A NOTE ON "AN EIGENVALUE INEQUALITY FOR POSITIVE SEMIDEFINITE $k \times k$ BLOCK MATRICES"

FENG ZHANG

(Communicated by M. Krnić)

Abstract. Zhang and Xu recently obtained some new matrix norm inequalities in [1]. In this note, we provide alternative proofs and some applications for these results.

1. Introduction

Given a real vector $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, we rearrange its components as $x_{[1]} \ge x_{[2]} \ge \dots \ge x_{[n]}$. For $x = (x_1, x_2, \dots, x_n)$, $y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$, if

$$\sum_{i=1}^{k} x_{[i]} \leqslant \sum_{i=1}^{k} y_{[i]} \ k = 1, 2, \dots, n$$

then we say that x is weakly majorized by y denoted $x \prec_w y$. If $x \prec_w y$ and $\sum_{i=1}^n x_i = \sum_{i=1}^n y_i$ hold, we say that x is majorized by y denoted $x \prec y$.

Let M_n be the set of $n \times n$ complex matrices. The identity matrix of M_n is denoted by I. In [1], Zhang and Xu obtained the following result

THEOREM 1. Let $A_1, A_2, \dots, A_k \in M_n$ with $A_i^* A_j = -A_j^* A_i$, $(1 \le i < j \le k)$. Then

$$\lambda\left(\sum_{i=1}^k A_i A_i^*\right) \prec \lambda\left(\sum_{i=1}^k A_i^* A_i\right).$$

The way that Zhang and Xu proved Theorem 1 is original. Considering that alternative proofs may provide new perspectives to these elegant results, we take the chance to do it here.

Recall that a norm $\| \bullet \|$ on M_n is unitarily invariant if $\|UAV\| = \|A\|$ for any unitary matrices $U, V \in M_n$ and any $A \in M_n$. In the sequel, $\| \bullet \|$ stands for any unitarily invariant norm. Due to Ky Fan's result (see [2]), it's known that $\|X\| \leq \|Y\|$ if and only if $s(X) \prec_w s(Y)$ for $X, Y \in M_n$. Let f be a convex increasing function on $[0, +\infty)$. If $x \prec_w y$, then [2]

$$f(x) \prec_w f(y). \tag{1}$$

We use the following notations throughout this paper:

Mathematics subject classification (2020): 15A42, 06A06. Keywords and phrases: Norm inequality, block matrix.

- 1. For $A \in M_n$, $s_i(A)$ is the *i*-th largest singular value of A and $s(A) = (s_1(A), \dots, s_n(A))$.
- 2. $\lambda_i(A)$ is the *i*-th largest eigenvalue of *A* and $\lambda(A) = (\lambda_1(A), \dots, \lambda_n(A))$.
- 3. $s_i(A) = \lambda_i(|A|)$ for $|A| = (A^*A)^{\frac{1}{2}}$, where A^* is the conjugate transpose of A.
- 4. When A, B are Hermitian, $A \ge B$ means that A B is positive semidefinite.
- 5. $A \oplus B$ is the direct sum of A and B.
- 6. We use $[X_{ij}]$ to present a block matrix in which the i, j-th block is X_{ij} .

For $a \in [0,1]$, Audenaert proved in [3] that

$$||AB^*||^2 \le ||aA^*A + (1-a)B^*B|| \times ||(1-a)A^*A + aB^*B||.$$
 (2)

As explained in [3], inequality (2) interpolates between the Arithmetic–Geometric mean ($a = \frac{1}{2}$) and Cauchy–Schwarz (a = 0) matrix norm inequalities.

In [5], Zou and Jiang proved that

$$||AB|| \le \frac{1}{4a(1-a)} ||(aA + (1-a)B)^2|| \times ||((1-a)A + aB)^2||.$$
 (3)

In [6], Wu obtained a generalization of inequality (3) as follows

$$\left\| |AB|^{2r} \right\| \leqslant \left[\frac{1}{4a(1-a)} \right]^r \left\| (aA + (1-a)B)^{2rp} \right\|^{\frac{1}{p}} \times \left\| ((1-a)A + aB)^{2rq} \right\|^{\frac{1}{q}}, \quad (4)$$

where $\frac{1}{p} + \frac{1}{q} = 1$, p, q > 1, $a \in (0,1)$ and $r \geqslant \max\left\{\frac{1}{p}, \frac{1}{q}\right\}$.

