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INEQUALITIES AND NUMERICAL RESULTS OF APPROXIMATION
FOR BIVARIATE ¢-BASKAKOV-DURRMEYER TYPE
OPERATORS INCLUDING ¢g-IMPROPER INTEGRAL

EsMA YILD1Z OZKAN

(Communicated by V. Gupta)

Abstract. In this study, we investigate inequalities estimating the error of the approximation of
bivariate g-Baskakov-Durrmeyer type operators including g-improper integral. We firstly in-
troduce bivariate g-Baskakov-Durrmeyer type operators including the g-improper integral. We
obtain inequalities estimating the error of the approximation for these operators. Later, we
introduce generalized Boolean sum (GBS) operators associated to the bivariate g-Baskakov-
Durrmeyer type operators including the g-improper integral, and we give an inequality estimat-
ing the error of the approximation for the GBS operators. Lastly, we present numerical results
of error estimations for certain functions with the help of maple software.

1. Introduction

Agrawal and Thamer [1] defined the following Baskakov-Durrmeyer type opera-
tors including the improper integral with the help of Lebesgue integrable functions g
defined on [0,):

Mo () = (1= 1) X pus) [ pus1 () (p)dp+(1+0)"(0). (1)
k=1

Here
+k—1 —(n
P (x) = (n k )xk(l +x) (k)

The rate of convergence of these operators was studied by Gupta in [5]. Later,
Agrawal and Kumar in [2] introduced a g-type generalization of these operators.

We firstly give the certain notations of the g-calculus before we present this g-type
generalization of the Baskakov-Durrmeyer type operators including the g-improper
integral. For non-negative integer k, the g-integer [k] 4 18 defined as follows:

1-¢ 1
g, =] 97 @)
k g=1.
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The g-factorial of [k], is defined by

[k] | = H[V}qak:l7277 (3)

Let n,k be non-negative integers such that 0 < k < n. The g-binomial coefficients

are defined as follows: )
n n .
R X
q g q

For A > 0, let be considered the following g-improper integral depending on A:

oo /A

[eorap=1-0 3 o(4) 5.

0 n=—oo

which exists finitely when the series Y, g <‘f’4—"> ’2—" is convergent. The g-beta func-
tion including the g-improper integral depending on A is defined by

oo /A xr—l
B ([,S):K(A,t) ﬁd X. (5)
q 0/ (1 +x)q+ q

Here, the notation of the g-Pochhammer symbol is denoted by

n—1 )
(a+b);=[](a+4a'p). (6)
=0
Moreover,
1 1 ! 1=t
K (x,t)= X—+IXt <1+x) (I+x), ", (7)

q
and the following recurrence relation [6] holds:

K(At+1)=4dK(A1). (8)
For ¢,s > 0, another definition of the g-beta function is defined as follows:

1
B, (t,s) = /xf—l (1—qx)} ' dyx. )
0
The relation between the g-beta function and ¢-gamma function is known with the
following equality:
Ty (0)Ty(s)
L (t+s)

By (1,s) = (10)
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The comprehensive details about the g-calculus can be found in the reference [13].
Agrawal and Kumar defined in [2] the following g-Baskakov-Durrmeyer type op-
erators including the g-improper integral by

.
M (g5) = In— 1], 3, Pl () / 0Pl (P)e(P)dip + 1l (D8(0). (1)
k=1

Here, g is g-improper integrable function, x € [0,), ¢ € (0,1) and

q o n—f—k—l] k(k—1)/2 )Ck
o (x)—[ L (12)
k k g (1 +x)(n+k)
such that
D P =1. (13)
k=0

They proved a basic convergence theorem by obtaining a recurrence relation for
these operators. Moreover, they estimated the rate of convergence of these operators,
and they obtained the weighted approximation results.

In the recent years, many researchers have contributed with the investigations on
the varied onevariate and bivariate operators, for instance, readers can see the references
3,4,7,11, 12, 14, 15, 16, 17, 18].

