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SOME UNIQUENESS PROBLEMS

CONCERNING MEROMORPHIC FUNCTIONS

CHUANGXIN CHEN, RANRAN ZHANG AND NING CUI ∗

(Communicated by M. Krnić)

Abstract. In this paper, we investigate some uniqueness problems for forward differences Δn
η f (z)

and Δη f (z) of a meromorphic function f (z) . When f (z) is an entire function with a Borel ex-
ceptional small function a(z) , we obtain the concrete expression of f (z) under the condition
that Δn

η f (z) and Δη f (z) share a small function b(z) CM. When f (z) is a meromorphic func-
tion with a small deficient function a(z) , we obtain the relationship between Δn

η f (z) and Δη f (z)
who share a small function b(z) and ∞ CM.

1. Introduction and results

We assume that the reader is familiar with the basic notations of Nevanlinna’s
value distribution theory (see [16, 17, 24]). In particular, we denote by S(r, f ) any
function satisfying S(r, f ) = o(T (r, f )) as r → ∞, possibly outside a set of r of finite
logarithmic measure. A meromorphic function α(z) is said to be a small function of
f (z) , if T (r,α(z)) = S(r, f ), and denote by S( f ) the set of functions which are small
compare to f (z) . In addition, the hyper-order of f (z) is defined by

ρ2( f ) = lim
r→∞

log logT (r, f )
logr

.

The deficiency of a(z) ∈ S( f ) is defined by

δ (a, f ) = 1− lim
r→∞

N(r, 1
f−a )

T (r, f )
.

If δ (a, f ) > 0, then a(z) is called a small deficient function of f (z) .
Furthermore, for a nonzero constant η , the difference operators Δn

η f (z) are de-
fined by (see [1, 22]) Δη f (z) = f (z+η)− f (z) and Δn+1

η f (z) = Δn
η f (z+η)−Δn

η f (z) ,
where n = 1,2, · · · .

Let f and g be two nonconstant meromorphic functions and a ∈ C . We say
f and g share a CM provided that f − a and g− a have the same zeros counting
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multiplicities, and f and g share ∞ CM provided that f and g have the same poles
counting multiplicities. Using the same method, we can define f and g sharing a
function a(z) CM, where a(z) ∈ S( f )

⋂
S(g) .

Nevanlinna’s four values theorem [20] says that if two nonconstant meromorphic
functions f and g share four values CM, then f ≡ g or f is a Möbius transformation
of g . To reduce the number of shared values quickly, many authors began to consider
the case that f (z) and g(z) have some special relationship. One successful attempt in
this direction was created by Rubel and Yang [21] in 1977, and they proved that for a
non-constant entire function f (z) , if f (z) and f ′(z) share two distinct finite values a, b
CM, then f (z) ≡ f ′(z) . Later on, many scholars began to investigate the uniqueness
of meromorphic functions sharing values with their derivatives. Now we first recall the
following result proved by Li and Wang [19] in 2007.

THEOREM 1. ([19]) Let f (z) be an entire function, a be a finite nonzero value,
and let n(� 2) be a positive integer. If f (z), f ′(z) and f (n)(z) share the value a CM,
then f (z) assumes the form

f (z) = becz +a− a
c
,

where b, c are nonzero constants and cn−1 = 1 .

It is well known that Δn
η f (z) is regarded as the difference counterpart of f (n)(z) ,

where n � 1. Recently, value distribution in difference analogues of meromorphic
functions has become an interesting subject, and many results of complex difference
equations are rapidly obtained (see [6, 7, 9, 12]). In particular, some authors started
to consider the uniqueness of meromorphic functions sharing small function with their
shifts or difference operators (see [2, 3, 10, 14, 15]). In 2014, Chen and Li [2] consid-
ered the difference analogue of Theorem 1, and obtained the following result.

THEOREM 2. ([2]) Let f (z) be a nonconstant entire function of finite order, and
let a(z)(�≡ 0) ∈ S( f ) be a periodic entire function with period η . If f (z) , Δη f (z) and
Δn

η f (z) (n � 2) share a(z) CM, then Δn
η f (z) ≡ Δη f (z) .

In [2], the following example was given to shows that the conclusion of Theorem
2 can occur.

EXAMPLE 1. Let f (z) = g(z)e( π
4 +ln

√
2)z + 1+ i and η = 1, where g(z) is a pe-

riodic entire function with period η . Then, Δη f (z) ≡ Δ5
η f (z) = ig(z)e( π

4 +ln
√

2)z , and
hence f (z), Δη f (z), Δ5

η f (z) share 1 CM, but f (z) �≡ Δη f (z) .

REMARK 1. This example shows that the order of the function f (z) in Theorem
2 is not always one if let ρ(g) > 1 in Example 1, and also shows that the conclusion
Δn

η f (z) ≡ Δη f (z) in Theorem 2 cannot be extended to f (z) ≡ Δη f (z) in general.

