim
t→1

Lv(t) = 1 and lim
t→0

Lv(t) = 0. We have the following property.

PROPOSITION 1. The function Lv(t) given in (18) is increasing with respect to v
when 0 < t � 1 and decreasing with respect to v when t � 1.

Proof. We calculate

dLv(t)
dv

=
fv(t)

v2(1− v)2tv−1 logt
,

fv(t) := −(1− v)2tv − v2tv−1 +(2v2−2v+1)+ v(2v2−3v+1) logt.

We also calculate

d fv(t)
dt

=
v(1− v)

t
gv(t), gv(t) := −(1− v)tv + vtv−1 +1−2v.

Since we have
dgv(t)

dt
= −v(1− v)(t +1)tv−2 � 0,

we have gv(t) � gv(1) = 0 for 0 < t � 1 and gv(t) � gv(1) = 0 for t � 1. That is, we

have
d fv(t)

dt
� 0 for 0 < t � 1 and

d fv(t)
dt

� 0 for t � 1. Thus we have fv(t) � fv(1) =

0. Therefore we have
dLv(t)

dv
� 0 for 0 < t � 1 and

dLv(t)
dv

� 0 for t � 1. �

Since
d
dv

((1− v)t + v) = 1− t ,
d
dv

t1−v = −t1−v logt and
d
dv

(
t

(1− v)+ vt

)
=

t(1− t)
{(1− v)+ vt}2 , we easily see that the representing functions for the weighted arith-

metic mean, the weighted geometric mean and the weighted harmonic mean have sim-
ilar properties. Proposition 1 will be applied to the proof of Proposition 5.



MORE RESULTS ON WEIGHTED MEANS 1651

We further study the inequalities among means. In the sequel, we consider the
bounds of the nested means for the weighted means. From the simple calculations and
numerical computations, we see

A(Av(a,b),A1−v(a,b)) = A(a,b), G(Gv(a,b),G1−v(a,b)) = G(a,b),

and

H(Hv(a,b),H1−v(a,b)) = H(a,b), L(Lv(a,b),L1−v(a,b)) �= L(a,b).

Because we have

L(L1/4(10,1),L3/4(10,1))−L(10,1)� 0.0173327 (19)

as an example.
As given in (8), the distance between the geometric mean and the arithmetic mean

is not so tight. Therefore the proof for the following relations are not so difficult.

PROPOSITION 2. For 0 � v � 1 and a,b > 0, we have

G(a,b) � G(Av(a,b),A1−v(a,b)) � A(a,b) (20)

and
G(a,b) � A(Gv(a,b),G1−v(a,b)) � A(a,b). (21)

Proof. The inequalities (20) can be proven by

A(a,b) = A(Av(a,b),A1−v(a,b)) � G(Av(a,b),A1−v(a,b))
� G(Gv(a,b),G1−v(a,b)) = G(a,b).

The inequalities (21) are just same to the inequalities given in (12). �
From Proposition 2, we have the following.

PROPOSITION 3. For 0 � v � 1 and a,b > 0, we have

H(a,b) � G(Hv(a,b),H1−v(a,b)) � G(a,b) (22)

and
H(a,b) � H (Gv(a,b),G1−v(a,b)) � G(a,b). (23)

Proof. Replacing a and b by 1/a and 1/b in Proposition 2 respectively, and
taking inverse we have (22) and (23), since A(1/a,1/b)−1 = H(a,b) , G(1/a,1/b)−1 =
G(a,b) ,

G(Av(1/a,1/b),A1−v(1/a,1/b))−1 = G(Hv(a,b),H1−v(a,b))

and
A(Gv(1/a,1/b),G1−v(1/a,1/b))−1 = H (Gv(a,b),G1−v(a,b)) . �

We have the following relation on the arithmetic mean and the logarithmic mean.
Their proofs are not so easy, since the distance between the logarithmic mean and the
arithmetic mean is relatively tight.
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THEOREM 3. For 0 � v � 1 and a,b > 0 , we have

L(a,b) � A(Lv(a,b),L1−v(a,b)) � A(a,b) (24)

and
L(a,b) � L(Av(a,b),A1−v(a,b)) � A(a,b). (25)