In this study, we purpose to investigate the error estimations of bivariate ¢-Baska-
kov-Durrmeyer type operators including the g-improper integral. In Section 2, we
initially introduce bivariate g-Baskakov-Durrmeyer type operators including the ¢-
improper integral, and we give some auxiliary results for these operators. In Section
3, we present inequalities estimating the error of the approximation of these opera-
tors by means of the complete modulus of continuity, the partial modulus of continuity
and the Lipschitz class functions. In Section 4, we additionaly construct generalized
Boolean sum operators of these operators and give an inequality estimating the error
of the approximation of them by means of the mixed modulus of smoothness of Bogel
continuous functions. In Section 5, we present the applications including some numer-
ical results of error estimations for certain functions. In the last section, we discuss the
conclusions.

2. Definition of bivariate operators

In this section, we introduce bivariate g-Baskakov-Durrmeyer type operators in-
cluding the g-improper integral, and give some auxiliary results for these operators.

DEFINITION 1. Let Ry =[0,), Aj,A2 >0, g1,¢92 € (0,1) and g be a bivariate
continuous and bounded function defined on Ry x R, . For all (x,y) € R. x Ry and
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n1,n2€ N, we define bivariate g-Baskakov-Durrmeyer type operators including the g-

improper integral as follows:

M (g3x,y) = [m — 1], Z Z ()P (v)

ny,ny

Zs

qllc fI2 P:,Illk 1(p)Pg;Fl(G)g(p,a)dqzﬁdqlp

X
:1 o\
o\.&ﬂx

+Pa 0 () Pl (9)8(0,0).
Here,
+k—1 k(k—1) xk
pa _ ["1 ] 2
nlk( ) k “ 4 (1_|_ )n1+k

" [m+ji-1 ./'(12*1) yj
P"zj(y)_ [ j ]q2q2 (1+y )n2+1

The bivariate g-Baskakov-Durrmeyer type operators including the g-improper in-

tegral are tensor product kind linear positive operators.
In the following lemma, we give equalities equalvalent to the definition of the

bivariate operators My, 1.
LEMMA 1. We have the following equalities for the bivariate operators MZII Z; :

i) My (8:%,y) = My, (M, (g:02) 1) + P o (x) P2 () 2 (0,0),

i) Moy (g3%,9) = My, (M3, (8:01)342) + P (x) P2 () 2(0,0) .
Here

M (g:q1) 2 d\ P! (p)e(p,0)dy,p,

318 o\iﬂx

M, (8:q2) =l — 1]y, 3, P ;) [ a2’~'P2 ;_ (0)g(p.0)dgy0

Jj=1

8
O\

LEMMA 2. We have the following images at the bivariate test functions for the

bivariate operators My, n5 :

i) M2 (Lix,y) = 1,

.. X
i) My (P3x,y) = qux+ 2]

iii) My s (03x,y) = oy + )
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(GF+q+1)x*  (qi+qi+1)x
q1[n1=3],, qi[n1—2],,
(B+a+1)°2  (qi+Dx

1 =2],, =3, qf[m -3,

(q1+1)x
qi[m 2], [m -3,

iv) Miym (p%x,y) = gix® +

(B+a+1)y? (B+a+1)y
q2[n2 =3, q2[n2—2],,
@B+a+1)2  (g+1)y

2 —2],,n2-3],,  ¢3[n2-3],

(2 +1)y
4yn2 =2, 2 -3,

v) My (6%5x,y) = g3y* +

Proof. (i) By (13) and Lemma 1, (i) is obvious.
(i) By Lemma 1 (i), we can write

M (pixy) = My, (pM3,(1:g2):q1)

= nl B l q1 ZPl’lqllk Pr[ljllk l(p)pdqlp

o\f\x

>
A

1
[n2 QZEP:IIZZJ / - szz, 1 (0)dg,0
0

oo

= Z 1+1k

qi [n1 e

In the last equality, by (13) and considering that [n],, = q3 [n1 —2] g Ta@1t1,the

proof of (ii) is completed.
(iii)) By Lemma 1 (i), (5) and (8), after simple calculation, we can write

Myl (P3%,y) = My (p°M), (1;q2); 1

= [m—1], ZPZl'k( X)

1P311k 1 (p)pdy,p

O\f\x ~—

[ =1, X PE;0) [ @B

j=1

(0)dg,0

8
0\3‘8
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1R
qéll [nl - 2’}(]1 [I’ll - 3}111 k=0

mql [nl]qlx S

Pnhk (x).

