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Abstract. In this paper, we show that the volume of a k -dimensional ellipsoid in the convex
body formed by centered isotropic measures on the unit sphere is no large than that of a k -
dimensional Ball of radius

√
n(n+1)/k(k+1) . It generalizes the John theorem to the lower

dimensional cases.

1. Introduction

Associated with each convex body in R
n is a unique ellipsoid of maximal volume

contained in the body (or minimal volume containing the body). This ellipsoid is called
the John ellipsoid (or Löwner ellipsoid) and plays an important role in convex geometric
analysis. A well-known fact about these ellipsoids is the classical John theorem [13]
stating that the John ellipsoid of a convex body K is the Euclidean unit ball Bn

2 in R
n

if and only if Bn
2 ⊂ K and there are Euclidean unit vectors (ui)m

1 on the boundary of K
and positive numbers (ci)m

1 satisfying

m

∑
i=1

ciui = 0 (1)

and
m

∑
i=1

ciui⊗ui = In, (2)

where ui ⊗ ui is the rank-one orthogonal projection onto the space spanned by ui and
In is the identity map on R

n . As a direct consequence of the John theorem, every n -
dimensional normed space is isomorphic, with isomorphism constant at most

√
n , to

n -dimensional Euclidean space. Ball [3] made an important observation that the above
fact can be perfectly combined with the Brascamp-Lieb inequality and the constant in
the Brascamp-Lieb inequality takes a surprisingly simple form. Using this geometric
Brascamp-Lieb inequality, Ball [3, 2] established the well-known reverse isoperimetric
inequalities and solved the Hensley’s conjecture [12] (the maximal volume section of
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the cube). For more information about the John theorem, see, e.g., [1, 5, 6, 7, 8, 9, 10,
11, 14, 15, 16, 17].

As another proof to the John theorem, Ball [4] showed that the largest discs con-
tained in a regular tetrahedron lie in its faces: For each k < n , the regular n -dimensional
simplex circumscribing Bn

2 contains the largest k -dimensional Euclidean ball whose ra-

dius is
√

n(n+1)
k(k+1) in each of its k -dimensional faces. Let

K = {x ∈ R
n : x ·ui � 1,1 � i � m},

and let (ui)m
1 satisfy (1) and (2) for some positive numbers (ci)m

1 , where x · ui is the
standard inner product of x and ui in R

n . It was proved by Ball [4] that K does not
contain k -dimensional ellipsoid whose volume is larger than of a k -dimensional ball

of radius
√

n(n+1)
k(k+1) . In this paper, we are going to follow the lines of Ball [4] and show

that it is true for the convex body formed by centered isotropic measures on the unit
sphere Sn−1 in R

n .
It is easy to see that (2) is equivalent to

|x|2 =
∫

Sn−1
|x ·u|2dγn(u),

where γn = 1
2 ∑m

i=1(ciδui + ciδ−ui) , and δui denotes the delta measure defined on Sn−1

by having it concentrated exclusively on u ∈ Sn−1 . Now (2) leads to the important con-
cept of isotropy of measures, which may be viewed as an extension of the Pythagorean
theorem. A nonnegative finite Borel measure ν on Sn−1 is said to be isotropic if∫

Sn−1
u⊗udν(u) = In. (3)

Obviously,

x · y =
∫

Sn−1
(x ·u)(y ·u)dν(u), x,y ∈ R

n. (4)

Taking the trace in (3) gives
ν(Sn−1) = n. (5)

If, in addition, ν is centered, that is to say, if∫
Sn−1

udν(u) = 0,

then the origin 0 is an interior point of the convex hull of the support suppν of ν , and
hence

Z(ν) := {x ∈ R
n : x ·u � 1, u ∈ suppν}

is a convex body.
The main result of this note is the following.

