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Abstract. Majorization type theorems (such as the Karamata inequality, the Fuchs inequality)
for higher convex functions are rare and the criteria given in these theorems are difficult to check
(see [10, Chapter 9.]). On the other side, the Brady theorem (see [3]) gives rather simple and
the straightforward criterion for such type of results. We apply Brady’s theorems on inequalities
originated from 3-exponential convexity of certain function and, as a by-product, we obtain
improvements of AG -inequality and an interesting mean. As an equivalent version of Brady’s
theorem, the mean value theorems, which are usually used in the definition of Stolarsky means,
are also proved.

1. Introduction and preliminaries

The initial motivation for this research was to find all functions f on (0,∞) for
which the inequality

f (t1)+ f (t2)+ f
(
2
√

t1t2
)

� f (t1 + t2)+2 f
(√

t1t2
)

(1)

holds for every t1, t2 > 0. Notice that for convex functions f with f (0) = 0 it holds
f (t1)+ f (t2) � f (t1 + t2) and f (2t) � 2 f (t) . The geometric mean in (1) has a special
role, and this will become clear later, although it can be replaced with any other two
variable mean, but this requires different techniques.

The importance of the inequality (1) is evident when written for f (t) = t p . In this
case, after rearrangement, we get

21−p
(

t p
1 + t p

2

2
−√

t1t2
p
)

+
√

t1t2
p �

(
t1 + t2

2

)p

, (2)

which is (when it holds) an obvious improvement of AG-inequality for p > 0, and the
reverse inequality is an obvious improvement of the inequality between the geometric
mean and the power mean for p > 0. A significant feature of (1) is that (2) becomes
identity for p = 1 and p = 2.
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A more direct way to deduce the inequality (1) is contained in the notion of N -
exponentially convex functions and their characterizations. We use the terminology
from [1] (and [2]); this differs from Widder’s book [11], which uses the notion of
positive definite kernels. These notions in [1] and [11] are given in the infinite order
case. See also [8] for more effective ways to characterize N -exponential convexity.

DEFINITION 1. ([1, p. 210]) Let N ∈ N . A function g : (a,b) → R , (a,b) ⊆ R ,
is said to be N -exponentially convex if

N

∑
i, j=1

ξiξ jg

(
xi + x j

2

)
� 0

for arbitrary ξ1, . . . ,ξN ∈ R , x1, . . . ,xN ∈ (a,b) .

Using [5, Chapter X] it follows that g is N -exponentially convex on (a,b) iff

det

(
g

(
xi + x j

2

))k

i, j=1
� 0

for every k = 1, . . . ,N and for arbitrary x1, . . . ,xN ∈ (a,b) .
It is known that the function g(x) = ex2

is N -exponentially convex for all N ∈ N

as a bilateral Laplace transform

et2 =
1
2π

∫ ∞

−∞
e−

x2
4π e−txdx

(see [11, Chapter XI]). By a straightforward calculation we get that the non-negativity

of determinant det
[
g
(

xi+x j
2

)]3
i, j=1

is equivalent to the inequality

e
2
(

x1+x2
2

)2
+x2

3 + e
2
(

x1+x3
2

)2
+x2

2 + e
2
(

x2+x3
2

)2
+x2

1

� ex2
1+x2

2+x2
3 +2e

(
x1+x2

2

)2
+
(

x1+x3
2

)2
+
(

x2+x3
2

)2

. (3)

Setting x3 = 0 in (3), dividing by e
x21
2 +

x22
2 and using the substitution x2

1 = 2t1 , x2
2 = 2t2 ,

the inequality (3) reduces to the inequality

et1 + et2 + e2
√

t1t2 � et1+t2 +2e
√

t1t2 ,

which is exactly the inequality (1) written for f (x) = ex . Our primary goal is to give a
convex-like arguments for (1) and (3).

In close connection with the above mentioned problems is the identity

f (x)+ f (y)+ f (z)− f (a)− f (b)− f (c) = (xyz−abc) f ′′′(w) (4)

proven in [4], where x,y,z,a,b,c satisfy (5) in the case k = 3 and w is in the smallest
interval containing x,y,z,a,b,c . Obviously, the left-hand side of (4) is closely related
to inequalities (1) and (3) and the sign of it is controlled by the sign of f ′′′ . In the final
section the general form of (4) is proven.
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2. On Brady’s theorem

The following theorem is given in [3]. It gives a very elegant majorization type
theorem for higher convexities. We add one claim to the original Corollary 4.1 in [3].

THEOREM 2. Given real numbers x1,x2, . . . ,xk ∈ [a,b] and y1,y2, . . . ,yk ∈ [a,b]
such that

k

∑
i=1

x j
i =

k

∑
i=1

y j
i , j = 1,2, . . . ,k−1, (5)

the following claims are equivalent:

(a) ∑k
i=1 xk

i � ∑k
i=1 yk

i

(b) max{xi : i = 1, . . . ,k} � max{yi : i = 1, . . . ,k}
(c) (−1)k−1 ∏k

i=1 xi � (−1)k−1 ∏k
i=1 yi

(d) ∑k
i=1 f (xi) � ∑k

i=1 f (yi) for all functions f : [a,b] → R provided f (k) � 0 .