Proof. Since Lv(a,b) � Av(a,b) and L1−v(a,b) � A1−v(a,b) , we have the second
inequality of (24). As for the first inequality of (24) , it is sufficient to prove fv(t) � 0

for t > 0 and 0 � v � 1, where fv(t) :=
1
2
Lv(t)+

1
2
L1−v(t)−L1/2(t) and Lv(t) is given

in (18). Since lim
v→0

Lv(t) = t and lim
v→1

Lv(t) = 1, for the special cases such as v = 0 or

v = 1, fv(t) � 0 is equivalent to
t +1

2
� L(t) which is known. So we assume 0 < v < 1.

By the simple calculations, we have

fv(t) =
gv(t)

2v(1− v)tv−1 logt
, gv(t) := (1−2v)2tv−1(t−1)+ (1−2v)(t2v−1−1).

Then we have

dgv(t)
dt

= v(1−2v)2tv−2hv(t), hv(t) :=
1− tv

v
− (1− t).

Since
tv−1

v
� t − 1 for t > 0 and 0 < v < 1, we have hv(t) � 0 which implies

dgv(t)
dt

� 0. Thus we have gv(t) � 0 for t � 1 and gv(t) � 0 for 0 < t � 1. Therefore

we have fv(t) � 0 for t > 0 and 0 � v � 1.
The second inequality of (25) can be easily proven by

L(Av(a,b),A1−v(a,b)) � A(Av(a,b),A1−v(a,b)) = A(a,b).

As for the first inequality of (25), it is sufficient to prove the following inequality

t−1
logt

� (1−2v)(t−1)
log{(1− v)t + v}− log{vt +(1− v)} (26)

for t > 0 and 0 � v � 1. Since the equality holds when v = 0,1/2,1, we assume
0 < v < 1 with v �= 1/2.

(i) For the case t � 1 and 0 < v < 1/2, the inequality (26) is equivalent to

log
(1− v)t + v
vt +(1− v)

� (1−2v) logt ⇔ (1− v)t + v � vt2−2v +(1− v)t1−2v.

So we set the function kv(t) := vt2−2v+(1−v)t1−2v−(1−v)t−v . Then we have
dkv(t)

dt
= 2v(1− v)t1−2v + (1− v)(1− 2v)t−2v − (1− v) and

d2kv(t)
dt2

= 2v(1−
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v)(1−2v)t−2v−1(t −1) � 0. Thus we have
dkv(t)

dt
� dkv(1)

dt
= 0 which implies

kv(t) � kv(1) = 0. Therefore we have (26) for t � 1 and 0 < v < 1/2. Replacing
t := 1/s � 1 in (26) and multiplying s > 0 to both sides, we have

s−1
logs

� (1−2v)(1− s)

log
{

(1−v)+vs
s

}
− log

{
v+(1−v)s

s

} (27)

for 0 < s � 1 and 0 < v < 1/2. Thus we have the inequality (26) for t > 0 and
0 < v < 1

2 .

(ii) For the case t � 1 and 1/2 < v < 1, the inequality (26) is equivalent to

log
(1− v)t + v
vt +(1− v)

� (1−2v) logt ⇔ (1− v)t + v � vt2−2v +(1− v)t1−2v.

So we set the function lv(t) := (1−v)t +v−vt2−2v−(1−v)t1−2v . Then we have
dlv(t)

dt
= (1− v)−2v(1− v)t1−2v− (1− v)(1−2v)t−2v and

d2lv(t)
dt2

= −2v(1−

v)(1−2v)t−2v−1(t −1) � 0. Thus we have
dlv(t)

dt
� dlv(1)

dt
= 0 which implies

lv(t) � lv(1) = 0. Therefore we have (26) for t � 1 and 1/2 < v < 1. By the
similar way to the last part of (i), we have the inequality (26) for t > 0 and
1/2 < v < 1.