P511+2,k (x)

ai [ — 2]y, [ =3, S

In the last equality, by (13) and considering that
[, = qilm —2], +q1+1
and
[nﬂql [nl + 1}111 = q? [n1 —Z]ql [nl —3}111

+q3 (6[%‘1'6]1 + 1) [n1—2]

+43 (g1 +q1+1) [m — 3]
2

q1
q1

+(qi+q1+1)

the proof of (iii) is completed.
The proof of (iv) and (v) are similarly obtained to (ii) and (iii) by replacing ¢; and
ny with ¢» and n, and by considering Lemma 1 (ii), respectively. [

3. Some inequalities

In this part, we estimate rate of convergence of the bivariate g-Baskakov-Durrmeyer
type operators including the g-improper inregral.

Let A be compact subset of R? and C(A) denote the space of all real-valued
continuous functions defined on A. For any g € C(A), 6; > 0, 0, > 0 and for each
(p,0), (x,y) € A, the complete modulus of continuity of g is defined by

o (g;01,8) =sup{lg(p,0) —gx,y)|: |p —x[ < &,]0 —y[ < &},

which satisfies the following limit:

lim  ©(g:61,8) =0,

01,6

and the following inequality:
5(p.0) sty < o(gand) (1+220) (1 220) g
Let /=1y x I, be arectangular region of R? such that I; = [0,r;], i = 1,2.
THEOREM 1. Let {6]17n1} and {qg.,nz} be any sequences such that qy ,,,q2,, €

(0,1) satisfying
lim g1, = 1= lim g3 ,,. (15)
npy—oo

ny—oo
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If g € C(I) then the following inequality holds:

1.0y 92,n Xoq1,n Y:42.n
My, " (g;x,y)—g(w)‘ <4do (g; Vo A Y 2)

Here

<q%7nl + qlanl + 1) x2

Xd1.ny 2.2

Yo = (G — 1) X+
1 : ql’nl [nl - 3}‘11‘)11
2
(qinl —dq1m — 1>x2 (qinl i+ 1) X
_|_
qlvnl [nl B 2}41.;11 [nl - 2}‘11‘)11 [nl - 3}‘11.}11
(ql,n1+1)x (ql,n1+l)x (16)
qi"l [l’ll o 3]‘115n1 q?vnl [nl o ZLIl,nl [nl o 3]41,,11 ’
2 2
Gy, T2, + 1) y
Wd2.n 2 ( 2
Yo 0 = (g2, — 1) Y+ [z — 3]
q2,n, 12 Doy
2
(qinz ~ G2, — 1) ¥ (cl%,nz + o + 1) »?
+ +
qz,nz [n2 o 2}‘12,112 [n2 o 2}512#@ [n2 o 3}‘12,112
(2, +1)y (g2, + 1)y (17

q%anZ [n2 - 3]‘12‘)12 qganZ [nz - 2}‘12.}12 [nz - 3]‘12.}12

Proof. Applying the operators MZII ;Z‘z’qz‘"z to (14) and considering the linearity and
the positivity of these operators, we can write

q1,n1-492.n d1,ny92,n
My 2 (83%,9) —8(x,9)| < Muyy 2 (I8(p,0) —g(x,y)[3x,y)

< o (g:8,8) {MIIL " (1)
1

q1.ny592.n
M (o —alix)
1 q1,ny:92,n
+$ wny (|0 =Y[x,y)
1 q1.ny-92.:n
+mMm;nlz 2(lp=x[lo=ylixy) ¢

By Lemma 1 and applying Cauchy-Schwarz inequality to the last inequality, we obtain
q1,n192.n q1.ny-92.n
M () = 8(x,9)| < @ (g:81,82) { M52 (15x,)

+5i1 (MZI‘;Z‘;”‘”Z ((p ~x)2ix, y))m
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1 np 1 1/2
t5 (szln‘z 2 ((G —y) ;x,y))

+$ <M3f§2'z’qz""2 <(p —x)* (o —y)’ ;w))lﬂ}

Xd1.ny

Taking Lemma 2 into account, after simple calculation, selecting 6; = 1/, and
&= )/,y,’zqz‘"z , we complete the proof of the theorem. [J

For any g € C(A), 8 >0, & > 0 and for each (p,0), (x,0), (p,y) €A, the
partial modulus of continuity with respect to x and y are defined by

w1 (g:61) =sup{lg(p,0) —g(x,0)[: |p —x[ < i},

@ (8:02) =sup{lg(p,0) —g(p,y)|: |0 —y| < &},

respectively. It is clear that w; (g;61), @ (g;5,) satisfy the properties of the usual
modulus of continuity, i.e., we have the following inequalities:

2
8(p0) —g(x,0)| < @1 (8:81) (H%)

)2
lg(p,0)—g(p,y)| < 12(g:02) (H%).