Proof. The equivalences (a)⇔ (b)⇔ (d) are proven in [3]. We will prove (a)⇔
(b) ⇔ (c) . This will also give a more direct proof of (a) ⇔ (b) than in [3]. As a by-
product we get (see the proof of Corollary 4.2 in [3] and the last section of the present
paper)

∫ b

a

k

∑
i=1

[
(xi − t)k−1

+ − (yi− t)k−1
+

]
dt

=
1
k

[
k

∑
i=1

xk
i −

k

∑
i=1

yk
i

]
= (−1)k−1

[
k

∏
i=1

xi −
k

∏
i=1

yi

]
,

assuming (5). Notice that the left-hand side of the above identity is the Popoviciu spline
kernel in the integral representation of ∑k

i=1 f (xi)−∑k
i=1 f (yi) .

W.l.o.g. we can assume that x1 � x2 � · · · � xk , y1 � y2 � · · · � yk . Set Pk(x) =
∏k

i=1 (x− xi) , Qk(x) = ∏k
i=1 (x− yi) . Obviously

Pk(x) =
k

∑
j=0

(−1) jI j(x)xk− j, Qk(x) =
k

∑
j=0

(−1) jI j(y)xk− j,

where

I j(x) = I j (x1, . . . ,xk) = ∑
1�i1<i2<···i j�k

xi1 · · ·xi j , j = 0,1, . . . ,k, I0(x) = 1,

and analogously I j(y) . Using identities [6, (9)] or Lemma 3, we conclude that I j (x)
depends polynomially on x(l) = ∑k

i=1 xl
i , l = 1, . . . , j . Using identities (5), it follows

I j (x) = I j (y) for j = 1, . . . ,k−1. We get

Pk(x)−Qk(x) = (−1)k (Ik(x)− Ik(y)) = (−1)k

(
k

∏
i=1

xi −
k

∏
i=1

yi

)
. (6)
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On the other hand, since Pk (xi)= 0, i = 1, . . . ,k , it follows xk
i = ∑k

j=1(−1) j+1I j(x)xk− j
i ,

i = 1, . . . ,k , which by summation gives

x(k) =
k

∑
j=1

(−1) j+1I j(x)x(k− j) = (−1)k+1kIk(x)+
k−1

∑
j=1

(−1) j+1I j(x)x(k− j).

Using analogous identity for y(k) , it follows

k

∑
i=1

xk
i −

k

∑
i=1

yk
i = x(k)−y(k) = (−1)k+1k (Ik(x)− Ik(y)) = (−1)k+1k

(
k

∏
i=1

xi −
k

∏
i=1

yi

)
,

(7)
from which the equivalence of (a) and (c) is obvious. Using (6) and (7), we get

Pk(x)−Qk(x) = −1
k

[
k

∑
i=1

xk
i −

k

∑
i=1

yk
i

]

from which the equivalence of (a) and (b) is obvious. �

LEMMA 3. Let x1,x2, . . . ,xn be real variables. Then

Ik =
1
k

k−1

∑
l=0

(−1)k−l+1x(k−l)Il, k = 1,2, . . . ,n, (8)

where

Ij = I j(x) = I j (x1, . . . ,xn) = ∑
1�i1<i2<···i j�n

xi1 · · ·xi j , j = 0,1, . . . ,k, I0(x) = 1,

x(l) =
n

∑
i=1

xl
i , l ∈ N.

Proof. For k = 1 identity (8) is obvious. Set(
x(l)|I j

)
= ∑

1 � i1 < · · · < i j � n
i 	= im,m = 1, . . . , j

xl
ixi1 · · ·xi j .

Notice that (x|Ik) = (k+1)Ik+1 . The following identities are obvious:

(i) xIk = (∑n
i=1 xi) · Ik = (k+1)Ik+1 +

(
x(2)|Ik−1

)

(ii) x( j)Ik− j+1 =
(
x( j)|Ik− j+1

)
+
(
x( j+1)|Ik− j

)
, j = 1, . . . ,k.



ON AN INEQUALITY FOR 3-CONVEX FUNCTIONS AND RELATED RESULTS 331

Using the identity (ii) from j = 2 to j = k , we get:(
x(2)|Ik−1

)
= x(2)Ik−1−

(
x(3)|Ik−2

)
= x(2)Ik−1−x(3)Ik−2 +

(
x(4)|Ik−3

)
= x(2)Ik−1−x(3)Ik−2 +x(4)Ik−3−x(5)Ik−4 + · · ·+(−1)k

(
x(k)I1−x(k+1)

)

=
k+1

∑
j=2

(−1) jx( j)Ik− j+1. (9)

Using identity (i) and (9) it follows

Ik+1 =
1

k+1

[
x(1)Ik −

(
x(2)|Ik−1

)]

=
1

k+1

[
x(1)Ik +

k+1

∑
j=2

(−1) j+1x( j)Ik− j+1

]
=

1
k+1

k+1

∑
j=1

(−1) j+1x( j)Ik− j+1

=
1

k+1

k

∑
j=0

(−1)k− j+2x(k− j+1)I j,

which proves (8). �
Using notations from Lemma 3 and simple induction it follows:

PROPOSITION 4. Ik polynomially depends on x( j) = ∑n
i=1 x j

i for j = 1, . . . ,k.