EXAMPLE 2. Let f (z)= ezln2 and η = 1. By simple calculation, we get Δη f (z)=
Δn

η f (z) = ezln2 = f (z) . Consequently, for any a ∈ C , f (z), Δη f (z) and Δn
η f (z) share

a CM and we can easily see that Δn
η f (z) ≡ Δη f (z) ≡ f (z) .
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EXAMPLE 3. Let f (z)= ezln2+1 and η = 1. By calculation, we see that Δη f (z)=
ezln2 and Δn

η f (z) = ezln2 share every finite value b CM, and so Δn
η f (z) ≡ Δη f (z) , but

Δη f (z) �≡ f (z) .

Example 3 shows that f (z) doesn’t satisfy the condition “ f (z), Δη f (z) and Δn
η f (z)

share a CM”, but the conclusion “Δn
η f (z)≡ Δη f (z)” still holds and doesn’t involve the

function f (z) . What’s more, the condition “ f (z) , Δη f (z) and Δn
η f (z) share a(z) CM”

in Theorem 2 is relatively strong. So some problems arise naturally.

QUESTION 1. It’s natural to ask what will happen if we replace the condition
“ f (z) , Δη f (z) and Δn

η f (z) share a(z) CM” by “Δη f (z) and Δn
η f (z) share a(z) CM”

in Theorem 2?

QUESTION 2. Can we omit the condition “a(z)(�≡ 0) be a periodic entire function
with period η ” and only retain “a(z) is an entire function” in Theorem 2?

QUESTION 3. Can we obtain the specific expression of the function f (z) as in
Theorem 1?

In reality, the entire functions f (z) appearing in Examples 2 and 3 both have a
finite Borel exceptional value. Therefor, we answer the above questions partly from the
point of view of Borel exceptional value by proving the following theorem and give the
precise expression of f (z) , which is more profound than the conclusion in Theorem 2,
and implies that the order of the entire function we considered is always one, which
is different from that we point out in Remark 1. The method we used in this article is
completely different from that used in [2], and basically comes from [8].

THEOREM 3. Let n(� 2) be a positive integer, and let f (z) be a finite order
transcendental entire function such that λ ( f −a(z)) < ρ( f ) , where a(z) ∈ S( f ) is an
entire function and satisfies ρ(a(z)) < 1 . If Δn

η f (z) and Δη f (z) share entire function
b(z)∈ S( f ) CM, where b(z) �≡ Δηa(z), ρ(b(z))< 1 , and let η (∈C) satisfies Δn

η f (z) �≡
0 , then

f (z) = a(z)+Decz,

where c, D are two nonzero constants.

REMARK 2. It is obvious that Example 3 satisfies Theorem 3. From the conclu-
sion of Theorem 3, we know f (z) has the specific expression f (z) = a(z)+Decz , which
implies that f (z) is an entire function of regular growth. Combining a(z),b(z) ∈ S( f ) ,
we can see that the condition “ρ(a) < 1, ρ(b) < 1” is reasonable.

Noting that if a(z) ≡ a is a constant in Theorem 3, then Δηa(z) = 0. Hence, we
can deduce the following Corollary.

COROLLARY 1. Let n(� 2) be a positive integer, and let f (z) be a finite order
transcendental entire function with a finite Borel exceptional value a. If Δn

η f (z) and
Δη f (z) share a finite value b(�= 0) CM, where η (∈ C) satisfies Δn

η f (z) �≡ 0 , then

f (z) = a+Decz,

where c, D are two nonzero constants.
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During the proof of Theorem 3, we obtain (33). If a(z)≡ a in the hypotheses of the

Theorem 3, then Δn
ηa(z) = Δn

ηa = 0 (n � 1) . Hence, we have A =
Δn

ηa(z)−b(z)
Δa(z)−b(z) = 1 by

(11), which appears in the proof of Lemma 8. Thus, we can get the following corollary,
whose conclusion is the same as that of Theorem 2.

COROLLARY 2. Let n(� 2) be a positive integer, and let f (z) be a finite order
transcendental entire function with a finite Borel exceptional value a, and let η (∈ C)
be a constant satisfies Δn

η f (z) �≡ 0 . If Δn
η f (z) and Δη f (z) share a finite value b(�= 0)

CM, then
Δn

η f (z) ≡ Δη f (z).

The condition “ f (z) is a finite order transcendental entire function with λ ( f −
a) < ρ( f )” in Theorem 3 implies δ (a, f ) = 1. A natural question is what can be
obtained if we relax the above restriction? For example, replace δ (a, f ) = 1 with
δ (a, f ) > 0, or let f (z) be a transcendental meromorphic function, or let the order
of f (z) be infinite. Next, we consider the above question and obtain the following
theorem.