THEOREM 2. Let {q1,,} and {q>n,} be any sequences such that qi ,,,q2,, €
(0,1) satisfying the condition given in (15). If any g € C(I) then we have

1.0y 92,n Xoq1,n ¥:42.n
M3 ™" (g5x,y) —f(x,y)) <20 (g;ynl - 1) +2m) (g;yn2 . 2) 7
where y,);iql""l and Y™ are as in (16) and (17), respectively.

Proof. Considering the definition of the partial modulus of continuity, considering

the linearity and the positivity of the operators My, 2, **" | we can write

q1,ny 92, q1,ny 92,
Moy 2 (8526,5) = 8(6,3) | < Muymy ™ (I8 (P, 0) — 8(x,)|5,)
q1,ny 92,
< Muwy 2 (18(p,0) — g (x,0)[5x,y)
1.0y +92,ny

M (|8 (x,0) — g (x,y)]:x,y)
1 np -
< o1 () (14 M (0= 07x) )
1

1 iy Ny
+02(g:61) (1 My ((o—y)z;x,y)) .
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X1

By considering Lemma 2 and by selecting 6; = %, and & = Y, W2 the proof of

the theorem is completed. [

For any function g € C(A), for each (p,0),(x,y) €A and 0 < 6;,6, < 1, if there
exists a real number M, > 0 such that g satisfies the following inequality:

o o
lg(p,0) —g(x,y)| < Mg|p —x|"" |o—y|™!

then g is called a function of the Lipschitz class denoted by Lipy, (61, 6>)

THEOREM 3. Let {qi,,} and {q2,} be any sequences such that qi »,,q2,, €
(0,1) satisfying the condition given in (15). If any g € Lipy, (01, 62) then the following
inequality holds:

= 01 6,
MZ:::#Z#MZ (g;x7y) —g(x,y)’ < Mg <\/,yn;‘115n1> (\/,yz’,;lzm) 7 Mg > 0.

n

W12

Here y;,c;ql’ and 7/,,2 21 are as in (16) and (17), respectively.

Proof. Since g € Lipum, (61,6,), by Lemma 1 and considering the linearity and

o 410, 02, )
the positivity of the operators My, " "%, we can write

1.0y 92,n qln s42.n
Mayny " (8:%,7) = g(x,y)| < Muyy™ " (g (p,0) — g(x,y)|3x,¥)
qnvq -
< MM (I =% o =] xy)
qnvq n
= MM ()

q1.n1:92.n [2)
XMy 2 <|O'—y| : ;x7y> .

By Lemma 1 and Lemma 2, applying the Holder inequality for u; = %yi = > g 6 for
i = 1,2 to the last inequality, respectively, we obtain

) , 6,/2
41,192, q1.n1:92,n
My " (g;x,y)—g(x,y)‘ < Mg (Mnf;nl2 e ((p—x)z;x7y>>
don 2/2-6
x (M2 (15x,))
np n 9 /2
x (szln'z e ((G—y)z;w)) i

o 2/2-6
x (Mfﬁinlz’qz’ 2 (1;x7y)) ’

[\ (o %
< Mg( ')/ni AV"I) ( Yn; #nz) )

which completes proof. [
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4. GBS operators

Bogel defined Bogel-continuous and Bogel-bounded functions. We recall the basic
notations given by Bogel. The details can be found in the references [8, 9, 10].

Let A be compact subset of R%. A function g : A— R is called Bgel-continuous
function at (p,o) € A if

A(x,y)g [P» G;x,y} = Oa
where A, ,)g[p,0;x,y] denotes the mixed diference defined by
A(x,y)g[pac;xay] = g(x,y) —g(x,G) _g(Pa}’) —|—g(p,6) :

Let A be a subset of R%. A function g : A— R is Bogel-bounded function on A if
there exists M > 0 such that

|A(X,y)g[p’6;xay” < M7

forevery (p,o),(x,y) €A.