Further, we notice that inequality (4) is equivalent to the following inequality:

$$|||XY^*|^{2r}|| \le \left[\frac{1}{4a(1-a)}\right]^r ||(a(X^*X)^{\frac{1}{2}} + (1-a)(Y^*Y)^{\frac{1}{2}})^{2rp}||^{\frac{1}{p}} \times ||((1-a)(X^*X)^{\frac{1}{2}} + a(Y^*Y)^{\frac{1}{2}})^{2rq}||^{\frac{1}{q}}.$$
 (5)

As an application of our proof, we use block matrix technique to present some generalizations of inequality (2) and inequality(5).

The following Lemma will be needed in our proof.

LEMMA 2. [4] Let $A, B \in M_n$ be Hermitian matrices. Then $2\lambda(A) \prec \lambda(A-B) + \lambda(A+B)$.

2. Main result

In this senction, we present the new proof of Theorem 1.

Proof of Theorem 1. We use mathematical induction to prove this result. The base case m = 2, i.e. Theorem 1.1 was treated in [4].

Suppose the asserted inequality is true for m = k for some $k \ge 2$.

Then we consider the m = k + 1 case.

In this case, we consider the following matrices:

$$A_1, A_2, \cdots, A_{k-1}, A_k + A_{k+1}$$

and

$$A_1, A_2, \cdots, A_{k-1}, A_k - A_{k+1},$$

where $A_i^* A_j = -A_j^* A_i \ (1 \le i < j \le k+1).$

By the inductive hypothesis,

$$\lambda \left(\sum_{i=1}^{k-1} A_i A_i^* + (A_k + A_{k+1}) (A_k + A_{k+1})^* \right)$$

$$\prec \lambda \left(\sum_{i=1}^{k-1} A_i^* A_i + (A_k + A_{k+1})^* (A_k + A_{k+1}) \right)$$

$$= \lambda \left(\sum_{i=1}^{k-1} A_i^* A_i + (A_k^* A_k + A_{k+1}^* A_{k+1} + A_k^* A_{k+1} + A_{k+1}^* A_{k+1}) \right)$$

$$= \lambda \left(\sum_{i=1}^{k+1} A_i^* A_i \right)$$

and

$$\lambda \left(\sum_{i=1}^{k-1} A_i A_i^* + (A_k - A_{k+1}) (A_k - A_{k+1})^* \right)$$

$$\prec \lambda \left(\sum_{i=1}^{k-1} A_i^* A_i + (A_k - A_{k+1})^* (A_k - A_{k+1}) \right)$$

$$= \lambda \left(\sum_{i=1}^{k-1} A_i^* A_i + (A_k^* A_k + A_{k+1}^* A_{k+1} - A_k^* A_{k+1} - A_{k+1}^* A_k) \right)$$

$$= \lambda \left(\sum_{i=1}^{k+1} A_i^* A_i \right).$$

Now we proceed to estimating the eigenvalue of $\sum_{i=1}^{k+1} A_i A_i^*$, by Lemma 2, we obtain

$$\lambda \left(\sum_{i=1}^{k+1} A_i A_i^* \right)$$

$$\prec \frac{1}{2} \lambda \left(\sum_{i=1}^{k-1} A_i A_i^* + A_k A_k^* + A_{k+1} A_{k+1}^* + A_k A_{k+1}^* + A_{k+1} A_k^* \right)$$

$$+ \frac{1}{2} \lambda \left(\sum_{i=1}^{k-1} A_i A_i^* + A_k A_k^* + A_{k+1} A_{k+1}^* - A_k A_{k+1}^* - A_{k+1} A_k^* \right)$$

$$\prec \frac{1}{2} \lambda \left(\sum_{i=1}^{k-1} A_i A_i^* + (A_k + A_{k+1}) (A_k + A_{k+1})^* \right)$$

$$+ \frac{1}{2} \lambda \left(\sum_{i=1}^{k-1} A_i A_i^* + (A_k - A_{k+1}) (A_k - A_{k+1})^* \right)$$

$$\prec \frac{1}{2} \left[\lambda \left(\sum_{i=1}^{k+1} A_i^* A_i \right) + \lambda \left(\sum_{i=1}^{k+1} A_i^* A_i \right) \right] = \lambda \left(\sum_{i=1}^{k+1} A_i^* A_i \right).$$