THEOREM 4. Let n(� 2) be a positive integer, f (z) be a transcendental mero-
morphic function with ρ2( f ) < 1 , and a(z), b(z) ∈ S( f ) such that b(z) �≡ Δi

ηa(z)
(i = 1,n) and max{ρ(a),ρ(b)} < 1 . If Δn

η f (z) and Δη f (z) share b(z), ∞ CM and
δ (a, f ) > 0 , then

Δn
η f (z)−b(z)

Δη f (z)−b(z)
= D

for some nonzero constant D. In particular, if the deficient function a(z) ≡ 0 and
b(z) �≡ 0 , then Δn

η f (z) ≡ Δη f (z) .

2. Lemmas for the Proofs of Theorems

LEMMA 1. ([11, 23]) Suppose that n � 2 and let f1(z), · · · , fn(z) be meromorphic
functions and g1(z), · · · ,gn(z) be entire functions such that

(i) Σn
j=1 f j(z)exp{g j(z)} = 0 ;

(ii) when 1 � j < k � n, g j(z)−gk(z) is not constant;
(iii) when 1 � j � n, 1 � h < k � n,

T (r, f j) = o{T (r,exp{gh−gk})}(r → ∞,r �∈ E),

where E ⊂ (1,∞) has finite linear measure or logarithmic measure.
Then f j(z) ≡ 0 , j = 1, · · · ,n.

ε -set. Following Hayman [16], we define an ε -set to be a countable union of
open discs not containing the origin and subtending angles at the origin whose sum is
finite. If E is an ε -set then the set of r � 1 for which the circle S(0,r) meets E has
finite logarithmic measure, and for almost all real θ the intersection of E with the ray
argz = θ is bounded.
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LEMMA 2. ([1]) Let f be a function transcendental and meromorphic in the
plane of order < 1 . Let h > 0 . Then there exists an ε -set E such that

f (z+ c)− f (z) = c f ′(z)(1+o(1)), as z → ∞ in C\E,

uniformly in c for |c| � h.

LEMMA 3. ([1]) Let f be a transcendental function of order less than 1 and h
be a positive constant. Then there exists an ε−set E such that

f ′(z+ η)
f (z+ η)

→ 0,
f (z+ η)

f (z)
→ 1, as z → ∞ in C\E.

uniformly in η for |η | � h. Further, the set E may be chosen so that for large |z| �∈ E ,
the function f has no zeros or poles in |ζ − z| � h.

LEMMA 4. ([18]) Let f be a transcendental meromorphic solution of finite order
ρ of a difference equation of the form

W (z, f )P(z, f ) = Q(z, f ),

where W (z, f ), P(z, f ), Q(z, f ) are difference polynomials such that the total degree
degW (z, f ) = n in f (z) and its shifts, and degQ(z, f ) � n. Moreover, we assume that
W (z, f ) contains just one term of maximal total degree in f (z) and its shifts. Then, for
each ε > 0 ,

m(r,P(z, f )) = O(rρ−1+ε)+S(r, f ),

possibly outside of an exceptional set of finite logarithmic measure.

LEMMA 5. ([5]) Let Pn(z), · · · , P0(z) be polynomials such that PnP0 �≡ 0 and
satisfy

Pn(z)+ · · ·+P0(z) �≡ 0. (1)

Then every finite order transcendental meromorphic solution f (z) (�≡ 0) of the equa-
tion

Pn(z) f (z+n)+Pn−1(z) f (z+n−1)+ · · ·+P0(z) f (z) = 0 (2)

satisfy σ( f ) � 1, and f (z) assumes every nonzero value a ∈ C infinitely often and
λ ( f −a) = σ( f ) .

REMARK 3. If the equation (2) satisfies the condition (1) and all Pj(z) are con-
stants, we can see that the equation (2) does not possess any nonzero polynomial so-
lution. In fact, suppose that P(z) = akzk + ak−1zk−1 + · · ·+ a0 (k � 0, ak �= 0) is a
solution of equation (2). Then we have

ak · (Pn + · · ·+P0) · zk +O(zk−1) ≡ 0. (3)

From (1) and ak �= 0, we can see that (3) is a contradiction.
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LEMMA 6. ([5]) Let F(z), Pn(z), · · · , P0(z) be polynomials such that FPnP0 �≡
0 . Then every finite order transcendental meromorphic solution f (z) (�≡ 0) of the
equation

Pn(z) f (z+n)+Pn−1(z) f (z+n−1)+ · · ·+P0(z) f (z) = F(z) (4)

satisfies λ ( f ) = σ( f ) � 1.

REMARK 4. From the proof of the Lemmas 5, 6 in [5], we can see that if we
replace equation (2) by

Pn(z) f (z+nη)+Pn−1(z) f (z+(n−1)η)+ · · ·+P0(z) f (z) = 0,

or equation (4) by

Pn(z) f (z+nη)+Pn−1(z) f (z+(n−1)η)+ · · ·+P0(z) f (z) = F(z),

then the corresponding conclusion still holds.