Let A be a compact subset of R?, then each Bogel-continuous function is a Bogel-
bounded function and C, (A) denote the space of all the real valued Bogel-continuous
functions defined on A endowed with the norm

”gHB = Ssup { |A(x,y)g[p76;x7y” : (xvy) ’ (p,G) € A} .
It is obvious that C (A) C Cp (A).

DEFINITION 2. We define generalized Boolean sum (GBS) operators of the bi-
variate g-Baskakov-Durrmeyer type operators including g-improper integral by

Diti2 (gx,y) = M2 (g (p,y) + g (x,0) —g(p,0):x,y),
forall (p,0), (x,y) €l and g€ C(I).
The mixed modulus of smoothness of g € Cp, (A) is defined by
Omixed (g;61a62) = sup{}A(W)g[p,G;x,yH : |p —.X‘ < Slv ‘G_y| < 62} )

forall (p,0), (x,y) €A and 6; >0, 6, > 0, which satisfies the following inequality:

|Aeyglp,03x,y]| < (H%) <1+ |66_2y|> Omixed (8361,82).  (18)

THEOREM 4. Let {q1,,} and {q2,} be any sequences such that qi »,,q2, €
(0,1) satisfying the condition given in (15). If g € Cy (1), then, for all (x,y) € I, the
following inequality holds:

q1.n7:492.n X:d1,n V:q2.n
Dni;"lz e (g;x7y) _g(xvy)‘ < 4wmixed (g’ \/ Y : 17 Ty ’ 2) y

Xd1,nq

P,
where Yy, I

and )/,y,z are as in (16) and (17).
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Proof. Considering the definition of the mixed difference Ag|[p,o;x,y] and (18),
taking the Cauchy-Schwarz inequality into account, we can write

q1,n1:92,n q1.ny92,n
Din " " (g(P»G);X»y)—g(w)‘ < Mgy " (|8 glp, 05,

< {1 + 5% (MZII;’;,IZ”I% ((p —x)? ;x,y>> 1/2
+g (M (- Pin) ) v
+$ (2w ((p -2 )

X (MZ:;le’ql"z <(0'—y)2;x,y>>1/2}
X Omixed (83 61, 62)

ix,y)

By considering Lemma 2 and by choosing &; = 1/ )/,),C'l'ql‘"l and & = y,f’zqz‘"z , the proof

of the theorem is completed. [

5. Numerical results

In this section, we present applications including some numerical results of the
error estimations of the bivariate g-Baskakov-Durrmeyer type operators including the
g-improper integral and associated GBS operators for some certain functions with the
help of maple software.

Let us choose g, = qin, = g2, = "n;l and 6 = 0, = 6, such that 0 < 6 < 1
and let E (M2 (g),g) and E (D{!7#2(g),g) denote the errors of the approximation
of Mi!;12 (g) to g and of D2 (g) to g, respectively.

EXAMPLE 1. Let rj =r, =4 then I; =L and I = [0,4] x [0,4]. We consider
g1(x,y) =xy foreach (x,y) € [0,4] x [0,4]. Itis obvious that g € Lipu, (0,6) CC(I).

In Table 1-5, we have some numerical results of the error estimations for the bi-
variate g-Baskakov-Durrmeyer type operators and associated GBS operators.

Table 1: The approximation error of M;";%" (g1) to g; by means of the complete mod-
ulus of continuity.

Indis Number n=1x10° n=1x10° n=1x10*
5 =56 1139029452 x 103 1139085459 x 1072 .1139645674 x 101
®(g1:01,0) 9112105877 x 1073 9111386158 x 1072 9104177469 x 10~

E; (Min% (g1),81)  .3644842351 x 102 3644554463 x 10! .3641670988
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Table 2: The approximation error of M,/;" (g1) to g1 by means of the partial modulus
of continuties.