For the sake of clarity, we give some initial examples. Set: x j = (∑n
i=1 xi)

j .

k = 1: I1 = (−1)1−0+1x(1)I0 = x =
n

∑
i=1

xi

k = 2: I2 =
1
2

[
−x(2) +xI1

]
=

1
2

⎡
⎣( n

∑
i=1

xi

)2

−
n

∑
i=1

x2
i

⎤
⎦

k = 3: I3 =
1
3

[
x(3)−x(2)I1 +xI2

]
=

1
3

[
x(3)− 3

2
x(2)x+

1
2
x3
]

k = 4:

I4 =
1
4

[
−x(4) +x(3)I1−x(2)I2 +xI3

]
=

1
4

[
−x(4) +

4
3
x(3)x+

1
2
x(2)x(2)−x(2)x2 +

1
6
x4
]

=
1
4

⎡
⎣1

6

(
n

∑
i=1

xi

)4

−
(

n

∑
i=1

x2
i

)(
n

∑
i=1

xi

)2

+
1
2

(
n

∑
i=1

x2
i

)2

+
4
3

(
n

∑
i=1

x3
i

)(
n

∑
i=1

xi

)
−

n

∑
i=1

x4
i

⎤
⎦
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3. Applications of 3-convexity and related inequalities

Now we are in position to give a simple proofs of inequalities (1) and (2).

THEOREM 5. The inequality

f

(
2

(
x1 + x2

2

)2

+ x2
3

)
+ f

(
2

(
x1 + x3

2

)2

+ x2
2

)
+ f

(
2

(
x2 + x3

2

)2

+ x2
1

)

� f
(
x2
1 + x2

2 + x2
3

)
+2 f

((
x1 + x2

2

)2

+
(

x1 + x3

2

)2

+
(

x2 + x3

2

)2
)

(10)

holds if f is a 3 -convex function (on an interval containing all involved expressions).
Reversed inequality holds if f is a 3-concave function.

Proof. Using

a1 = 2

(
x1 + x2

2

)2

+ x2
3, a2 = 2

(
x1 + x3

2

)2

+ x2
2, a3 = 2

(
x2 + x3

2

)2

+ x2
1,

b1 = x2
1 + x2

2 + x2
3, b2 = b3 =

(
x1 + x2

2

)2

+
(

x1 + x3

2

)2

+
(

x2 + x3

2

)2

,

it is easy to verify a1+a2+a3 = b1+2b2 , a2
1+a2

2+a2
3 = b2

1+2b2
2 and b1 = max{a1,a2,

a3,b1,b2} . The claim follows from Theorem 2. �

THEOREM 6. The inequality

f (t1)+ f (t2)+ f
(
2
√

t1t2
)

� f (t1 + t2)+2 f
(√

t1t2
)

holds if f is a 3 -convex function (on an interval containing all involved expressions).
Reversed inequality holds if f is a 3-concave function.

Proof. Using
a1 = t1, a2 = t2, a3 = 2

√
t1t2,

b1 = t1 + t2, b2 = b3 =
√

t1t2,

it is easy to verify a1+a2+a3 = b1+2b2 , a2
1+a2

2+a2
3 = b2

1+2b2
2 and b1 = max{a1,a2,

a3,b1,b2} . The claim follows from Theorem 2. �

REMARK 7. The famous inequality for 3-convex functions is the Levinson in-
equality (see [10, Theorem 2.42]). It is easy to verify that the basic (n = 2) non-
weighted form of this inequality can be proved using Theorem 2. It seems, that the
proof of the weighted form of the Levinson inequality, even for n = 2, is beyond this
method. For the weighted versions of this method see Theorem 3.2 in [3].
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REMARK 8. It is tempting to consider the higher analogues of the inequality
(10) . It is straightforward to see what the form is, in the simplest case, of the in-

equality is to use det
(
g
(

xi+x j
2

))4

i, j=1
, where g(x) = ex2

(see (3)). Now we have

4! = 24 terms and analogously as in the proof Theorem 5, we can define a1, . . . ,a12 ,
b1, . . . ,b12 (counting with multiplicities) and try to check the conditions in Theorem
2. Calculations (by Wolfram Mathematica) show that ∑12

i=1 a j
i = ∑12

i=1 b j
i holds for

j = 1, . . . ,5 and ∑12
i=1 a6

i < ∑12
i=1 b6

i for xi 	= x j , i 	= j . Obviously, Theorem 2 cannot
be applied in this case. But there is still chance that the analogous inequality to (10)
holds for 6-convex functions (see for example Lemma 2.2 in [3]). By constructing
an example (take (x1,x2,x3,x4) = (10,7,5,1)), it can be shown that the spline kernel

∑12
i=1 (bi− t)5+ − (ai− t)5+ is not non-negative for all t (see also Lemma 2.2 in [3]).