Thus the asserted inequality is true for m = k + 1, so the proof of induction step is complete. \square

REMARK 3. For $s \times t$ (s > t) matrices A_1, A_2, \dots, A_k with $A_i^* A_j = -A_j^* A_i$ $(1 \le i < j \le k)$, by Theorem 1, we get

$$\lambda \left(\sum_{i=1}^{k} A_{i} A_{i}^{*} \right) = \lambda \left(\sum_{i=1}^{k} \left[A_{i} \ 0 \right] \begin{bmatrix} A_{i}^{*} \\ 0 \end{bmatrix} \right)$$

$$\prec \lambda \left(\sum_{i=1}^{k} \begin{bmatrix} A_{i}^{*} \\ 0 \end{bmatrix} \left[A_{i} \ 0 \right] \right)$$

$$\prec \lambda \left(\left(\sum_{i=1}^{k} A_{i}^{*} A_{i} \right) \oplus 0 \right).$$

Hence, we show the following Proposition:

PROPOSITION 4. [1] Let $H = [A_{ij}] \in M_{sn}$ $(s \ge 2)$ be positive semidefinite matrix with $A_{ij} = -A_{ij}^*$ $(i \ne j, i, j = 1, 2, ..., s)$. Then

$$\lambda(H) \prec \lambda\left(\sum_{i=1}^{s} A_{ii} \oplus 0\right).$$
 (6)

THEOREM 5. Let $A_i, B_i \in M_n$, $a \in [0,1]$. Then

$$\left\| \sum_{i=1}^{n} A_i B_i^* \right\|^2 \leqslant \left\| \sum_{i=1}^{n} a A_i^* A_i + \sum_{i=1}^{n} (1-a) B_i^* B_i \right\| \left\| \sum_{i=1}^{n} (1-a) A_i^* A_i + \sum_{i=1}^{n} a B_i^* B_i \right\|,$$

where
$$A_i^*A_j = -A_j^*A_i$$
, $B_i^*B_j = -B_j^*B_i$ $(i \neq j)$.

Proof. By inequality (2), we have

$$\left\| \sum_{i=1}^{n} A_{i} B_{i}^{*} \oplus 0 \right\|^{2}$$

$$= \left\| \begin{bmatrix} A_{1} A_{2} \cdots A_{n} \\ 0 & 0 \cdots 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 \cdots 0 \end{bmatrix} \begin{bmatrix} B_{1} B_{2} \cdots B_{n} \\ 0 & 0 \cdots 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 \cdots 0 \end{bmatrix}^{*} \right\|^{2}$$

$$\leq \left\| a [A_{i}^{*} A_{i}] + (1 - a) [B_{i}^{*} B_{i}] \right\| \left\| (1 - a) [A_{i}^{*} A_{i}] + a [B_{i}^{*} B_{i}] \right\|.$$

Let $M = [A_i^* A_j]$ and $N = [B_i^* B_j]$.

By inequality (6), we obtain

$$||aM + (1-a)N|| \le ||a\sum_{i=1}^{n} A_i^* A_i + (1-a)B_i^* B_i \oplus 0||$$

and

$$\|(1-a)M+aN\| \le \|(1-a)\sum_{i=1}^n A_i^*A_i + aB_i^*B_i \oplus 0\|.$$

Hence,

$$\left\| \sum_{i=1}^{n} A_{i} B_{i}^{*} \right\|^{2}$$

$$\leq \left\| \sum_{i=1}^{n} a A_{i}^{*} A_{i} + \sum_{i=1}^{n} (1-a) B_{i}^{*} B_{i} \right\| \left\| \sum_{i=1}^{n} (1-a) A_{i}^{*} A_{i} + \sum_{i=1}^{n} a B_{i}^{*} B_{i} \right\|. \quad \Box$$

REMARK 6. Let
$$n = 2$$
, $A_1 = B_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $A_2 = B_2 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$. Then

$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = A_1^* A_2 \neq A_2^* A_1 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \ B_1^* B_2 \neq B_2^* B_1$$

and

$$A_1 A_1^* + A_2 A_2^* = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix}, \ A_1^* A_1 + A_2^* A_2 = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}.$$

Therefore,

$$\lambda_1 \left(A_1 A_1^* + A_2 A_2^* \right) = \|A_1 A_1^* + A_2 A_2^*\|_1 > \|A_1^* A_1 + A_2^* A_2\|_1 = \lambda_1 \left(A_1^* A_1 + A_2^* A_2 \right)$$
 without $A_i^* A_j = -A_j^* A_i$, $B_i^* B_j = -B_j^* B_i$ $(i \neq j)$ and $\|A\|_1 = s_1(A)$.

