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A NOTE ON “AN EIGENVALUE INEQUALITY FOR
POSITIVE SEMIDEFINITE & x k BLOCK MATRICES”

FENG ZHANG

(Communicated by M. Krni¢)

Abstract. Zhang and Xu recently obtained some new matrix norm inequalities in [1]. In this
note, we provide alternative proofs and some applications for these results.

1. Introduction

Given a real vector x = (x1, X2, +,X,) € R", we rearrange its components as x[;] =
X[ = o+ 2 Xpy). For x = (x1,x2,+,x0), y = (1,52, +,¥n) € R", if

k k
zx[i] < Zy[t] k= 1,2,"',]’1
i=1 i=1
then we say that x is weakly majorized by y denoted x <, y. If x <, y and Y}, x; =
> vi hold, we say that x is majorized by y denoted x < y.
Let M, be the set of n x n complex matrices. The identity matrix of M, is denoted
by I. In [1], Zhang and Xu obtained the following result

THEOREM 1. Let Ay,Ay,...,Ar € M, with A;‘AJ':—A;A,-, (1<i<j<k). Then

k k
A (ZAiA;‘> <A (ZA;‘A,) :
i=1 i=1

The way that Zhang and Xu proved Theorem 1 is original. Considering that alter-
native proofs may provide new perspectives to these elegant results, we take the chance
to do it here.

Recall that a norm |[e|| on M, is unitarily invariant if ||[UAV|| = ||A|| for any
unitary matrices U,V € M,, and any A € M,,. In the sequel, ||e|| stands for any unitarily
invariant norm. Due to Ky Fan’s result (see [2]), it’s known that || X|| < ||Y|| if and only
if s(X) <y s(Y) for X,Y € M,,. Let f be a convex increasing function on [0, +o0). If
X <y, y, then [2]

Fx) < f (). (1)

We use the following notations throughout this paper:
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1. For A € My, s;(A) is the i-th largest singular value of A and s(A) = (s1(A),---
sn(A))-

2. Ai(A) is the i-th largest eigenvalue of A and A(A) = (A1(A),---,A,(A)).
3. si(A) = A(JA]) for |A] = (A*A)% , Where A* is the conjugate transpose of A.
4. When A, B are Hermitian, A > B means that A — B is positive semidefinite.
5. A®B is the direct sum of A and B.
6. We use [X;;] to present a block matrix in which the i, j -th block is X;;.
For a € [0, 1], Audenaert proved in [3] that
|AB*||* < ||[aA*A+ (1 —a)B*B|| x ||(1 — a)A*A + aB*B)|. )

As explained in [3], inequality (2) interpolates between the Arithmetic—Geometric
mean (a = % ) and Cauchy—Schwarz (a = 0) matrix norm inequalities.
In [5], Zou and Jiang proved that

|AB| < 461117_61) [(aA+ (1—a)B)*|| x ||((1 —a)A+aB)?|. 3)

(

In [6], Wu obtained a generalization of inequality (3) as follows

B < | o

_a(l_—a)] (@A + (1= a)BP7]|7 x [[((1— @A+ P77, )

Where%‘i‘é:la P, q>1,(1€(0’1) andr}max{%’é}'

Further, we notice that inequality (4) is equivalent to the following inequality:

1y < [m]rH(a(X*X)%+(1—a)(Y*Y)%)2rp z

< (= x) +arrryb . o)

As an application of our proof, we use block matrix technique to present some
generalizations of inequality (2) and inequality(5).
The following Lemma will be needed in our proof.

LEMMA 2. [4] Let A,B € M,, be Hermitian matrices. Then 2A(A) < A(A—B) +
A(A+B).



AN EIGENVALUE INEQUALITY FOR POSITIVE SEMIDEFINITE k X kK BLOCK MATRICES 349

2. Main result

In this senction, we present the new proof of Theorem 1.

Proof of Theorem 1. We use mathematical induction to prove this result. The base
case m =2, 1.e. Theorem 1.1 was treated in [4].

Suppose the asserted inequality is true for m = k for some k > 2
Then we consider the m = k+ 1 case.
In this case, we consider the following matrices:

AlaAZa e 7Ak71 7Ak +Ak+l

and

A17A23 e 7Ak71 7Ak _AkJrla

where AfAj = —ATA; (1<i<j<k+1).
By the inductlve hypothesis,

A (Z + (A +Ary1) (Ax +Ak+1)*>

i=1
1

<A AFA; + (Ag+Apy1)" (A +Axsr)
i=1
1

=A *A + A;Ak +Ak+1Ak+l +AkAk+1 +Ak+1Ak+l)
i=1
k+1

and
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Now we proceed to estimating the eigenvalue of 2"“ A;AY, by Lemma 2, we obtain
k+1
A Y AA]
i=1
1 k—1
< EA N AA] + ArAf 4 Ak Af gy +AkAf )+ A1 Af
i=1
1 k—1
+§A EA,-A;‘ + AAf + Ak 1A — AkAL L — A1 AL
< 7L <2AA* (Ak+Ary1) (Ax +Ak+l>*>

+5 l(EAA* Ak—Ak+l)(Ak—Ak+l)*>

1 k+1 k+1 k+1
<5 [/1 (;AiAl) +2 (lzlAiA,) =1 (lzlA,.A,) .