The inequality (1) for f (t) = t p , after rearranging, can be written as

21−p
(

t p
1 + t p

2

2
−√

t1t2
p
)

+
√

t1t2
p �

(
t1 + t2

2

)p

, t1,t2 > 0. (11)

Using Theorem 6, it follows that (11) holds for p ∈ [0,1]∪ [2,∞) and the reverse in-
equality holds for p ∈ (−∞,0]∪ [1,2] . In the first case it can be regarded as an im-
provement of AG-inequality and for p ∈ [1,2] , the reverse inequality in (11), can be
regarded as an improvement of the inequality between the p -power mean and the geo-
metric mean (of t1 and t2 ).

Another way of writing (11) for p � 2 is:

√
t1t2 �

(
(t1 + t2)

p− t p
1 − t p

2

2p−2

) 1
p

(12)

and the reverse inequality holds for 1 � p � 2. Notice that the reverse inequality in
(12) holds for every p � 1 (using 2p− 2 < 0 or p < 0 and the reverse form of (11)).
For the critical cases p = 1 and p = 0 see below.

The right-hand side of (12) has some interesting features. Set:

Hp (t1,t2) :=
(

(t1 + t2)
p− t p

1 − t p
2

2p−2

) 1
p

(13)

We list the following basic properties of Hp (t1,t2) . The proofs are elementary.

PROPOSITION 9. Let t1,t2 > 0 .

1. lim
p→0

Hp (t1, t2) =
2t1t2
t1 + t2

2. lim
p→1

Hp (t1, t2) =
1

2log2
log

(t1 + t2)
t1+t2

tt11 tt22

3. t1, t2 �→ Hp (t1,t2) is an increasing function in both variables for any p ∈ R .
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4. lim
p→∞

Hp (t1, t2) =
t1 + t2

2

5. lim
p→−∞

Hp (t1, t2) = min{t1,t2}

6. Hp (λ t1,λ t2) = λHp (t1,t2) for any λ > 0 .

7. Hp (t1, t2) = Hp (t2,t1) , Hp (t1,t1) = t1

8. H2 (t1, t2) =
√

t1t2

This proposition shows that Hp (t1,t2) is a mean of positive reals t1,t2 for any
p ∈ R (with the obvious extension for p = 0 and p = 1 imposing continuity in the
variable p ).

The inequality (13) can be also proved by using differential calculus. For p ∈ N

an instructive proof can be given by using binomial theorem and AG-inequality. In the
following lemma much more is proved, namely, the mean Hp (t1, t2) is increasing in the
variable p .

LEMMA 10. The function f : R → R defined by

f (t) =
1
t

log
(1+ x)t − xt −1

2t −2
,

assuming f (0) = limt→0 f (t) and f (1) = limt→1 f (t) (see Proposition 9), is an in-
creasing function for any x > 1 .

Proof. The first derivative gives

f ′(t) = − 1
t2

(
log

(x+1)t − xt −1
2t −2

+ t
2t log2
2t −2

− t
xt logx− (1+ x)t log(1+ x)

1+ xt − (1+ x)t

)

It is enough to prove that

g(x) = t
xt logx− (1+ x)t log(1+ x)

1+ xt − (1+ x)t
− log

(x+1)t − xt −1
2t −2

− t
2t log2
2t −2

(14)

is non-negative for x � 1 and t ∈ R . Obviously g(1) = 0. It follows

g′(x) = − t2

x(x+1)(xt − (x+1)t +1)2

·(xt ((x+1)t − x−1
)
logx− (x+1)t

(
xt − x

)
log(x+1)

)
.

It is enough to prove g′(x) > 0 for x > 1.
Let x > 1. Using (14), g′(x) > 0 is equivalent to

xt ((x+1)t − x−1
)
logx < (x+1)t

(
xt − x

)
log(x+1). (15)
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By rearranging, (15) is equivalent to

(1+ x)1−t −1
x1−t −1

<
log(1+ x)

logx
, for t > 1,

and to
(1+ x)1−t −1

x1−t −1
>

log(1+ x)
logx

, for t < 1.

