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SOME GENERALIZED NUMERICAL RADIUS
INEQUALITIES FOR HILBERT SPACE OPERATORS

M. H. M. RASHID *AND N. H. ALTAWEEL

(Communicated by T. Buri¢)

Abstract. Some generalizations and refinements inequalities for the operator norm and numer-
ical radius of the product and sum of Hilbert space operators are established. Refinements of
some famous norm operators and numerical radius inequalities are also pointed out. As shown
in this work, these refinements generalize and refine some recent and old results obtained in the

literature.
1. Introduction
Let 7 be a complex Hilbert space with norm ||.|| and inner product (.,.). Let
PB(A) denote the algebra of all bounded linear operators on 77, ||.|| will also denote

the norm in B(J). An operator A € #(H) is called positive if (Ax,x) > 0 for
all x € 7, and we then write A > 0. In addition, we write A > 0 if A is a positive
invertible operator. Recall that a function f : J —R is convex if

flax+(1—a)y) <af(x)+(1—oa)f(y), (1)

forall o € [0,1] and all x,y € J. It is well known [20] that a continuous function f is
convex in a real interval / C R if it has the property

1 |
fl 5 Zpai | <5 Xpif(a), )

nij—1 ni=1
where a; € I, 1 <i<n are given data points and py, p»,-- -, p, are a set of non-negative
n

real numbers constrained by Z pi = P,. If f is concave, then preceding inequality is
i=1
reversed.
The Schwarz inequality for positive operators asserts that if A is a positive operator
in (), then
|(Ax,y)* < (Ax,x) (Ay,y) forallx,y € . 3)
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For an arbitrary operator A € #(.7¢), a mixed Schwarz inequality has been established
in [8]. This inequality asserts that

[(Ax, )P < (JAP%,x) (A" POy o
forall x,y € 7 and 0 < o < 1. Here |A| = VA*A and |A*| = VAA*.
The famous Cauchy-Schwarz inequality which states: if a = (aj,---,a,) and b=
(b1,--+,by) are two n-tuples of real numbers, then

n

Z a,-b,-

B n n
< (Za?) (Zb?) (5)

i=1 i=1 i=1
with equality holding if and only if a and b are scalar multiples of each other. The
inequality is called the Cauchy-Schwarz-Buniakowski or simply Cauchy.

For a bounded operator A € Z(.¢), the numerical range W (A) is the image of
the unit sphere under the quadratic form x — (Tx,x) associated with the operator.
More precisely,

W(A) = {{Ax,x) :x € A, ||x|| =1}.

Also, the numerical radius is defined to be

w(A) =sup{|A|: L € W(A)} = sup [{(Ax,x)].

[lxfl=1
The spectral radius of an operator A is defined to be
r(A) =sup{|A|: 2 € o(A)},

where 6(A) is the spectrum of A.
It is well known that w(.) defines a norm on (), which is equivalent to the
usual operator norm ||.||. In fact, for any A € B(),

1
S 4]l < w(a) < 4] ©)

Also, if A € B() is normal, then w(A) = ||A]|.

An important inequality for w(T') is the power inequality stating that w(A") <
(w(A))" for every natural number 7.

Several numerical radius inequalities improving the inequalities in (6) have been
recently given in [3, 7, 9, 16, 18, 19, 22]. For instance, Kittaneh [10, 11] proved that
forany A € (),

1 B 1 1/2
w(a) < 3 1412+ ] < 5 (lall+ 14277, )

and
1 1
7 [AA+AAT <wh(A) < 5 [lATA+AA7]. (8)
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Also, in the same paper, it was shown that
1A+ B < |[|A*+ B[ + [||lA*]* + 1B )

Kittaneh and El-Haddad [14] established the generalizations of inequality (7) and the
second inequality (8) as follows:

1
Wr(A) < EH|A|2rl_’_‘A*‘2r(lfl)H (10)

and

w¥ (A) < [|AA[P + (1= 2)|A* 7|, (11)

where 0 <A <1and r>1.

Although some open problems related to the numerical radius inequalities for
bounded linear operator still remain open, the investigation to establish numerical ra-
dius inequalities for several bounded linear operators has been started, (see for instance
[6] and [18]). If A,B € A(H), then

w(AB) < 4w(A)w(B).
In the case that AB = BA, we have

w(AB) < 2w(A)w(B).
Moreover, if A and B are normal, then

w(AB) < w(A)w(B).
Dragomir [4] proved that if A,B € #(s¢), then

w? (B*A) < Ha|A|% +(1—a)|B|Ta

12)

for all o € (0,1) and r > 1. In the same work, he also proved that if A,B,C,D €
PB(H), we have

1

1
r s

\BP-"—i— ‘D|2S
2

HAB+CD (13)

2 2r 2r
||l +1c
2 2

forall s,r > 1.
An interesting numerical radius inequality has been established by Sattari et al.
[21], it has been shown that if A,X,B € %(.%) such that A and B are positive, then

o

1 1
w (A%XB®) < ||X||" ||[=AP" + —BY" (14)
p q

forall 0<a<1,r>1and p,g>1with + +1 =1 and prgr>2.

