LOWER DIMENSIONAL ELLIPSOIDS OF MAXIMAL VOLUME IN CONVEX BODIES

Ai-Jun Li and Yan-Min Zhang

(Communicated by M. Krnic)

Abstract

In this paper, we show that the volume of a k-dimensional ellipsoid in the convex body formed by centered isotropic measures on the unit sphere is no large than that of a k dimensional Ball of radius $\sqrt{n(n+1) / k(k+1)}$. It generalizes the John theorem to the lower dimensional cases.

1. Introduction

Associated with each convex body in \mathbb{R}^{n} is a unique ellipsoid of maximal volume contained in the body (or minimal volume containing the body). This ellipsoid is called the John ellipsoid (or Löwner ellipsoid) and plays an important role in convex geometric analysis. A well-known fact about these ellipsoids is the classical John theorem [13] stating that the John ellipsoid of a convex body K is the Euclidean unit ball B_{2}^{n} in \mathbb{R}^{n} if and only if $B_{2}^{n} \subset K$ and there are Euclidean unit vectors $\left(u_{i}\right)_{1}^{m}$ on the boundary of K and positive numbers $\left(c_{i}\right)_{1}^{m}$ satisfying

$$
\begin{equation*}
\sum_{i=1}^{m} c_{i} u_{i}=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{m} c_{i} u_{i} \otimes u_{i}=I_{n} \tag{2}
\end{equation*}
$$

where $u_{i} \otimes u_{i}$ is the rank-one orthogonal projection onto the space spanned by u_{i} and I_{n} is the identity map on \mathbb{R}^{n}. As a direct consequence of the John theorem, every n dimensional normed space is isomorphic, with isomorphism constant at most \sqrt{n}, to n-dimensional Euclidean space. Ball [3] made an important observation that the above fact can be perfectly combined with the Brascamp-Lieb inequality and the constant in the Brascamp-Lieb inequality takes a surprisingly simple form. Using this geometric Brascamp-Lieb inequality, Ball [3, 2] established the well-known reverse isoperimetric inequalities and solved the Hensley's conjecture [12] (the maximal volume section of

[^0]the cube). For more information about the John theorem, see, e.g., $[1,5,6,7,8,9,10$, $11,14,15,16,17]$.

As another proof to the John theorem, Ball [4] showed that the largest discs contained in a regular tetrahedron lie in its faces: For each $k<n$, the regular n-dimensional simplex circumscribing B_{2}^{n} contains the largest k-dimensional Euclidean ball whose radius is $\sqrt{\frac{n(n+1)}{k(k+1)}}$ in each of its k-dimensional faces. Let

$$
K=\left\{x \in \mathbb{R}^{n}: x \cdot u_{i} \leqslant 1,1 \leqslant i \leqslant m\right\},
$$

and let $\left(u_{i}\right)_{1}^{m}$ satisfy (1) and (2) for some positive numbers $\left(c_{i}\right)_{1}^{m}$, where $x \cdot u_{i}$ is the standard inner product of x and u_{i} in \mathbb{R}^{n}. It was proved by Ball [4] that K does not contain k-dimensional ellipsoid whose volume is larger than of a k-dimensional ball of radius $\sqrt{\frac{n(n+1)}{k(k+1)}}$. In this paper, we are going to follow the lines of Ball [4] and show that it is true for the convex body formed by centered isotropic measures on the unit sphere S^{n-1} in \mathbb{R}^{n}.

It is easy to see that (2) is equivalent to

$$
|x|^{2}=\int_{S^{n-1}}|x \cdot u|^{2} d \gamma_{n}(u)
$$

where $\gamma_{n}=\frac{1}{2} \sum_{i=1}^{m}\left(c_{i} \delta_{u_{i}}+c_{i} \delta_{-u_{i}}\right)$, and $\delta_{u_{i}}$ denotes the delta measure defined on S^{n-1} by having it concentrated exclusively on $u \in S^{n-1}$. Now (2) leads to the important concept of isotropy of measures, which may be viewed as an extension of the Pythagorean theorem. A nonnegative finite Borel measure v on S^{n-1} is said to be isotropic if

$$
\begin{equation*}
\int_{S^{n-1}} u \otimes u d v(u)=I_{n} \tag{3}
\end{equation*}
$$