COROLLARY 7. [3] Let $A, B \in M_n$. Then

$$||AB^*||^2 \le ||aA^*A + (1-a)B^*B|| \times ||(1-a)A^*A + aB^*B||.$$

Next we give a generalization of inequality (5), we require the following result for our purpose.

LEMMA 8. [2] Let $0 \le A \le B$ and 0 < t < 1, then $A^t \le B^t$.

Theorem 9. Let $\frac{1}{p} + \frac{1}{q} = 1$, p, q > 1, $a \in (0,1)$ and $r \geqslant \max\left\{\frac{1}{p}, \frac{1}{q}\right\}$. Then

$$\left\| \left| \sum_{i=1}^{n} X_{i} Y_{i}^{*} \right|^{2r} \right\| \leq \left[\frac{1}{4a(1-a)} \right]^{r} \left\| \left(a \sum_{i=1}^{n} (X_{i}^{*} X_{i})^{\frac{1}{2}} + (1-a) \sum_{i=1}^{n} (Y_{i}^{*} Y_{i})^{\frac{1}{2}} \right)^{2rp} \right\|^{\frac{1}{p}}$$

$$\times \left\| \left((1-a) \sum_{i=1}^{n} (X_{i}^{*} X_{i})^{\frac{1}{2}} + a \sum_{i=1}^{n} (Y_{i}^{*} Y_{i})^{\frac{1}{2}} \right)^{2rq} \right\|^{\frac{1}{q}}$$

under the conditions that the off-diagonal elements of $[X_i^*X_j]^{\frac{1}{2}}$ and $[Y_i^*Y_j]^{\frac{1}{2}}$ are skew-Hermitian.

Proof. Let
$$M = \begin{bmatrix} X_1 & X_2 & \cdots & X_n \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}, \ N = \begin{bmatrix} Y_1 & Y_2 & \cdots & Y_n \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$
. By inequality (5), we have

$$\left\| \left| \sum_{i=1}^{n} X_{i} Y_{i}^{*} \right|^{2r} \oplus 0 \right\| = \left\| |MN^{*}|^{2r} \right\|$$

$$\leq \left[\frac{1}{4a(1-a)} \right]^{r} \left\| \left(a \left(M^{*}M \right)^{\frac{1}{2}} + (1-a) \left(N^{*}N \right)^{\frac{1}{2}} \right)^{2rp} \right\|^{\frac{1}{p}}$$

$$\times \left\| \left((1-a) \left(M^{*}M \right)^{\frac{1}{2}} + a \left(N^{*}N \right)^{\frac{1}{2}} \right)^{2rq} \right\|^{\frac{1}{q}}.$$

Under the conditions that the off-diagonal elements of $M_1 = [X_i^* X_j]^{\frac{1}{2}}$ and $N_1 = [Y_i^* Y_j]^{\frac{1}{2}}$ are skew-Hermitian.

We write $M_1 = [A_{ij}] = P^*P$ with $P = [P_1, \dots, P_n]$, then $A_{ii} = P_i^*P_i$. By calculation,

$$M_1^2 = (P^*P)^2 = P^*(PP^*)P$$

and

$$X_i^* X_i = P_i^* \left(\sum_{i=1}^n P_i P_i^* \right) P_i \geqslant P_i^* (P_i P_i^*) P_i = (P_i^* P_i)^2 = A_{ii}^2.$$

By Lemma 8,

$$\left(X_i^* X_i\right)^{\frac{1}{2}} \geqslant A_{ii}.\tag{7}$$

Let $N_1 = [B_{ij}]$, we also have

$$(Y_i^*Y_i)^{\frac{1}{2}} \geqslant B_{ii}. \tag{8}$$

By inequality (7) and (8), we obtain

$$\left\| a \left(M^* M \right)^{\frac{1}{2}} + (1-a) \left(N^* N \right)^{\frac{1}{2}} \right\| \leqslant \left\| \left(a \sum_{i=1}^n \left(X_i^* X_i \right)^{\frac{1}{2}} + (1-a) \sum_{i=1}^n \left(Y_i^* Y_i \right)^{\frac{1}{2}} \right) \oplus 0 \right\|.$$