THEOREM 1. Let ν be a centered isotropic measure on Sn−1 . If E is a k -
dimensional ellipsoid in Z(ν) , then the k -dimensional volume of E is no large than
that of a k -dimensional Ball of radius

√
n(n+1)/k(k+1).
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2. Proof of the main result

Note that the proof of Theorem 1 is closely related the classical John theorem [13]
which can be stated in the following sense. See [4] for the discrete case and [7] for the
symmetric case.

THEOREM 2. If ν is a centered isotropic measure on Sn−1 , then the Euclidean
unit ball Bn

2 is the maximal volume ellipsoid of Z(ν) .

Proof. Let E be the ellipsoid

E =
{

x ∈ R
n :

n

∑
i=1

((x− y) · vi)2

α2
i

� 1
}

for some y∈R
n , orthogonal basis (vi)n

1 and positive numbers (αi)n
1 . It suffices to show

that if E ⊂ Z(ν) , then ∏n
i=1 αi � 1 with equality only if αi = 1 for all i , and y = 0.

For u ∈ suppν , define g : Sn−1 → R
n by

g(u) = y+
( n

∑
i=1

α2
i (u · vi)2

)− 1
2

n

∑
i=1

α2
i (u · vi)vi.

It is easy to check that g(u) ∈ E . From the definition of Z(ν) and E ⊂ Z(ν) , we have
u ·g(u) � 1 for each u ∈ suppν . Hence,

u · y+
( n

∑
i=1

α2
i (u · vi)2

) 1
2 � 1, (6)

for each u ∈ suppν . Integrating both sides with respect to ν and using the fact that∫
Sn−1 udν(u) = 0 and (5), we get

∫
Sn−1

( n

∑
i=1

α2
i (u · vi)2

) 1
2
dν(u) �

∫
Sn−1

dν(u) = n.

Since
∫
Sn−1(u · vi)2dν(u) = |vi|2 = 1 for each i , by the Hölder inequality, we have

n

∑
i=1

αi =
n

∑
i=1

αi

∫
Sn−1

(u · vi)2dν(u) =
∫

Sn−1

n

∑
i=1

αi(u · vi)2dν(u)

�
∫

Sn−1

( n

∑
i=1

α2
i (u · vi)2

)1/2( n

∑
i=1

(u · vi)2
)1/2

dν(u)

=
∫

Sn−1

( n

∑
i=1

α2
i (u · vi)2

)1/2
dν(u) � n.

By the arithmetic geometric mean inequality we get ∏n
i=1 αi � 1. There is equality

only if αi = 1 for all i . Thus, (6) implies that for each u ∈ suppν

u · y+
( n

∑
i=1

(u · vi)2
) 1

2
= u · y+ |u|� 1,
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which is u · y � 0. Since
∫
Sn−1 u · ydν(u) = 0, this implies that u · y = 0 for each

u ∈ suppν and so y = 0. �
In order to prove Theorem 1 we need the following lemma.

LEMMA 2. If xu is a vectors in R
n associated with u∈ suppν so that

∫
Sn−1 xudν(u)

= 0 , then(∫
Sn−1

(xu ·u)dν(u)
)2

�
∫

Sn−1

∫
Sn−1

|xu||xv|(1− (u · v))dν(u)dν(v).

Proof. By homogeneity, we may assume that
∫
Sn−1 |xu|dν(u) = 1. Let

w =
∫

Sn−1
|xu|udν(u).

Then (∫
Sn−1

(xu ·u)dν(u)
)2

=
(∫

Sn−1
(xu ·u−w)dν(u)

)2

�
(∫

Sn−1
|xu||u−w|dν(u)

)2

�
∫

Sn−1
|xu||u−w|2dν(u)

=
∫

Sn−1
|xu|(1−2(u ·w)+ |w|2)dν(u)

= 1−|w|2

=
∫

Sn−1

∫
Sn−1

|xu||xv|(1− (u · v))dν(u)dν(v). �

Proof of Theorem 1. Let E be a k -dimensional ellipoid

E =
{

x ∈ R
n :

k

∑
i=1

((x− y) · vi)2

α2
i

� 1, (x− y) · vi = 0, k+1 � i � n
}

for some y ∈ R
n , orthogonal basis (vi)n

1 and positive numbers (αi)k
1 . The problem is

to show that ( k

∏
i=1

αi

) 1
k �

√
n(n+1)
k(k+1)

.