Since obviously limt→1
(1+x)1−t−1

x1−t−1
= log(x+1)

logx , it is enough to prove that t �→ (1+x)1−t−1
x1−t−1

is a decreasing function, which, by substitution u = 1− t , is reduced to the claim that

φ(u) =
(1+ x)u−1

xu −1
, φ(0) = lim

u→0
φ(u) =

log(x+1)
logx

is an increasing function on R . It is easy to check that φ ′(u) > 0 is equivalent to (15),
so, it seems, the argument by the derivative doesn’t work here. Due to continuity of φ
at u = 0 it is enough to prove φ (u1) < φ (u2) assuming u1 < u2 < 0 or 0 < u1 < u2 .
The idea is to prove φ (λu) > φ(u) for λ > 1 and u > 0 and φ (λu) < φ(u) in the case
λ > 1 and u < 0. Assuming this is proven, we have in the case 0 < u1 < u2 :

φ (u2) = φ
(

u2

u1
u1

)
> φ (u1) , using u1 > 0, u2/u1 > 1,

and in the case u1 < u2 < 0:

φ (u1) = φ
(

u1

u2
u2

)
< φ (u2) , using u2 < 0, u1/u2 > 1.

It remains to show φ (λu) > φ(u) for λ > 1 and u > 0, and the opposite inequality for
λ > 1 and u < 0. For n ∈ N , we have:

φ (nu) =
(1+ x)nu−1

xnu−1
= φ(u)

∑n−1
k=0(1+ x)ku

∑n−1
k=0 xku

,

which obviously implies φ (nu) > φ(u) for u > 0 and the opposite inequality for u <
0. Let q = (1+ x)u/n and q1 = xu/n . Set Sn(q) = ∑n

k=0 qk . In this terms inequality
φ
(

n+1
n u
)

> φ(u) can be written as

Sn(q)
Sn (q1)

>
Sn−1(q)
Sn−1 (q1)

⇔ Sn(q)
Sn−1(q)

>
Sn (q1)

Sn−1 (q1)
⇔ qn

Sn−1(q)
>

qn
1

Sn−1 (q1)
,

which obviously holds for u > 0 (since in this case q > q1 holds). The same argument
gives φ

(
n+1
n u
)
< φ(u) for u < 0 (which implies q < q1 ). By iteration of this property,

we get φ
(

m
n u
)

> φ(u) for m > n , m,n ∈ N and u > 0 and the opposite inequality for
u < 0. The standard continuity argument gives the claim. This finishes the proof. �
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REMARK 11. Log-convexity of the function g(t) = (1+x)t−xt−1
2t−2 would imply that

f (t) = 1
t logg(t) from the previous lemma is an increasing function (since g(0) = 1),

and g seems to be easier to handle. We will show that g is not a log-convex function for
any x > 1. Otherwise g2 (t1 + t2) � g(2t1)g(2t2) holds for any t1,t2 ∈ R . Let t1 = 2,
t2 = t and x > 1. By extracting the dominant terms for t ≈ ∞ , we get

g(4)g(2t)−g2 (2+ t)

=
(x+1)4− x4−1

14
(x+1)2t − x2t −1

22t −2
−
(

(1+ x)2+t − x2+t −1
22+t −2

)2

=
(1+ x)2t

22t

(
(x+1)4− x4−1

14
ε1(x,t)− (x+1)4

16
ε2(x,t)

)

=
(1+ x)2t

22t

(
(x+1)4− x4−1

14
− (x+1)4

16
+ ε(x,t)

)

=
(1+ x)2t

22t

(
− 1

112
(x−1)2(7x2 +10x+7

)
+ ε(x, t)

)
, (16)

where obviously limt→∞ ε1(x,t) = limt→∞ ε2(x,t) = 1 and limt→∞ ε(x,t)= 0. It follows
from (16) that g is not a log-convex function for t big enough.

That the role of the geometric mean in the inequalities

2A( f (t1), f (t2))−2 f (M (t1,t2)) � f (2A(t1,t2))− f (2M(t1, t2)) ,

where M is any mean, is special is exactly due to possibility to apply Theorem 2. To
illustrate this we examine the case of the harmonic mean:

f (t1)+ f (t2)−2 f

(
2t1t2
t1 + t2

)
� f (t1 + t2)− f

(
2

2t1t2
t1 + t2

)
. (17)

Theorem 2 cannot be applied since the identity (5) holds only for j = 1 and for j = 2
equality holds iff t1 = t2 . This also implies that (17) cannot hold for all 3-convex
functions. The Popoviciu criterion (using the kernel ∑3

j=1 (b j − t)+ − (a j − t)+ ) can
easily give that inequality (17) is not valid for all convex functions. As above it remains
to consider the case f (x) = xp . In this case (17) can be written as

21−p
[
t p
1 + t p

2

2
−
(

2t1t2
t1 + t2

)p]
+
(

2t1t2
t1 + t2

)p

�
(

t1 + t2
2

)p

. (18)

It follows from Proposition 9 and Lemma 10

H (t1,t2) =
2t1t2
t1 + t2

� Hp (t1,t2) (19)

for every p > 0 and the reverse inequality for p < 0, where Hp (t1,t2) is defined in
(13). It is easy to see that (19) is equivalent to (18) for p > 1. Also, (19) gives the
reverse inequality in (18) for p < 1. We conclude that (18) is an improvement of
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AH -inequality for p > 1 and the reverse inequality in (18) is an improvement of the
inequality between p -power mean and the harmonic mean for 0 < p < 1. Compare
this to the discussion below (11).