Indis Number n=1x10° n=1x10° n=1x10*
5 =656 1139029452 x 103 .1139085459 x 102 1139645674 x 10!
o (g1:61) =y (g1:8) 1139029452 % 10~ 4556341836 x 1072 4558582696 x 10~
E> (M7 (g1),81) 4556117808 x 10~! 1822536734 x 10! .1823433078

Table 3: The approximation error of M, (g;) to g; by means of the Lipschitz func-
tions for 6 =0.1 x 1072

Indis Number n=1x10° n=1x10° n=1x10*
5 =56 6902146233 x 1072 2182668528 x 10~ T .6902780895 x 101
M,, .5517007928 x 10! 1741384101 .5474605603
E3 (M (g1),81) 5516953024 x 107! 1741370781 .5474576333

Table 4: The approximation error of M;;;%" (g) to g; by means of the Lipschitz func-
tions for n = 1 x 10°

0 6=0.1x10"° 6=0.1x10"* 6=0.1x1073
5 =68 6902146233 x 1072 6902146233 x 1072 .1139029452 x 10~
My, 5517007928 x 107! 5517502090 x 10! .9128668793 x 102

Eq (M9 (g1),81) 5516953024 x 107! .5516953024 x 107! 9112105875 x 10~3

Table 5: The approximation error of Di’,"" (g1) to g; by means of the mixed modulus
of continuity

Indis Number n=1x10° n=1x10° n=1x10*

5 =6 1139029452 % 1073 1139085459 x 102 .1139645674 x 101
Opivea (81:61,8) 1297388093 x 1077 1297515683 x 107> .1298792262 x 103
Es (Dl (g1),81) 5189552372 x 107 5190062732 x 107> 5195169048 x 10~

EXAMPLE 2. Let rj =r, =5 then I; =L and I = [0,5] x [0,5]. We consider
g2 (x,y) = xsiny for each (x,y) € [0,5] x [0,5]. It is clear that g, € C(I) but g, ¢
Lipy, (6,0) for 0 < 6 <1, i.e., there does not exist M,, > 0 such that

182(p.0) — g2 (x,y)| < Mg, |p —x|° |o —y|°

for each (p,o),(x,y) €[0,5] % [0,5] and 0 < 6 < 1. The error estimation of g-
Baskakov-Durrmeyer type operators for g, can not be processed by mean of functions
of Lipschitz class.

Therefore, in Table 6-8, we possess some other numerical results of the error esti-
mations of the bivariate g-Baskakov-Durrmeyer type operators associated GBS opera-
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tors.

Table 6: The approximation error of M;";%" (g2) to g, by means of the complete mod-
ulus of continuity

Indis Number n=1x10° n=1x10° n=1x10*
5 =68 1740183984 x 10~3 1740270443 x 1072 .1741135257 x 10!
®(g2:01,0,) .8873084 x 103 .88721870 x 102 .886309929 x 10~
Ee (M%7 (g2),82) 35492336 x 102 354887480 x 107! 13545239716

Table 7: The approximation error of M;/;%" (g2) to g by means of the partial modulus
of continuities

Indis Number n=1x10 n=1x10* n=1x103

5 =5 1740183984 x 1072 .1740270443 x 102 1741135257 x 10~ !
o1 (g2;61) = ( 22:6)) 1740183984 x 1073 1740270443 x 1072 1741135257 x 10~
E7 (M5 (g2) ,82) 6960735936 x 1072 6961081772 x 1072 6964541028 x 10!

Table 8: The approximation error of D{";’" (g2) to g2 by means of the mixed modulus
of continuity

Indis Number n=1x10° n=1x10* n=1x10°

5 =68 1740183984 x 10> 1740270443 x 1072 1741135257 x 101
Opixed (82:61,8) .3028240283 x 10~7  .3028540062 x 10> .3031513765 x 1073
Eg (DI (2),82) 1211296113 x 10 .1211416025 x 10~% 1212605506 x 102

Hereby, Example 1 and 2 concretely illustrate that the approximation of M,
and D" becomes better for increasing value of n.

6. Conclusion

Let {g1,,} and {g2,,} be any sequences satisfying the condition (15). Then, we
have

V.4,
" =0= hm ) Yoy "2

)

foreachxel; and yel)

Therefore, all the results in this study give us the degrees of the approximation of
the bivariate g-Baskakov-Durrmeyer operators including the g-improper integral and
pertaining to the GBS operators in different respects.

Acknowledgements. The author thanks to the reviewers for their valuable sugges-
tions to improve the paper.
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