Obviously,

$$
\begin{equation*}
x \cdot y=\int_{S^{n-1}}(x \cdot u)(y \cdot u) d v(u), x, y \in \mathbb{R}^{n} \tag{4}
\end{equation*}
$$

Taking the trace in (3) gives

$$
\begin{equation*}
v\left(S^{n-1}\right)=n \tag{5}
\end{equation*}
$$

If, in addition, v is centered, that is to say, if

$$
\int_{S^{n-1}} u d v(u)=0
$$

then the origin 0 is an interior point of the convex hull of the support supp v of v, and hence

$$
Z(v):=\left\{x \in \mathbb{R}^{n}: x \cdot u \leqslant 1, u \in \operatorname{supp} v\right\}
$$

is a convex body.
The main result of this note is the following.
THEOREM 1. Let v be a centered isotropic measure on S^{n-1}. If E is a k dimensional ellipsoid in $Z(v)$, then the k-dimensional volume of E is no large than that of a k-dimensional Ball of radius $\sqrt{n(n+1) / k(k+1)}$.

2. Proof of the main result

Note that the proof of Theorem 1 is closely related the classical John theorem [13] which can be stated in the following sense. See [4] for the discrete case and [7] for the symmetric case.

THEOREM 2. If v is a centered isotropic measure on S^{n-1}, then the Euclidean unit ball B_{2}^{n} is the maximal volume ellipsoid of $Z(v)$.

Proof. Let E be the ellipsoid

$$
E=\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n} \frac{\left((x-y) \cdot v_{i}\right)^{2}}{\alpha_{i}^{2}} \leqslant 1\right\}
$$

for some $y \in \mathbb{R}^{n}$, orthogonal basis $\left(v_{i}\right)_{1}^{n}$ and positive numbers $\left(\alpha_{i}\right)_{1}^{n}$. It suffices to show that if $E \subset Z(v)$, then $\prod_{i=1}^{n} \alpha_{i} \leqslant 1$ with equality only if $\alpha_{i}=1$ for all i, and $y=0$.

For $u \in \operatorname{supp} v$, define $g: S^{n-1} \rightarrow \mathbb{R}^{n}$ by

$$
g(u)=y+\left(\sum_{i=1}^{n} \alpha_{i}^{2}\left(u \cdot v_{i}\right)^{2}\right)^{-\frac{1}{2}} \sum_{i=1}^{n} \alpha_{i}^{2}\left(u \cdot v_{i}\right) v_{i}
$$

It is easy to check that $g(u) \in E$. From the definition of $Z(v)$ and $E \subset Z(v)$, we have $u \cdot g(u) \leqslant 1$ for each $u \in \operatorname{supp} v$. Hence,

$$
\begin{equation*}
u \cdot y+\left(\sum_{i=1}^{n} \alpha_{i}^{2}\left(u \cdot v_{i}\right)^{2}\right)^{\frac{1}{2}} \leqslant 1 \tag{6}
\end{equation*}
$$

for each $u \in \operatorname{supp} v$. Integrating both sides with respect to v and using the fact that $\int_{S^{n-1}} u d v(u)=0$ and (5), we get

$$
\int_{S^{n-1}}\left(\sum_{i=1}^{n} \alpha_{i}^{2}\left(u \cdot v_{i}\right)^{2}\right)^{\frac{1}{2}} d v(u) \leqslant \int_{S^{n-1}} d v(u)=n
$$

Since $\int_{S^{n-1}}\left(u \cdot v_{i}\right)^{2} d v(u)=\left|v_{i}\right|^{2}=1$ for each i, by the Hölder inequality, we have

$$
\begin{aligned}
\sum_{i=1}^{n} \alpha_{i} & =\sum_{i=1}^{n} \alpha_{i} \int_{S^{n-1}}\left(u \cdot v_{i}\right)^{2} d v(u)=\int_{S^{n-1}} \sum_{i=1}^{n} \alpha_{i}\left(u \cdot v_{i}\right)^{2} d v(u) \\
& \leqslant \int_{S^{n-1}}\left(\sum_{i=1}^{n} \alpha_{i}^{2}\left(u \cdot v_{i}\right)^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n}\left(u \cdot v_{i}\right)^{2}\right)^{1 / 2} d v(u) \\
& =\int_{S^{n-1}}\left(\sum_{i=1}^{n} \alpha_{i}^{2}\left(u \cdot v_{i}\right)^{2}\right)^{1 / 2} d v(u) \leqslant n
\end{aligned}
$$