Notice that (19) is a consequence of Lemma 10, which is technically demanding.
It is easy to see that for p > 2 (18) is a trivial consequence of Theorem 6 and HG-
inequality. We give an alternative proof of (18) for 1 < p < 2 based on different ideas.

THEOREM 12. Let p � 1 and x > 1 . Then

1+ xp−2

(
2x

1+ x

)p

� (1+ x)p−
(

2
2x

1+ x

)p

, x � 1. (20)

Proof. For p � 2 inequality (20) is a trivial consequence of Theorem 6 and HG-
inequality (see also discussion below (11)). Let 1 < p < 2. Using substitution u = x−1

x+1
and rearranging, (20) is equivalent to inequality

(1−u)p +(1+u)p +(2p−2)
(
1−u2)p � 2p, u ∈ [0,1].

Using binomial expansions we get

F(u) = (1−u)p +(1+u)p +(2p−2)
(
1−u2)p

= 2
∞

∑
k=0

(
p
2k

)
u2k +(2p−2)

∞

∑
k=0

(−1)k
(

p
k

)
u2k

= 2p + p(p+1−2p)u2 +
∞

∑
k=2

[
2

(
p
2k

)
+(−1)k (2p−2)

(
p
k

)]
u2k.

Set f (u)= p(p+1−2p)u2+∑∞
k=2

[
2
( p
2k

)
+(−1)k (2p−2)

(p
k

)]
u2k. Since 2p = F(1)=

2p + f (1) , obviously f (1) = 0. Also, for 1 < p < 2 it holds: p+1−2p < 0,
( p
2l

)
> 0

and
( p
2l+1

)
< 0 for any l ∈ N . This gives

2

(
p
2k

)
+(−1)k (2p−2)

(
p
k

)
> 0, k � 2.

It follows:

F(u) = 2p + p(p+1−2p)u2 +
∞

∑
k=2

[
2

(
p
2k

)
+(−1)k (2p−2)

(
p
k

)]
u2k

= 2p +u2

(
p(p+1−2p)+

∞

∑
k=2

[
2

(
p
2k

)
+(−1)k (2p−2)

(
p
k

)]
u2k−2

)

� 2p +u2

(
p(p+1−2p)+

∞

∑
k=2

[
2

(
p
2k

)
+(−1)k (2p−2)

(
p
k

)])

= 2p +u2 f (1) = 2p. �
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REMARK 13. It is not obvious what multi-variable analogues of inequality (1)
could be. See Remark 8 for one possibility. A natural generalization of inequality (1)
is given by

n

∑
i=1

f (ti)−n f

(
n

∏
i=1

t1/n
i

)
� f

(
n

∑
i=1

ti

)
− f

(
n

n

∏
i=1

t1/n
i

)
. (21)

It can be written as

nA( f (t1), . . . , f (tn))−n f (G(t1, . . . ,tn) � f (nA(t1, . . . ,tn))− f (nG(t1, . . . ,tn)) ,

where A and G are the arithmetic and the geometric mean, respectively. It seems that
the case n = 2 is in some sense an exceptional case. Theorem 2 cannot be applied
for n � 3. Identities (5) don’t hold and in this case are inequalities (after simple
rearranging)

(
n

∏
i=1

ti

) k
n

� 1
nk −n

⎡
⎣( n

∑
i=1

ti

)k

−
n

∑
i=1

tki

⎤
⎦

=
1

nk −n ∑
j1+ j2+···+ jn=k,0� ji<k

(
k

j1, j2, . . . , jn

) n

∏
i=1

t ji
i , (22)

which is, since obviously

∑
j1+ j2+···+ jn=k,0� ji<k

(
k

j1, j2, . . . , jn

)
= nk −n,

a consequence of the AG-inequality (we skip the combinatorial details in the proof).
Equality holds (except in the case n = k = 2) iff t1 = t2 = · · · = tn .

Using Popoviciu criterion for linear (in f ) inequalities in the convex case, it is
easy to see that (21) cannot generally hold for convex functions.