LEMMA 7. ([19]) Suppose that h is a nonconstant meromorphic function satis-
fying

N(r,h)+N(r,1/h) = S(r,h).

Let f = a0hp +a1hp−1 + · · ·+ap and g = b0hq +b1hq−1 + · · ·+bq be polynomials in h
with coefficients a0, a1, · · · , ap, b0, b1, · · · , bq being small functions of h and a0b0ap �≡
0 . If q � p, then m(r,g/ f ) = S(r,h) .

LEMMA 8. Let n(� 2) be a positive integer, and let f (z) be a finite order tran-
scendental entire function with λ ( f − a(z)) < ρ( f ) , where a(z) is an entire function
and satisfies ρ(a) < 1 . If Δn

η f (z) �≡ 0 for some constant η (∈ C) , and

Δn
η f (z)−b(z)

Δη f (z)−b(z)
= A, (5)

where A is a nonzero constant and b(z) (�≡ Δηa(z)) is an entire function satisfying
ρ(b) < 1 , then

f (z) = a(z)+Decz and A =
Δn

ηa(z)−b(z)
Δa(z)−b(z)

,

where c, D are two nonzero constants.

Proof. By the assumptions and Hadamard’s factorization theorem, f (z) can be
written as

f (z) = a(z)+D(z)eh(z), (6)
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where D(z)(�≡ 0) is an entire function, h(z) is a polynomial with degh = k (k � 1) ,
H(z) and h(z) satisfy

λ (D) = ρ(D) = λ ( f −a(z)) = ρ1 < ρ( f ) = degh. (7)

Substituting (6) into (5), we can get that

Δn
η f (z)−b(z)

Δη f (z)−b(z)
=

n
∑
j=0

(−1) jC j
nD(z+(n− j)η)eh(z+(n− j)η) + v2(z)

D(z+ η)eh(z+η)−D(z)eh(z) + v1(z)
= A, (8)

where v2(z) = Δn
ηa(z)−b(z), v1(z) = Δηa(z)−b(z) .

Obviously, since ρ(Δl
ηa(z)) � ρ(a(z)) < 1 (l = 1, n) , we have

ρ(v j(z)) � max{ρ(a(z)), ρ(b(z))} < 1 ( j = 1,2). (9)

Rewrite (8) in the form

n−2

∑
j=0

(−1) jC j
nD(z+(n− j)η)eh(z+(n− j)η)−h(z)

+ [(−1)n−1Cn−1
n −A]D(z+ η)eh(z+η)−h(z) + [(−1)n +A]D(z)

= [Av1(z)− v2(z)]e−h(z).

(10)

Firstly, we assert that Av1(z) − v2(z) ≡ 0. On the contrary, we suppose that
Av1(z)− v2(z) �≡ 0. Then, by (9), we have max{ρ(v1(z)),ρ(v2(z))} < 1 � k . Hence,
ρ(Av1(z)−v2(z)) < 1 � k . From ρ(D(z)) < degh(z) = k and deg(h(z+ jη)−h(z)) =
k−1 ( j = 1,2, · · · ,n) , we can obtain a contradiction by comparing the growth order of
both sides of (10). Hence, Av1(z)− v2(z) ≡ 0, that is

A =
v2(z)
v1(z)

=
Δn

ηa(z)−b(z)
Δηa(z)−b(z)

. (11)

Thus, (10) can be written as

n−2

∑
j=0

(−1) jC j
nD(z+(n− j)η)eh(z+(n− j)η)−h(z)

+ [(−1)n−1Cn−1
n −A]D(z+ η)eh(z+η)−h(z) + [(−1)n +A]D(z) = 0.

(12)

Secondly, we prove that ρ( f ) = k = 1. On the contrary, we suppose that ρ( f ) =
k � 2. Then we will deduce a contradiction for both A = −(−1)n and A �= −(−1)n

respectively.
Case 1. Suppose that A = −(−1)n �= 0, that is, A+(−1)n = 0. Therefore, (12)

can be rewritten as

n−2

∑
j=0

(−1) jC j
nD(z+(n− j)η)eh(z+(n− j)η)

+ [(−1)n−1Cn−1
n −A]D(z+ η)eh(z+η) = 0.