By the arithmetic geometric mean inequality we get $\prod_{i=1}^{n} \alpha_{i} \leqslant 1$. There is equality only if $\alpha_{i}=1$ for all i. Thus, (6) implies that for each $u \in \operatorname{supp} v$

$$
u \cdot y+\left(\sum_{i=1}^{n}\left(u \cdot v_{i}\right)^{2}\right)^{\frac{1}{2}}=u \cdot y+|u| \leqslant 1
$$

which is $u \cdot y \leqslant 0$. Since $\int_{S^{n-1}} u \cdot y d v(u)=0$, this implies that $u \cdot y=0$ for each $u \in \operatorname{supp} v$ and so $y=0$.

In order to prove Theorem 1 we need the following lemma.
Lemma 2. If x_{u} is a vectors in \mathbb{R}^{n} associated with $u \in \operatorname{supp} v$ so that $\int_{S^{n-1}} x_{u} d v(u)$ $=0$, then

$$
\left(\int_{S^{n-1}}\left(x_{u} \cdot u\right) d v(u)\right)^{2} \leqslant \int_{S^{n-1}} \int_{S^{n-1}}\left|x_{u} \| x_{v}\right|(1-(u \cdot v)) d v(u) d v(v)
$$

Proof. By homogeneity, we may assume that $\int_{S^{n-1}}\left|x_{u}\right| d v(u)=1$. Let

$$
w=\int_{S^{n-1}}\left|x_{u}\right| u d v(u)
$$

Then

$$
\begin{aligned}
\left(\int_{S^{n-1}}\left(x_{u} \cdot u\right) d v(u)\right)^{2} & =\left(\int_{S^{n-1}}\left(x_{u} \cdot u-w\right) d v(u)\right)^{2} \\
& \leqslant\left(\int_{S^{n-1}}\left|x_{u}\right||u-w| d v(u)\right)^{2} \\
& \leqslant \int_{S^{n-1}}\left|x_{u}\right||u-w|^{2} d v(u) \\
& =\int_{S^{n-1}}\left|x_{u}\right|\left(1-2(u \cdot w)+|w|^{2}\right) d v(u) \\
& =1-|w|^{2} \\
& =\int_{S^{n-1}} \int_{S^{n-1}}\left|x_{u}\right|\left|x_{v}\right|(1-(u \cdot v)) d v(u) d v(v)
\end{aligned}
$$

Proof of Theorem 1. Let E be a k-dimensional ellipoid

$$
E=\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{k} \frac{\left((x-y) \cdot v_{i}\right)^{2}}{\alpha_{i}^{2}} \leqslant 1,(x-y) \cdot v_{i}=0, k+1 \leqslant i \leqslant n\right\}
$$

for some $y \in \mathbb{R}^{n}$, orthogonal basis $\left(v_{i}\right)_{1}^{n}$ and positive numbers $\left(\alpha_{i}\right)_{1}^{k}$. The problem is to show that

$$
\left(\prod_{i=1}^{k} \alpha_{i}\right)^{\frac{1}{k}} \leqslant \sqrt{\frac{n(n+1)}{k(k+1)}}
$$

It certainly suffices to show that

$$
\sum_{i=1}^{k} \alpha_{k} \leqslant \sqrt{\frac{k n(n+1)}{(k+1)}}
$$

For $u \in \operatorname{supp} v$, define $f: S^{n-1} \rightarrow \mathbb{R}^{n}$ by

$$
f(u)=y+\left(\sum_{i=1}^{k} \alpha_{i}^{2}\left(u \cdot v_{i}\right)^{2}\right)^{-\frac{1}{2}} \sum_{i=1}^{k} \alpha_{i}^{2}\left(u \cdot v_{i}\right) v_{i}
$$