It remains to consider the case f (x) = xp . Rearranging (21) , we get for p > 1 or
p < 0:

n

∏
i=1

t
1
n
i �

(
(∑n

i=1 ti)p−∑n
i=1 t p

i

np−n

) 1
p

= Hp (t1, . . . ,tn) (23)

and the reverse inequality for 0 < p < 1. The right-hand side of the inequality (23) has
the same properties as stated in Proposition 9, except that the geometric mean and the
harmonic means cannot be obtained for any p ∈ R (including limit cases) for n � 3.
We don’t go into details of this investigation since the method is beyond the method
used in this paper. Our conjecture is that the inequality (23) depends on the inequality
np−1 � p (using multi-variable calculus and the Sylvester criteria for local extrema),
which for n � 3 holds for p � 1 and p < p0 , where p0 < 1 is the non-trivial solution
of the equation np−1 = p . Notice that for n = 2 this inequality covers discussion below
(11) . For p ∈ N the inequality (23) reduces to (22) .
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4. Mean value theorems

It was proved in [4] that

f (x)+ f (y)+ f (z)− f (a)− f (b)− f (c) =
1
2

(xyz−abc) f ′′′(w) (24)

holds, using conditions given in (5) for k = 3, for some w in the smallest interval
containing x,y,z,a,b,c and f ′′′ continuous. Notice that Theorem 2 (in the case k = 3)
easily follows from (24). The purpose of this section is to present the generalizations of
(24). The proofs are based on the ideas given in [7] and similar papers (see for example
[9]).

THEOREM 14. Let x1, . . . ,xk , y1, . . . ,yk ∈ [a,b] be non-identical k -tuples such
that (5) holds and such that (a) or (b) or (c) in Theorem 2 holds. If f ∈ Ck ([a,b]) ,
then there exists ξ ∈ [a,b] such that

k

∑
i=1

f (xi)−
k

∑
i=1

f (yi) =
f (k)(ξ )

k!

(
k

∑
i=1

xk
i −

k

∑
i=1

yk
i

)

= (−1)k+1 f (k)(ξ )
(k−1)!

[
k

∏
i=1

xi−
k

∏
i=1

yi

]
. (25)

Proof. Set m = minx∈[a,b] f (k)(x) , M = maxx∈[a,b] f (k)(x) . Obviously

f1(x) =
M
k!

xk − f (x), f2(x) = f (x)− m
k!

xk

are k -convex functions. Applying Theorem 2 on f1 and f2 and rearranging, we get

m
k!

(
k

∑
i=1

xk
i −

k

∑
i=1

yk
i

)
�

k

∑
i=1

f (xi)−
k

∑
i=1

f (yi) � M
k!

(
k

∑
i=1

xk
i −

k

∑
i=1

yk
i

)
,

from which (25) obviously follows. The second identity in (25) is given in (7). Notice
that ∑k

i=1 xk
i > ∑k

i=1 yk
i since the involved k -tuples are not identical (otherwise Pk(x) ≡

Qk(x) ; see the proof of Theorem 2). �
Mean value theorems of a type given in Theorem 14 are useful in defining suitable

means. If f (k) is an invertible function, then

ξ =
(

f (k)
)−1

(
k!

∑k
i=1 f (xi)−∑k

i=1 f (yi)

∑k
i=1 xk

i −∑k
i=1 yk

i

)
∈ [a,b], (26)

assuming that conditions (5) hold. Notice that maxi {xi} = maxi {yi} implies that k -
tuples x and y are identical (assuming decreasing order). At this instance assumption
maxi {xi} > maxi {yi} is not necessary since the reversed inequality implies obviously
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the reversed inequality in the part (d) in Theorem 2. The expression (26) is a natural
generalization of the classical Stolarsky mean, which is given by (26) for k = 1.

The most interesting case is f (x) = xr , which gives

ξ = M (x,y;k,r) =

(
k!

∏k−1
j=0(r− j)

∑k
i=1 xr

i −∑k
i=1 yr

i

∑k
i=1 xk

i −∑k
i=1 yk

i

) 1
r−k

,

assuming continuous extensions for r = 0,1, . . . ,k . In this way we get Stolarsky type
means under the assumptions ∑k

i=1 x j
i = ∑k

i=1 y j
i , j = 1, . . . ,k−1 and maxi xi 	= maxi yi .

It can give a useful information on mutual position of r -power means (or logarithmic
type means for r = 0,1, . . . ,k ) for given k -tuples, assuming their j th power means,
j = 1, . . . ,k−1, are equal.

EXAMPLE 15. For k = 2, we get

M (x,y;2,r) =
(

2
r(r−1)

xr
1 + xr

2− yr
1− yr

2

x2
1 + x2

2− y2
1− y2

2

) 1
r−2

, r 	= 0,1,2, x1 + x2 = y1 + y2,x1 	= y1.

Notice that this is a special case of Stolarsky type means for four points given in [7].
We easily get

lim
x1→y1

M (x,y;2,r) =

(
1

r−1
yr−1
1 − yr−1

2

y1− y2

) 1
r−2

,r 	= 1,2, y1 	= y2,

which is classical two parameter Stolarsky mean. For r = 2 we get

M (x,y;2,2) = lim
r→2

M (x,y;2,r) = e−
3
2

⎛
⎝x

x2
1

1 x
x2
2

2

y
y2
1

1 y
y2
2

2

⎞
⎠

1
x21+x22−y21−y22

.

The inequality

M (x,y;2,2) � x1 + x2

2
=

y1 + y2

2
= M (x,y;2,3)

can be proved using results given at the end of this section.

The Cauchy type mean value theorem is as follows.