(13)
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Thus, for the positive integer n(� 2) , there are two subcases: (1) n = 2; (2) n � 3.
Subcase 1.1. n = 2. Then A = −1 and (13) implies that

eh(z+2η)−h(z+η) =
D(z+ η)
D(z+2η)

. (14)

Set S1(z) = D(z+η)
D(z+2η) . Then (14) indicates that S1(z) is a nonconstant entire function. Set

ρ(D) = ρ1 . Then by a version of the difference analogue of the logarithmic derivative
lemma ([9]), for each ε1(0 < 5ε1 < k− ρ1) , there exists a set E1 ⊂ (1,∞) of finite
logarithmic measure, such that for all z satisfying |z| = r �∈ [0,1]∪E1, we have

exp{−rρ1−1+ε1} �
∣∣∣∣ D(z+ η)
D(z+2η)

∣∣∣∣� exp{rρ1−1+ε1}. (15)

Since S1(z) is an entire function, (15) implies that

T (r,S1(z)) = m(r,S1(z)) = m

(
r,

D(z+ η)
D(z+2η)

)
� rρ1−1+ε1 ,

and we have ρ(S1(z)) � ρ1 − 1 + ε1 < k− 1. Together with deg(h(z + η)− h(z)) =
k−1, we can get a contradiction by (14).

Subcase 1.2. n � 3. Then (13) implies that

n−2

∑
j=0

(−1) jC j
n
D(z+(n− j)η)

D(z+ η)
eh(z+(n− j)η)−h(z+η) + [(−1)n−1Cn−1

n −A] = 0. (16)

So S2(z) := eh(z+2η)−h(z+η) is a transcendental entire function since ρ(S2(z)) = k−1�
1. For j = 3,4, · · · ,n , we have

eh(z+ jη)−h(z+η)

= eh(z+ jη)−h(z+( j−1)η)eh(z+( j−1)η)−h(z+( j−2)η) · · ·eh(z+2η)−h(z+η)

= S2(z+( j−2)η)S2(z+( j−3)η) · · ·S2(z)︸ ︷︷ ︸
j−1 terms

.

Thus, (16) can be rewritten as

W2(z,S2(z)) ·S2(z) = A− (−1)n−1Cn−1
n , (17)

where

W2(z,S2) =
D(z+nη)
D(z+ η)

S2(z+(n−2)η)S2(z+(n−3)η) · · ·S2(z+ η)

−C1
n
D(z+(n−1)η)

D(z+ η)
S2(z+(n−3)η)S2(z+(n−4)η) · · ·S2(z+ η)

+ · · ·+(−1)n−2Cn−2
n

D(z+2η)
D(z+ η)

.
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According to A =−(−1)n , we get A−(−1)n−1Cn−1
n = (−1)n−1(1−Cn−1

n )= (−1)n(n−
2) �= 0. Obviously, W2(z,S2(z)) �≡ 0 by (17). Set ρ(D) = ρ2 , then ρ2 < k . Since S2(z)
is of regular growth and ρ(S2(z)) = k−1, for any given ε2 (0 < 5ε2 < k−ρ2) and all
r > r0 (> 0) , we have

T (r,S2(z)) > rk−1−ε2 . (18)

On the other hand, the difference analogue of the logarithmic derivative lemma ([9])
gives that for ε2 , there exists a set E2 ⊂ (1,∞) of finite logarithmic measure, such that
for all z satisfying |z| = r �∈ [0,1]∪E2, we have

exp{−rρ2−1+ε2} �
∣∣∣∣D(z+ jη)

D(z+ η)

∣∣∣∣� exp{rρ2−1+ε2} ( j = 2,3, · · · ,n). (19)

Thus, (18) and (19) give

m

(
r,

D(z+ jη)
D(z+ η)

)
= S(r,S2) ( j = 2,3, · · · ,n). (20)

Noting that degS2
W2(z,S2) = n−2 � 1 and applying Lemma 4 to (17), we have

T (r,S2) = m(r,S2) = S(r,S2).

But S2(z) is an transcendental entire function, it is absurd.
Case 2. Suppose A �= −(−1)n , that is, A+(−1)n �= 0. Then (12) gives that

n−2

∑
j=0

(−1) jC j
n
D(z+(n− j)η)

D(z)
eh(z+(n− j)η)−h(z)

+ [(−1)n−1Cn−1
n −A]

D(z+ η)
D(z)

eh(z+η)−h(z) = (−1)n+1−A.

(21)

Denote S3(z) := eh(z+η)−h(z) , then S3(z) is a nonconstant entire function. Thus,
(21) can be written as

W3(z,S3(z)) ·S3(z) = −[(−1)n +A], (22)

where

W3(z,S3) =
D(z+nη)

D(z)
S3(z+(n−1)η)S3(z+(n−2)η) · · ·S3(z+ η)

−C1
n
D(z+(n−1)η)

D(z)
S3(z+(n−2)η)S3(z+(n−3)η) · · ·S3(z+ η)

+ · · ·
+(−1)n−2Cn−2

n
D(z+2η)

D(z)
S3(z+ η)+ [(−1)n−1Cn−1

n +A]
D(z+ η)

D(z)
.