It is easy to check that $f(u) \in E$. From the definition of $Z(v)$ and $E \subset Z(v)$, we have $u \cdot f(u) \leqslant 1$ for each $u \in \operatorname{supp} v$. Hence,

$$
u \cdot y+\left(\sum_{i=1}^{k} \alpha_{i}^{2}\left(u \cdot v_{i}\right)^{2}\right)^{\frac{1}{2}} \leqslant 1
$$

for each $u \in \operatorname{supp} v$. Define $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by

$$
T x=\sum_{i=1}^{k} \alpha_{i}\left(x \cdot v_{i}\right) v_{i}
$$

Then

$$
\begin{equation*}
u \cdot y+|T u| \leqslant 1 \tag{7}
\end{equation*}
$$

for each $u \in \operatorname{supp} v$. Moreover, from (3) we have

$$
\begin{align*}
\sum_{i=1}^{k} \alpha_{i}^{2} & =\sum_{i=1}^{k} \alpha_{i}^{2} \int_{S^{n-1}}\left(u \cdot v_{i}\right)^{2} d v(u)=\int_{S^{n-1}} \sum_{i=1}^{k} \alpha_{i}^{2}\left(u \cdot v_{i}\right)^{2} d v(u) \\
& =\int_{S^{n-1}}|T u|^{2} d v(u) \tag{8}
\end{align*}
$$

and

$$
\begin{align*}
\sum_{i=1}^{k} \alpha_{i} & =\sum_{i=1}^{k} \alpha_{i} \int_{S^{n-1}}\left(u \cdot v_{i}\right)^{2} d v(u)=\int_{S^{n-1}} \sum_{i=1}^{k} \alpha_{i}\left(u \cdot v_{i}\right)^{2} d v(u) \\
& =\int_{S^{n-1}}(T u \cdot u) d v(u) \tag{9}
\end{align*}
$$

By (7) we have $|T u| \leqslant 1-(u \cdot y)$ for each $u \in \operatorname{supp} v$. Integrating both sides with respect to v and using the fact that $\int_{S^{n-1}} u d v(u)=0$ and (5) we get

$$
\begin{aligned}
& \int_{S^{n-1}}|T u|^{2} d v(u) \leqslant \int_{S^{n-1}}(1-(u \cdot y))^{2} d v(u) \\
& =\int_{S^{n-1}} d v(u)-2\left(\int_{S^{n-1}} u d v(u) \cdot y\right)+\int_{S^{n-1}}(u \cdot y)^{2} d v(u) \\
& =n+|y|^{2}
\end{aligned}
$$

which, together with (8), gives

$$
\begin{equation*}
\frac{1}{k}\left(\sum_{i=1}^{k} \alpha_{i}\right)^{2} \leqslant \sum_{i=1}^{k} \alpha_{i}^{2} \leqslant n+|y|^{2} \tag{10}
\end{equation*}
$$

On the other hand, let $x_{u}=T u$ for $u \in \operatorname{supp} v$. Then

$$
\begin{aligned}
\int_{S^{n-1}} x_{u} d v(u) & =\int_{S^{n-1}} T u d v(u)=\int_{S^{n-1}} \sum_{i=1}^{k} \alpha_{i}\left(u \cdot v_{i}\right) v_{i} d v(u) \\
& =\sum_{i=1}^{k} \alpha_{i}\left(\int_{S^{n-1}} u d v(u) \cdot v_{i}\right) v_{i} \\
& =T\left(\int_{S^{n-1}} u d v(u)\right)=0 .
\end{aligned}
$$

Lemma 2 and (9) show that

$$
\begin{aligned}
\left(\sum_{i=1}^{k} \alpha_{i}\right)^{2} & =\left(\int_{S^{n-1}}\left(x_{u} \cdot u\right) d v(u)\right)^{2} \\
& \leqslant \int_{S^{n-1}} \int_{S^{n-1}}\left|x_{u}\right|\left|x_{v}\right|(1-(u \cdot v)) d v(u) d v(v) \\
& =\int_{S^{n-1}} \int_{S^{n-1}}|T u \| T v|(1-(u \cdot v)) d v(u) d v(v)
\end{aligned}
$$

Since $1-(u \cdot v) \geqslant 0$ for all $u, v \in \operatorname{supp} v$, by (7), we have

$$
\left(\sum_{i=1}^{k} \alpha_{i}\right)^{2} \leqslant \int_{S^{n-1}} \int_{S^{n-1}}(1-(u \cdot v))(1-(u \cdot y))(1-(v \cdot y)) d v(u) d v(v)
$$