THEOREM 16. Let x1, . . . ,xk , y1, . . . ,yk ∈ [a,b] be non-identical k -tuples such
that (5) holds and such that (a) or (b) or (c) in Theorem 2 holds. If f ,g ∈Ck([a,b]) ,
then there exists ξ ∈ [a,b] such that

∑k
i=1 f (xi)−∑k

i=1 f (yi)

∑k
i=1 g(xi)−∑k

i=1 g(yi)
=

f (k)(ξ )
g(k)(ξ )

,

provided the denominators are non-zero.
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Proof. Set

h(x) =

(
k

∑
i=1

f (xi)−
k

∑
i=1

f (yi)

)
g(x)−

(
k

∑
i=1

g(xi)−
k

∑
i=1

g(yi)

)
f (x).

Obviously ∑k
i=1 h(xi)−∑k

i=1 h(yi) = 0 and the claim follows from Theorem 14 and
∑k

i=1 xk
i −∑k

i=1 yk
i > 0. �

Again, if f (k)/g(k) is invertible, then

ξ =

(
f (k)

g(k)

)−1(
∑k

i=1 f (xi)−∑k
i=1 f (yi)

∑k
i=1 g(xi)−∑k

i=1 g(yi)

)
∈
[
min

i
{xi,yi} ,max

i
{xi,yi}

]

is a mean. The most important case is f (x) = xr , g(x) = xs , which gives Stolarsky type
means

ξ = M(x,y,k;r,s) =

(
∏k−1

j=0(s− j)

∏k−1
j=0(r− j)

∑k
i=1 xr

i −∑k
i=1 yr

i

∑k
i=1 xs

i −∑k
i=1 ys

i

) 1
r−s

,

under obvious restrictions r 	= s , r,s 	= 0,1, . . . ,k− 1, in which cases can be continu-
ously extended (using ∑k

i=1 x j
i = ∑k

i=1 y j
i , j = 0,1, . . . ,k− 1). The important property

of monotonicity in variables r and s can be proved using the notion of the exponential
convexity. We give just a sketch of the proof.

The fundamental claim is that the function

Φ(r) =
1

∏k−1
j=0(r− j)

(
k

∑
i=1

xr
i −

k

∑
i=1

yr
i

)
,

assuming max{xi : i = 1, . . . ,k} > max{yi : i = 1, . . . ,k} , is an exponentially convex
function on R (with obvious extensions for r = 0,1, . . . ,k− 1), which by definition
means

n

∑
i, j=1

ξiξ jΦ
(

ri + r j

2

)
� 0,

for every n∈N , ξi ,ξ j ∈R , i, j = 1, . . . ,n . See Definition 1. Actually, we want to prove
that Φ(r) is a log-convex function, which is equivalent to 2-exponential convexity (see
the determinant criterion below Definition 1 for k = 2). It is instructive to compare the
method given below with Theorem 10 and Remark 11.

The basic tool is Theorem 2 and the function

Fr(x) =

⎧⎪⎨
⎪⎩

1
∏k−1

j=0(r− j)

(
xr −∑k−1

j=0

(r
j

)
(x−1) j

)
, r 	= 0,1, . . . ,k−1

1
d
dr ∏k−1

j=0(r− j)
∣∣∣
r=l

(
xl logx−∑k−1

j=0
d
dr

(r
j

)∣∣∣
r=l

(x−1) j
)

, r = l = 0,1, . . . ,k−1
.

It is easy to see that limr→l Fr(x) = Fl(x) for every l = 0,1, . . . ,k− 1 and every x >

0, and dkFr
dxk = xr−k for every x > 0. In this way, we get two crucial (and obvious)

properties of Fr(x) :
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1. x �→ Fr(x) is a k -convex function on (0,∞) ,

2. r �→ dkFr(x)
dxk = xr−k is an exponentially convex function on R .

Note that ∑k
i=1 (Fr (xi)−Fr (yi)) = Φ(r) , assuming that k -tuples x1, . . . ,xk , y1, . . . ,yk

satisfy (5). Set

F(x) =
n

∑
i, j=1

ξiξ jFri+r j
2

(x).

Using the property from Definition 1 it is obvious that F is a k -convex function, which
by Theorem 2 gives

0 �
k

∑
l=1

F (xl)−
k

∑
l=1

F (yl)

=
n

∑
i, j=1

ξiξ j

k

∑
l=1

(
Fri+r j

2
(xl)−Fri+r j

2
(yl)
)

=
n

∑
i, j=1

ξiξ jΦ
(

ri + r j

2

)
.

This gives exponential convexity of the function r �→Φ(r) , and particularly log-convexity,
which implies (see [10, p. 2]):

logΦ(r1)− logΦ(r2)
r1− r2

� logΦ(s1)− logΦ(s2)
s1 − s2

,

or equivalently
M(x,y,k;r1,r2) � M(x,y,k;s1,s2),

for r1 � s1 , r2 � s2 .
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