Since $r \geqslant \frac{1}{p}$, by inequality (1)

$$\left\| \left(a \left(M^* M \right)^{\frac{1}{2}} + (1 - a) \left(N^* N \right)^{\frac{1}{2}} \right)^{2rp} \right\|^{\frac{1}{p}}$$

$$\leq \left\| \left(a \sum_{i=1}^{n} \left(X_i^* X_i \right)^{\frac{1}{2}} + (1 - a) \sum_{i=1}^{n} \left(Y_i^* Y_i \right)^{\frac{1}{2}} \right)^{2rp} \oplus 0 \right\|^{\frac{1}{p}}.$$

By the same way, we have

$$\left\| \left((1-a) (M^*M)^{\frac{1}{2}} + a (N^*N)^{\frac{1}{2}} \right)^{2rq} \right\|^{\frac{1}{q}}$$

$$\leq \left\| \left((1-a) \sum_{i=1}^{n} (X_i^* X_i)^{\frac{1}{2}} + a \sum_{i=1}^{n} (Y_i^* Y_i)^{\frac{1}{2}} \right)^{2rq} \oplus 0 \right\|^{\frac{1}{q}}.$$

Therefore,

$$\left\| \left| \sum_{i=1}^{n} X_{i} Y_{i}^{*} \right|^{2r} \right\| \leq \left[\frac{1}{4a(1-a)} \right]^{r} \left\| \left(a \sum_{i=1}^{n} (X_{i}^{*} X_{i})^{\frac{1}{2}} + (1-a) \sum_{i=1}^{n} (Y_{i}^{*} Y_{i})^{\frac{1}{2}} \right)^{2rp} \right\|^{\frac{1}{p}}$$

$$\times \left\| \left((1-a) \sum_{i=1}^{n} (X_{i}^{*} X_{i})^{\frac{1}{2}} + a \sum_{i=1}^{n} (Y_{i}^{*} Y_{i})^{\frac{1}{2}} \right)^{2rq} \right\|^{\frac{1}{q}}. \quad \Box$$

REMARK 10. Let $X_1 = Y_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $X_2 = Y_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $a = \frac{1}{2}$, $r = \frac{1}{2}$, p = q = 2, we find that

$$s_1(X_1X_1^* + X_2X_2^*) = 2, s_1\left((X_1^*X_1)^{\frac{1}{2}} + (X_2^*X_2)^{\frac{1}{2}}\right)^2 = 1.$$

Thus,

$$s_1(X_1X_1^* + X_2X_2^*) > s_1\left((X_1^*X_1)^{\frac{1}{2}} + (X_2^*X_2)^{\frac{1}{2}}\right)^2$$

without the conditions that the off-diagonal elements of $[X_i^*X_j]^{\frac{1}{2}}$ and $[Y_i^*Y_j]^{\frac{1}{2}}$ are skew-Hermitian.

REFERENCES

- F. ZHANG, J. XU, An eigenvalue inequality for positive semidefinite k x k block matrices, Journal of Mathematical Inequalities, 2020 (14), 1383–1388.
- [2] R. Bhatia, Matrix Analysis, Springer, New York (1997).
- [3] K. M. R. AUDENAERT, Interpolating between the arithmetic-geometric mean and Cauchy-Schwarz matrix norm inequalities, Oper. Matrices, 2015 (9), 475–479.
- [4] M. LIN, H. WOLKOWICZ, An eigenvalue majorization inequality for positive semidefinite block matrices, Linear Multilinear A., 2012 (60), 1365–1368.
- [5] L. ZOU, Y. JIANG, A note on interpolation between the arithmetic-geometric mean and Cauchy-Schwarz matrix norm inequalities, Journal of Mathematical Inequalities, 2016 (10), 1119–1122.
- [6] X. Wu, Two inequalities of unitarily invariant norms for matrices, Science Asia, 2019 (45), 395–397.

(Received February 27, 2021)

Feng Zhang Department of Mathematics Northeast Forestry University Harbin 150040, P. R. China