Expanding this product and using the fact that v is centered, we obtain

$$
\left(\sum_{i=1}^{k} \alpha_{i}\right)^{2} \leqslant\left(\int_{S^{n-1}} d v(u)\right)^{2}-\int_{S^{n-1}} \int_{S^{n-1}}(u \cdot v)(u \cdot y)(v \cdot y) d v(u) d v(v)
$$

which together with (4) and (5) yields

$$
\begin{equation*}
\left(\sum_{i=1}^{k} \alpha_{i}\right)^{2} \leqslant n^{2}-|y|^{2} \tag{11}
\end{equation*}
$$

This inequality is added to (10) to give

$$
\left(1+\frac{1}{k}\right)\left(\sum_{i=1}^{k} \alpha_{i}\right)^{2} \leqslant n^{2}+n
$$

and hence

$$
\left(\sum_{i=1}^{k} \alpha_{i}\right)^{2} \leqslant \frac{k n(n+1)}{k+1}
$$

as required.

REFERENCES

[1] K. Ball, An elementary introduction to modern convex geometry, Flavors of geometry, Math. Sci. Res. Inst. Publ., 31, Cambridge University Press, Cambridge, 1997, 1-58.
[2] K. Ball, Volumes of sections of cubes and related problems, Israel seminar on Geometric Aspects of Functional Analysis, number 1376 in Lectures Notes in Mathematics. Springer-Verlag, 1989.
[3] K. Ball, Volume ratios and a reverse isoperimetric inequality, J. London Math. Soc. 44 (1991), 351-359.
[4] K. Ball, Ellipsoids of maximal volume in convex bodies, Geom. Dedicata 41 (1992), 241-250.
[5] J. Bastero, M. Romance, John's decomposition of the identity in the non-convex case, Positivity 6 (2002), 1-161.
[6] J. Bastero, J. Bernués and M. Romance, From John to Gauss-John positions via dual mixed volumes, J. Math. Anal. Appl. 328 (2007), 550-566.
[7] A. Giannopoulos, V. D. Milman, Extremal problems and isotropic positions of convex bodies, Israel J. Math. 117 (2000), 29-60.
[8] A. Giannopoulos, I. PERISSInAKI And A. Tsolomitis, John's theorem for an arbitrary pair of convex bodies, Geom. Dedicata 84 (2001), 63-79.
[9] Y. Gordon, A. E. Litvak, M. Meyer, and A. Pajor, John's decomposition in the general case and applications, J. Differential Geom. 68 (2004), 99-119.
[10] P. M. Gruber, Application of an idea of Voronoi to John type problems, Adv. Math. 218 (2008), 309-351.
[11] P. M. Gruber, F. Schuster, An arithmetic proof of John's ellipsoid theorem, Arch. Math. 85 (2005), 82-88.
[12] D. Hensley, Slicing the cube in \mathbb{R}^{n} and probability, Proc. Amer. Math. Soc. 73 (1979), 95-100.
[13] F. John, Extremum problems with inequalities as subsidiary conditions, Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, 187-204, Interscience Publishers, Inc., New York, NY, 1948.
[14] D. LewIS, Ellipsoids defined by Banach ideal norms, Mathematika 26 (1979), 18-29.
[15] A.-J. Li, G. LENG, Brascamp-Lieb inequality for positive double John basis and its reverse, Science in China, Series A 54 (2011), 399-410.
[16] G. Pisier, The volume of convex bodies and Banach space geometry, Cambridge Tracts in Mathematics, 94, Cambridge, Cambridge University Press, 1989.
[17] N. TomCZak-Jaegermann, Banach-Mazur distances and finite-dimensional operator ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, 38, Pitman, London, 1989.
(Received September 14, 2020)
Ai-Jun Li
School of Science
Zhejiang University of Science and Technology
Hangzhou 310023, China
e-mail: liaijun72@163.com
Yan-Min Zhang
School of Mathematics and Information Science Henan Polytechnic University Jiaozuo 454000, China
e-mail: 1053013705@qq.com

[^0]: Mathematics subject classification (2020): 52A40.
 Keywords and phrases: The John theorem, ellipsoid, isotropic measure.
 Supported by Zhejiang Provincial Natural Science Foundation of China (LY22A010001).