From (i) and (ii), we have the inequality (26) for t > 0 and 0 < v < 1. �

THEOREM 4. For 0 � v � 1 and a,b > 0 , we have

G(a,b) � L(Gv(a,b),G1−v(a,b)) � L(a,b). (28)

and
G(a,b) � G(Lv(a,b),L1−v(a,b)) � L(a,b) (29)

Proof. The first inequality of (28) is easily proven by

L(Gv(a,b),G1−v(a,b)) � G(Gv(a,b),G1−v(a,b)) = G(a,b).

To prove the second inequality of (28), we set the function (since L(Gv(a,b),G1−v(a,b))
= L(a,b) for v = 1/2)

fv(t) := (1−2v)(t−1)− t1−v + tv, t � 1, 0 � v < 1/2.

Since

d fv(t)
dt

= (1−2v)− (1− v)t−v+ vtv−1,
d2 fv(t)

dt2
= v(1− v)t−v−1(1− t2v−1) � 0,
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we have d fv(t)
dt � d fv(1)

dt = 0 which implies fv(t) � fv(1) = 0. By the similar way, we
can prove t1−v− tv− (1−2v)(t−1) � 0 for t � 1 and 1/2 < v � 1. Thus we have

t1−v− tv

(1−2v) logt
� t−1

logt
, t � 1, 0 � v � 1. (30)

Putting t := 1/s � 1, we obtain

s1−v − sv

(1−2v) logs
� s−1

logs
, 0 < s � 1, 0 � v � 1.

Thus we have
t1−v− tv

(1−2v) logt
� t−1

logt
, t > 0, 0 � v � 1. (31)

Putting t := a/b in (31) and multiplying b > 0 to the both sides, we obtain the second
inequality of (28).

The first inequality of (29) is easily proven by

G(Lv(a,b),L1−v(a,b)) � G(Gv(a,b),G1−v(a,b)) = G(a,b).

G(Lv(a,b),L1−v(a,b)) � L(a,b) is equivalent to Lv(t)L1−v(t) � L1/2(t)2 because
we put t := a/b > 0 and multiply b2 > 0 to both sides. Since (logt)2 > 0 for all t > 0,
we set the function

gv(t) := (t−1)2−
{

1−v
v

(
t−t1−v)+ v

1−v

(
t1−v−1

)}{ v
1−v

(t−tv)+
1−v
v

(tv−1)
}

.

Since gv(t) = g1−v(t) and gv(t) � 0, (t � 1) implies gv(s) � 0, (0 < s � 1) by putting
t := 1/s � 1, we have only to prove gv(t) � 0 for t � 1 and 0 � v � 1/2. Then we
calculate

dgv(t)
dt

=
(1−2v)t−v−1

v2(1− v)2 {(v−1)3t + v2(2− v)t2 + v3t2v − (1+ v)(1− v)2t2v+1

+2(1−2v)tv+1},
d2gv(t)

dt2
=

(1−2v)t−v−2

v(1− v)
hv(t),

hv(t) := (1− v)2t + v(2− v)t2− v2t2v− (1− v)(1+ v)t2v+1.

We further calculate

dhv(t)
dt

= (1− v)2 +2v(2− v)t−2v3t2v−1− (1− v)(1+ v)(1+2v)t2v,

d2hv(t)
dt2

= 2v(2− v)−2v(1− v)(1+ v)(1+2v)t2v−1+2v3(1−2v)t2v,

d3hv(t)
dt3

= 2v(1− v)(1−2v)t2v−3((v+1)(2v+1)t−2v2)� 0, (t � 1, 0 � v � 1/2) .
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Thus we have
d2hv(t)

dt2
� d2hv(1)

dt2
= v(1− v)(1− 2v) � 0 which implies

dhv(t)
dt

�
dhv(1)