Obviously, W3(z,S3(z)) �≡ 0. Thus, for degS3
W3(z,S3) = n− 1 � 1, we can get

T (r,S3) = m(r,S3) = S(r,S3) by apply the method of proof in Subcase 1.2 and deduce
a contradiction.
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So ρ( f ) = degh(z) = 1. Let h(z) = cz+ c0 , where c (�= 0),c0 are two constants.
Then f (z) has the form

f (z) = a(z)+D∗(z)ecz+c0 = a(z)+D(z)ecz, (23)

where D(z) = D∗(z)ec0 (�≡ 0) is an entire function satisfying

ρ(D(z)) = λ (D(z)) = λ ( f (z)−a(z)) < ρ( f ) = 1.

Thirdly, we assert that D(z) (�≡ 0) is a constant. To our purpose, we only need to
show D′(z) ≡ 0. According to (12) and h(z) = cz+ c0 , we deduce that

n−2

∑
j=0

(−1) jC j
ne

(n− j)cηD(z+(n− j)η)

+ [(−1)n−1Cn−1
n −A]ecηD(z+ η)+ [(−1)n +A]D(z) = 0.

(24)

We show that the sum of all coefficients of (24) is equal to zero, that is

n−2

∑
j=0

(−1) jC j
ne

(n− j)cη +[(−1)n−1Cn−1
n −A]ecη +((−1)n +A)

= (ecη −1)[(ecη −1)n−1−A] = 0.

(25)

On the contrary, suppose that

encη −C1
ne

(n−1)cη + · · ·+[(−1)n−1Cn−1
n −A]ecη +[(−1)n +A] �= 0.

Then we have ρ(D) � 1 by applying Lemma 5 to (24) and noting Remarks 3–4, a
contradiction. Hence, (25) holds and gives

ecη = 1 or A = (ecη −1)n−1. (26)

On the other hand, (25) implies that

(−1)n +A = −
[
encη −C1

ne
(n−1)cη + · · ·+ ((−1)n−1Cn−1

n −A
)
ecη
]
.

Substituting the above expression into equation (24), we obtain

n−2

∑
j=0

(−1) jC j
ne

(n− j)cη (D(z+(n− j)η)−D(z))

+
[
(−1)n−1Cn−1

n −A
]
ecη(D(z+ η)−D(z)) = 0.

(27)

Lemma 2 implies that there exists ε -sets E∗
j such that for j = 1, 2, · · · ,n , we have

D(z+ jη)−D(z) = jηD′(z)+o j(1)D′(z) as z → ∞ in C\E∗
j . (28)

Together with (27), we obtain

ηD′(z) ·K1 +D′(z) ·o(1) = 0 as z → ∞ in C\E, (29)
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where E =
n⋃

j=1
E∗

j and K1 is a constant satisfying

K1 = nencη − (n−1)C1
ne

(n−1)cη + · · ·+(−1)n−22Cn−2
n e2cη

+[(−1)n−1Cn−1
n −A]ecη .

We assert that K1 �= 0. On the contrary, suppose K1 = 0. Noting that Cj
n ·(n− j) =

n ·Cj
n−1 ( j = 0,1, · · · ,n−1) , we have

nencη −C1
n(n−1)e(n−1)cη + · · ·+(−1)n−2Cn−2

n 2e2cη +[(−1)n−1Cn−1
n −A]ecη

= necη
[
e(n−1)cη +(−1)C1

n−1e
(n−2)cη + · · ·+(−1)n−2Cn−2

n−1e
cη +(−1)n−1

]
−Aecη

= ecη [n(ecη −1)n−1−A] = 0,

which implies

A = n(ecη −1)n−1. (30)

Together with (26), if ecη = 1, then we have A = 0 by (30), a contradiction. If A =
(ecη −1)n−1 , then we have

n(ecη −1)n−1 = (ecη −1)n−1,

which implies ecη = 1 since n � 2. Hence, (30) gives A = n(ecη − 1)n−1 = 0, it is
absurd.

So K1 �= 0. (29) implies D′(z) ≡ 0. Thus, we can see that D(z) is a nonzero
constant. Hence, f (z) has the form

f (z) = a(z)+Decz, (31)

where c, D are two nonzero constants. �

3. Proof of Theorem 3

According to the conditions of the Theorem 3, we can see that (6) and (7) still
hold. Since Δn

η f (z) and Δη f (z) share b(z)(�≡ Δηa(z)) CM, then

Δn
η f (z)−b(z)

Δη f (z)−b(z)
=

n
∑
j=0

(−1)n− jC j
nD(z+ jη)eh(z+ jη) + v2(z)

D(z+ η)eh(z+η)−D(z)eh(z) + v1(z)
= eP(z), (32)

where P(z) is a polynomial, v2(z)= Δn
ηa(z)−b(z), v1(z)= Δηa(z)−b(z) , and ρ(v j(z))

< 1 ( j = 1,2) .
In order to prove Theorem 3, we only need to prove

Δn
η f (z)−b(z)

Δη f (z)−b(z)
= D, (33)
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where D is a nonzero constant. Then by Lemma 8, we can obtain the conclusion of
Theorem 1.1.