Thus the asserted inequality is true for m = k+ 1, so the proof of induction step is
complete. [l

REMARK 3. For s xt (s> 1) matrices Ay,Az, -, Ay with A7A; = —AJA; (1<
i < j < k), by Theorem 1, we get
*
. 1
ol 4]

(Sa) -
[4]w0)

of
({54

PROPOSITION 4. [1] Let H =[A;j] € My, (s >2) be positive semidefinite matrix
with A;j = —Al’-‘j (i#j,i,j=12,...,5). Then

AH) <A (iAiiEB()) . (6)

i=1

M= T~

/\H

Hence, we show the following Proposition:

THEOREM 5. Let A;,B; € M, a € [0,1]. Then

2
iAiB;'F
-1

b

i aA:-‘Ai + i(l — a)B;-kBi

i 1 —a)AfA; +ZaB B
i=1 i=1 =

= i=1
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* _ AL *D . _ _D*p. (1 .
where AfAj = —A3A;, BiBj=—BB; (i # ).

Proof. By inequality (2), we have

2
Y AiB; &0
i=1
Ay Ay -+ A,] [By By -+ By 12
0 0--0 00--0
00 - 6 () 0. ()
< |la[AjA]+ (1 Bjl||[|(1 Aj]+aBiBj]||.

Let M = [AjAj] and N = [B;B|].
By inequality (6), we obtain

aEA;-kAi +(1—a)B/B;®0
i=1

laM + (1 —a)N| <

and
n
|(1—a)M+aN|| < ||(1—a) Y AjA;+aB;B;®0)|.
i=1
Hence,
; 2
Y AiB;
=1
Y aAjAi+ Y (1 —a)B;B Z (1—a)AjA; +ZaB Bi|. O
i=1 i=1 i=1 i=1
11
REMARK 6. Letn=2,A; =B ,A2 B, = 00 . Then
L1
00| =AA2 # AL = ,B B, # B3B)
and
. 30 21
ALA] +ARA5 = [0 o] L ATA +ASAy = L J .
Therefore,

A1 (AIA] + A2A7) = [[A1A] +A24; || > [[ATAL + A4z || = A1 (ATAL +AzA2)

without A?A, = —A;A,‘, B;-kBJ’ = —B;Bi (i 7é j)and ||A||1 =5 (A)
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COROLLARY 7. [3]Let A,B € M, . Then

|AB*|)? < ||aA"A + (1 — a)B*B|| x || (1 — a)A*A +aB*B]|.

Next we give a generalization of inequality (5), we require the following result for
our purpose.

LEMMA 8. [2] Let 0 <A< Band 0 <t <1, then A’ <B'.

THEOREM 9. Let——l———l p, q>1,a€e(0, l)andr>max{ } Then

1
>2rp r

2r

Y Xy
i=1

I\JI'—‘
t\JI'—

<[w-a] (2< oz

n n 1 2}’(] %
(1—a)Y (X/X)? +a) (Y[Y)?
i=1 i=1

under the conditions that the off-diagonal elements of [X;X ]

—

(S

and [Yl*YJ]% are skew-
Hermitian.
X1X2---Xn Y1Y2"'Yn
00--0 00---0
Proof. Let M = |, N= . | . By inequality (5), we have
0 0---0 00---0
2r

<[w-a]

((1—a) 1 m)? +a(N*N)%>2"’

are skew-Hermitian.

We write M| = [A;;] = P*P with P= [Py,

Nl—

Under the conditions that the off-diagonal elements of M| = [X/X; ]% and Ny = [Y}'Y}]

-+, By, then A;; = P/P,. By calculation,

M} = (P*P)* = P*(PP")P
and

n
XiXi=p; (ZPiPi*> P > P/ (RF))Pi = (F/P)* = Aj.

i=1



AN EIGENVALUE INEQUALITY FOR POSITIVE SEMIDEFINITE k X kK BLOCK MATRICES 353

By Lemma 8,

D=

(X' X:)Z = A (7)

Let Ny = [B;j], we also have

D=

(YY)
By inequality (7) and (8), we obtain

> B ®)

D=

Ha(M*M) +(1—a)(N*N)?

Since r > ;;, by inequality (1)

(ara)® +(1-a) (N*Nﬁ)zrp

M=
=
*
=
e
N———
S
]
©®
()
=

(iXXZ—Fl—a)

By the same way, we have

VA
/N
_
|
&
M=
=
*
2
e
+
Q
M=
=
*
=~
e
~—
[
<
©®
()
By

Therefore,

2r ol
n % 1 r n . % n - %
,-ZZIXI-Y,- < [m] (aiE(Xi X)?+(1-a) Y, (1Y) )

REMARK 10. Let X; =Y, = [00],X2=Y2= [00} ) a:%, VZ%, pP=q=2,
we find that

1

51 (X +X0X5) = 2,5 (X0 + (X530)E) = 1.
Thus,
2
51 (X +3X2%5) > 51 ((X1X0)2 + (%))

without the conditions that the off-diagonal elements of [X/* }2 and [Y/'Y, ]% are skew-
Hermitian.
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