dt
= 0. So we have hv(t) � hv(1) = 0 which means

d2gv(t)
dt2

� 0 which implies

dgv(t)
dt

� dgv(1)
dt

= 0. Therefore we have gv(t) � gv(1) = 0. �

In the end of this section, we state some operator inequalities for the essential
scalar inequalities which were obtained above. To this end, we give a notation for a
self-adjoint operator A . If a self-adjoint operator A satisfies 〈Ax,x〉 � 0 for all vectors
x �= 0, then A is called a positive operator, and we use the notation A � 0. If 〈Ax,x〉> 0
for all vectors x �= 0, then A is called strictly positive operator, and we use the notation
A > 0. It is known that the scalar order is equivalent to the operator partial order by
Kubo-Ando theory [9]. Therefore it is often important to obtain a new scalar inequality.
To express the logarithmic mean, we use the integral form such as L(t,1) = L1/2(t) =∫ 1
0 txdx and Lv(t,1) = Lv(t) =

v
1− v

∫ 1−v
0 txdx+

1− v
v

∫ 1
1−v t

xdx . Since (31) is rewritten
as

1
1−2v

∫ 1−v

v
txdx �

∫ 1

0
txdx,

we have for A,B > 0

1
1−2v

∫ 1−v

v
A�xBdx �

∫ 1

0
A�xBdx, 0 � v � 1

by putting t := A−1/2BA−1/2 and multiplying A1/2 to both sides, where

A�xB := A1/2
(
A−1/2BA−1/2

)x
A1/2, 0 � x � 1

is the weighted operator geometric mean for A,B > 0. In the proof of Theorem 4, we
proved Lv(t)L1−v(t) � L1/2(t)2 which is also rewritten as

(
v

1− v

∫ 1−v

0
txdx+

1− v
v

∫ 1

1−v
txdx

)(
1− v

v

∫ v

0
txdx+

v
1− v

∫ 1

v
txdx

)
�
(∫ 1

0
txdx

)2

.

Thus we similarly have for A,B > 0

(A�vB)A−1 (A�1−vB) � (A�B)A−1 (A�B) , 0 � v � 1

where the weighted operator logarithmic mean is defined by

A�vB :=
v

1− v

∫ 1−v

0
A�xBdx+

1− v
v

∫ 1

1−v
A�xBdx

and the operator logarithmic mean is written by A�B := A�1/2B =
∫ 1
0 A�xBdx . Since we

proved L1/2(t) � 1
2
Lv(t)+

1
2
L1−v(t) for t > 0 and 0 � v � 1, we have for A,B > 0

A�B � 1
2
A�vB+

1
2
A�1−vB, 0 � v � 1.
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From Theorem 2, we also have for A,B > 0

A�B � 1
2
A∇vB+

1
2
A�1−vB, 0 � v � 1,

where A∇vB := (1− v)A+ vB is the weighted operator arithmetic mean. From (9), we
have for A,B > 0

0 � K∗ (A�vB)K � A∇vB−A�vB, 0 � v � 1, (32)

where K :=
μ√
2
A−1S(A|B) , μ := {1−v,v} and S(A|B) := A1/2 log

(
A−1/2BA−1/2

)
A1/2

is known as the operator relative entropy [1]. We see that the second inequality in (32)
gives a generalization of [15, Theorem 4.1]. Furthermore, the inequalities (11) is equiv-
alent to the inequalities:

0 � μ2

2
(lnr t)tv(lnr t) � (1− v)+ vt− tv

under the conditions (i)r > 0 and 0 < t � 1, or (ii)r < 0 and t � 1. Therefore we have
the following proposition.

PROPOSITION 4. Under the conditions (i)r > 0 and 0 < B � A , or (ii)r < 0 and
0 < A � B , we have the following operator inequalities:

0 � K∗
r (A�vB)Kr � A∇vB−A�vB, 0 � v � 1,

where Kr :=
μ√
2
A−1Sr(A|B) , μ := {1−v,v} and Sr(A|B) := A1/2 lnr

(
A−1/2BA−1/2

)
A1/2

is known as the Tsallis operator relative entropy [13].

The other obtained scalar inequalities give the corresponding operator inequalities.
However, we omit them.

3. Concluding remarks

Related to (13), we have the following result which does not contradicts with (14)
and (15).

PROPOSITION 5. For a,b > 0 and 0 � v � 1, we have the following inequalities.