If P(z) ≡ 0, then (33) obviously holds by (32). So we only need to suppose that
P(z) �≡ 0 and assert that degP(z) = 0.

Set degP(z) = s and

h(z) = akz
k +ak−1z

k−1 + · · ·+a0, P(z) = bsz
s +bs−1z

s−1 + · · ·+b0, (34)

where k = ρ( f ) � 1, ak(�= 0) , ak−1, · · · ,a0 , bs(�= 0) , bs−1, · · · ,b0 are constants. Then
(32) implies that

0 � degP = s � degh = k.

In what follows, we prove that neither 1 � s = k nor 1 � s < k holds.
Case 1. Suppose that 1 � s = k. Then, (32) implies that

G11(z)eP(z) +G12e
P(z)−h(z) +G13e

−h(z) +G14 = 0, (35)

where

T (r,G11) = D(z+ η)eh(z+η)−h(z)−D(z);
T (r,G12) = v1(z);
T (r,G13) = −v2(z);

T (r,G14) = −
n
∑
j=0

(−1)n− jC j
nD(z+ jη)eh(z+ jη)−h(z).

Thus, there are three subcases: (1) bk �= ±ak ; (2) bk = ak ; (3) bk = −ak .
Subcase 1.1. Suppose that bk �= ±ak . Then, we can deduce from ρ(D) < k and

deg(h(z + jη)− h(z)) = k− 1 ( j = 1,2, · · · ,n) that ρ(G1m(z)) < k (m = 1, 2, 3, 4).
On the other hand, bk �= ±ak implies that deg(P±h) = deg(P) = deg(−h) = k. Con-
sidering eP±h, eP and e−h are of regular growth, and ρ(G1m) < k (m = 1, 2, 3, 4), we
can obtain that

T (r,G1m) = o
(
T
(
r,eP±h

))
;

T (r,G1m) = o
(
T
(
r,eP

))
;

T (r,G1m) = o
(
T
(
r,e−h

))
,

(36)

for m = 1, 2, 3, 4.
Thus, applying Lemma 1 to (35) and combining (36), we have G1m(z) ≡ 0 (m =

1, 2, 3, 4). Thus, Δηa(z)−b(z) = v1(z) = G12(z) ≡ 0, which contracts the assumption
b(z) �≡ Δηa(z) .

Subcase 1.2. Suppose that bk = ak . Rewrite (35) as

G21(z)eP(z) +G22e
−h(z) +G23 = 0, (37)

where h0(z) ≡ 0 and

T (r,G21) = D(z+ η)eh(z+η)−h(z)−D(z);
T (r,G22) = −v2(z);

T (r,G23) = v1(z)eP(z)−h(z)−
n
∑
j=0

(−1)n− jC j
nD(z+ jη)eh(z+ jη)−h(z).
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Since ρ(D) < k and deg(h(z+ jη)− h(z)) = k− 1 ( j = 1,2, · · · ,n) , we can see that
ρ(G2m(z)) < k (m = 1, 2, 3). On the other hand, by bk = ak , we can see that deg(P+
h)= deg(P)= deg(−h)= k. Since eP+h, eP and e−h are of regular growth, and ρ(G2m)
< k (m = 1, 2, 3), we can see that

T (r,G2m) = o
(
T
(
r,eP+h

))
;

T (r,G2m) = o
(
T
(
r,eP

))
;

T (r,G2m) = o
(
T
(
r,e−h

))
,

(38)

for m = 1, 2, 3.
Thus, applying Lemma 1 to (37), by (38), we can obtain

G2m(z) ≡ 0 (m = 1, 2, 3).

From G21(z) = 0, we get D(z+ η)eh(z+η) ≡ D(z)eh(z) . Together with f (z) = a(z)+
D(z)eh(z) , we have Δη f (z) = Δηa(z) , which implies Δn

η f (z) = Δn
ηa(z) . Thus, by

G22(z) = v2(z) ≡ 0, we have Δn
η f (z)− b(z) = Δn

ηa(z)− b(z) = v2(z) = −G22(z) ≡ 0.
It is impossible by (32).

Subcase 1.3. Suppose that bk = −ak . Then (35) is rewritten as

G31(z)eP(z) +G32e
P(z)−h(z) +G33 = 0, (39)

where

T (r,G31) = D(z+ η)eh(z+η)−h(z)−D(z)− v2(z)e−P(z)−h(z);
T (r,G32) = v1(z);

T (r,G33) = −
n
∑
j=0

(−1)n− jC j
nD(z+ jη)eh(z+ jη)−h(z).

Using a proof similar to that of subcase 1.1, we have G3m(z) ≡ 0 (m = 1, 2, 3). So
Δηa(z)−b(z) = v1(z) = G32(z) ≡ 0, which contracts b(z) �≡ Δηa(z) .