It certainly suffices to show that

k

∑
i=1

αk �
√

kn(n+1)
(k+1)

.

For u ∈ suppν , define f : Sn−1 → R
n by

f (u) = y+
( k

∑
i=1

α2
i (u · vi)2

)− 1
2

k

∑
i=1

α2
i (u · vi)vi.
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It is easy to check that f (u) ∈ E . From the definition of Z(ν) and E ⊂ Z(ν) , we have
u · f (u) � 1 for each u ∈ suppν . Hence,

u · y+
( k

∑
i=1

α2
i (u · vi)2

) 1
2 � 1,

for each u ∈ suppν . Define T : R
n → R

n by

Tx =
k

∑
i=1

αi(x · vi)vi.

Then
u · y+ |Tu|� 1 (7)

for each u ∈ suppν . Moreover, from (3) we have

k

∑
i=1

α2
i =

k

∑
i=1

α2
i

∫
Sn−1

(u · vi)2dν(u) =
∫

Sn−1

k

∑
i=1

α2
i (u · vi)2dν(u)

=
∫

Sn−1
|Tu|2dν(u), (8)

and
k

∑
i=1

αi =
k

∑
i=1

αi

∫
Sn−1

(u · vi)2dν(u) =
∫

Sn−1

k

∑
i=1

αi(u · vi)2dν(u)

=
∫

Sn−1
(Tu ·u)dν(u). (9)

By (7) we have |Tu| � 1− (u · y) for each u ∈ suppν . Integrating both sides with
respect to ν and using the fact that

∫
Sn−1 udν(u) = 0 and (5) we get∫

Sn−1
|Tu|2dν(u) �

∫
Sn−1

(1− (u · y))2dν(u)

=
∫

Sn−1
dν(u)−2

(∫
Sn−1

udν(u) · y
)

+
∫

Sn−1
(u · y)2dν(u)

= n+ |y|2,
which, together with (8), gives

1
k

( k

∑
i=1

αi

)2
�

k

∑
i=1

α2
i � n+ |y|2. (10)

On the other hand, let xu = Tu for u ∈ suppν . Then∫
Sn−1

xudν(u) =
∫

Sn−1
Tudν(u) =

∫
Sn−1

k

∑
i=1

αi(u · vi)vidν(u)

=
k

∑
i=1

αi

(∫
Sn−1

udν(u) · vi

)
vi

= T
(∫

Sn−1
udν(u)

)
= 0.
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Lemma 2 and (9) show that

( k

∑
i=1

αi

)2
=

(∫
Sn−1

(xu ·u)dν(u)
)2

�
∫

Sn−1

∫
Sn−1

|xu||xv|(1− (u · v))dν(u)dν(v)

=
∫

Sn−1

∫
Sn−1

|Tu||Tv|(1− (u · v))dν(u)dν(v).

Since 1− (u · v) � 0 for all u,v ∈ suppν , by (7), we have

( k

∑
i=1

αi

)2
�

∫
Sn−1

∫
Sn−1

(1− (u · v))(1− (u · y))(1− (v ·y))dν(u)dν(v).

Expanding this product and using the fact that ν is centered, we obtain

( k

∑
i=1

αi

)2
�

(∫
Sn−1

dν(u)
)2−

∫
Sn−1

∫
Sn−1

(u · v)(u · y)(v · y)dν(u)dν(v),

which together with (4) and (5) yields

( k

∑
i=1

αi

)2
� n2−|y|2. (11)

This inequality is added to (10) to give

(
1+

1
k

)( k

∑
i=1

αi

)2
� n2 +n,

and hence ( k

∑
i=1

αi

)2
� kn(n+1)

k+1

as required. �
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