(i) For 0 � v � 1/2 and a � b , we have

L(a,b) � 1
2
Av(a,b)+

1
2
Gv(a,b). (33)

(ii) 1/2 � v � 1 and a � b , we also have

L(a,b) � 1
2
Av(a,b)+

1
2
Gv(a,b). (34)
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Proof.

(i) For the case a/b=: t � 1, from Proposition 1, for 0 � v � 1/2 we have L1/2(t,1)
� Lv(t,1) which implies L(a,b) = L1/2(a,b) � Lv(a,b) . Thus we have L(a,b) �
Lv(a,b) � 1

2
Av(a,b)+

1
2
Gv(a,b) for 0 � v � 1/2 from (6).

(ii) For the case a/b =: t � 1, from Proposition 1, we have similarly L(a,b) =

L1/2(a,b)� Lv(a,b) for 1/2 � v � 1. Thus we have L(a,b)� Lv(a,b)� 1
2
Av(a,b)

+
1
2
Gv(a,b) for 1/2 � v � 1 from (6). �

It is quite natural to consider the maximum (optimal) value p such that

Lv(a,b) � (1− p)Av(a,b)+ pGv(a,b), (35)

By the numerical computation shows that

(1− p)Av(a,b)+ pGv(a,b)−Lv(a,b) �−1.39948×10−8

when a := 10−10 , b := 1, v := 1−10−10 and p =
13
25

. This means the inequality (35)

does not hold when p =
13
25

>
1
2
.

We close this paper with the following conjecture. From (19) and several numeri-
cal computations indicate that the inequality seems to be true

L(a,b) � L(Lv(a,b),L1−v(a,b)), a,b > 0, 0 � v � 1. (36)

However we have not proven this inequality due to its complicated computations, and
we also have not found any counter-examples. If the conjectured inequality (36) will
be shown, then it will give a tight inequality for the first inequalities in (24) and (25).

Appendix: Proof of (6) by elementary calculations

As we noted, (6) has been proven already by the use of the Hermite-Hadamard
inequality for convex function. From the point of self-sufficiency, we give a direct and
an elementary proof for (6).

Proof of (6). To prove (6), we firstly prove fv(t) � 0 for t � 1 and 0 � v � 1,
where

fv(t) := v(1−v)t1−v logt+v(1−v){(1−v)t + v} log t−2
{
(1−v)2(t−t1−v)+v2(t1−v−1)

}
.

Then we have f ′v(t) =
(1− v)

tv
gv(t) , where

gv(t) := (3v−2− v2)tv + v2tv−1 +(2−3v)+ v(1− v)(1+ tv) log t.
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Then we also have g′v(t) =
v(1− v)

t
hv(t) , where

hv(t) := 1− vtv−1− (1− v)tv + vtv logt.

Since we have h′v(t) = vtv−2 {(1− v)+ vt+ vt log t} � 0 for t � 1 and 0 � v � 1,
hv(t) � hv(1) = 0. Thus we have g′v(t) � 0 which implies gv(t) � gv(1) = 0. Therefore
we have f ′v(t) � 0 so that we have fv(t) � fv(1) = 0.

We secondly prove kv(t) � 0 for 0 < t � 1 and 0 � v � 1, where

kv(t) := 2
{
(1− v)2(t− t1−v)+ v2(t1−v−1)

}
−v(1− v)t1−v logt− v(1− v){(1− v)t− v} log t.

Then we have k′v(t) =
(1− v)

tv
lv(t) , where

lv(t) := (2−3v+ v2)tv − v2tv−1 +(3v−2)− v(1− v)(1+ tv) log t.

Then we also have l′v(t) =
v(1− v)

t
(mv(t)− vtv logt) , where

mv(t) := (1− v)tv + vtv−1−1.

Since m′
v(t) = v(1− v)tv−2(t −1) � 0 for 0 < t � 1 and 0 � v � 1, we have mv(t) �

mv(1) = 0. Thus we have l′v(t) � 0 for 0 < t � 1 and 0 � v � 1 so that we have
lv(t) � lv(1) = 0 which implies k′v(t) � 0. Therefore for 0 < t � 1 and 0 � v � 1, we
have kv(t) � kv(1) = 0. �
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