Case 2. Suppose that 1 � s < k. Then, (32) implies that

n

∑
j=0

(−1)n− jC j
nD(z+ jη)eh(z+ jη)−h(z)

−
[
D(z+ η)eh(z+η)−h(z)−D(z)

]
eP(z) =

[
v1(z)eP(z) − v2(z)

]
e−h(z).

(40)

By ρ(v j(z)) < 1 ( j = 1,2) and 1 � degP(z) = s < k , we know that v1(z)eP(z)−v2(z) �≡
0 and ρ(v1(z)eP(z) − v2(z)) = degP(z) = s < k . Comparing the growth order of both
sides of equation (40), we get a contradiction.

4. Proof of Theorem 4

Since Δn
η f (z) and Δη f (z) share b(z) and ∞ CM, we obtain

Δn
η f (z)−b(z)

Δη f (z)−b(z)
= eP(z), (41)
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where P(z) is an entire function. By (41), we have

T (r,eP(z)) = O(T (r, f )),

which implies

S(r,eP(z)) = S(r, f ).

By T (r,Δ j
η f (z)) = O(T (r, f )) , we get S(r,Δ j

η f (z)) = S(r, f ), ( j = 1, n).
Now we prove that P(z) is a constant. Suppose that, on the contrary, P(z) is not a

constant. Since for j = 1,n

max{ρ(a),ρ(b)}< 1,max{ρ(Δ j
ηa(z)),ρ(Δ j

ηb(z))} � max{ρ(a),ρ(b)} < 1

and eP(z) is of regular growth with ρ(eP) � 1, we have

max{T (r,a(z)),T (r,b(z))} = o
(
T
(
r,eP

))
;

max{T (r,Δ j
ηa(z)),T (r,Δ j

ηb(z))} = o
(
T
(
r,eP

))
,( j = 1,n).

(42)

From (41), we have

Δn
η( f (z)−a(z))− eP(z)Δη ( f (z)−a(z)) = b(z)−Δn

ηa(z)+ [Δηa(z)−b(z)]eP(z).

We assert that b(z)− Δn
ηa(z) + (Δηa(z)− b(z))eP(z) �≡ 0. Otherwise, suppose

b(z)−Δn
ηa(z)+ (Δηa(z)−b(z))eP(z) ≡ 0, then

eP(z) =
Δn

ηa(z)−b(z)
Δηa(z)−b(z)

,

which implies that

ρ(eP(z)) � max{ρ(Δn
ηa), ρ(Δηa), ρ(b)} � max{ρ(b)ρ(a)} < 1,

contradicting ρ(eP) � 1. So b(z)−Δn
ηa(z)+ (Δηa(z)−b(z))eP(z) �≡ 0.

Dividing the above equality by [b(z)−Δn
ηa(z)+(Δηa(z)−b(z))eP(z)]( f (z)−a(z)) ,

we have

Δn
η ( f (z)−a(z))
f (z)−a(z) − Δη ( f (z)−a(z))

f (z)−a(z) eP(z)

b(z)−Δn
ηa(z)+ (Δηa(z)−b(z))eP(z) =

1
f (z)−a(z)

. (43)

Since b(z)−Δ j
ηa(z) �≡ 0 ( j = 1,n) , from Lemma 7 and (42), we deduce that

m

(
r,

1

b(z)−Δn
ηa(z)+ (Δηa(z)−b(z))eP(z)

)
= S(r,eP),

m

(
r,

eP(z)

b(z)−Δn
ηa(z)+ (Δηa(z)−b(z))eP(z)

)
= S(r,eP).
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Furthermore, by a version of the difference analogue of the logarithmic derivative in
[13], we can obtain

m

(
r,

Δ j
η( f (z)−a(z))
f (z)−a(z)

)
= S(r, f ), j = 1,n.

So by (43), we have

m

(
r,

1
f (z)−a(z)

)
= S(r,eP)+S(r, f ) = S(r, f ),

which gives δ (a, f ) = 0, contradicting the assumption δ (a, f ) > 0. Hence we have
proved that P(z) is a constant. Setting eP(z) = D , we have

Δn
η f (z)−b(z)

Δη f (z)−b(z)
= D. (44)

Next we consider the case a(z) ≡ 0 and b(z) �≡ 0, then (44) implies that

Δn
η f (z)−DΔη f (z) = (1−D)b(z).

If D �= 1, then dividing the above equality by (1−D)b(z) f (z) , we obtain

1
(1−D)b(z)

Δn
η f (z)
f (z)

− D
(1−D)b(z)

Δη f (z)
f (z)

=
1

f (z)
.

So by (42) and the difference analogue of the logarithmic derivative in [14], we get

m

(
r,

1
f (z)

)
= S(r, f ),

which gives δ (0, f ) = 0, contradicts δ (0, f ) > 0. Hence D = 1 and Δn
η f (z)≡ Δη f (z) .
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