In this paper, We present a generalizations of inequalities (13) and (14). Refine-
ments of some famous the operator norm and numerical radius inequalities are also
pointed out. As shown in this work, these refinements generalize and refine some re-
cent and old results obtained in the literature.
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2. Norm inequalities for product of operators

In this section, we establish a considerable improvements and generalizations of
inequalities (9) and (13).

THEOREM 1. Let A;,Bi€ B(H) (i=1,-- ) and r,s > 1 we have

13 2r
L$ |

i=1

1 n
-Y BA/| < B 28 15

Proof. By the Schwarz inequality in the Hilbert space, we have

2 2
‘<(23m)>ay <<ZK$m%w>
i=1

i=1
for any x,y € 7.
Now, on utilizing the Cauchy inequality (5), we then conclude that

2
(Z(A Aix,x)? (B'Biy,y)? ) < (2 <A;‘Aix,x>> (

i=1 i=1

2

n
= > (BiAix,y)

i=1

2
< (Z (AjAix,x)2 (BiB;y,y) )
i=1

S

M=

(B B»w)) (16)

i=1

forany x,y € 7.
Utilizing the arithmetic-geometric mean inequality and then the convexity of the
function f(r) =,k > 1 and in view of inequality (2) with P, =1 and p; =1 (i =

1,---,n), we have
(2 AfAix,x) ) (Z <B,’-‘Biy,y>>
=1 i=1

oo g
nig

for any unit vectors x,y € JZ.
Consequently, we have

7y>x 17
1 & ’ 13
i=1

l
X, X »y (13)
n; i=1
for any unit vectors x,y € 7.

Taking the supremum over all unit vectors x,y € ¢, we deduce the desired re-
sult. [

s S|

2
(g

i=1
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REMARK 1. If r =, then inequality (15) is equivalent with

Lo 2r
Sy BiA
"2

i alc i ?
=Y 1A= 1B -
iz iz

COROLLARY 1. Forany A; € 7 (i=1,---,n) we have

EA

<

2r
LY A

i=1

for r > 1. Also, we have

ol

Ly i
Z 1

i=1

1
Z‘A|2r

171

2A2

<

forall r,s > 1, and in particular

2r

1 n
I IR POV 5 ofEYig
i=1

s

forall r > 1

545

19)

(20)

2y

(22)

Proof. The inequality (20) follows from (15) for B; = I, while inequality (21) is
obtained from the same inequality for B; = A} and inequality (22) follows from (15)

for B,‘ZA,‘. U

Another particular result of interest is the following one:

COROLLARY 2. Forany A;,B; € B() (i=1,---,n) and n=2m, we have

HBAH—A*BH— “+BiAn,+ALB
n

Iz’\ +[Bi \2’ 2 [Ai Izsl +1Bi \25

<|Z AR

forall r,s > 1 and, in particular

HB’{Al +AiBi+---+BA,+A}By
n

i=1 n

forall r > 1

i A2 | + B>
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COROLLARY 3. Forany C; € #() (i=1,---,2m) we have

r m

L * |28
mZﬂQJ+mD

i=1

1 2m

5 2 Ci

i=1

m
Z(\szlzurml)
=

1
2m

forall r,s > 1. In particular

Ic]

2< H|C|2r+1 T C*|2s+1' 5
= 2

2

Moreover, for every r > 1, we have

2 _ Hc2’+1H ’c*|2’+1‘
X 2 .

C
el -

Proof. The proof is obvious by inequality (15) on choosing

Cri1 =A2i-1,Coi =B5,Byi 1 =Agi=1 (i=1,---.m). O

The following lemma provides a simple however useful extension for four opera-
tors of the Schwarz inequality due to Dragomir [5].

LEMMA 1. Let A,B,C,D € B(H). Then for x,y € A we have the inequality
|{DCBAx,y) [* < (|BA[x,x) (|(DC)* >y, y) - (23)

The equality case holds if and only if the vectors BAx and C*D*y are linearly dependent
in .

THEOREM 2. Let A1,B1,C1,D1,A2,B2,Cy,D, € B(I). Then

(D1C)* [ + [(DaGo)* ¥
2

HD1C1B1A1 + Dy,(,BrA,
2

2<‘ |BlA1|2r+|BgA2‘2r T
2 ~X

(24
forall r,s > 1. In particular,

’ [(D\C1)* |2 + |[(D2Cy)* |
2

2

H D{CiBi|A; + D>CyBrA,
2

2
' < ‘ IBIAL [ + [BoAo|*
~

forall r > 1.

Proof. By the Schwarz inequality in the Hilbert space, we have

|((D1C1B1A] + D2C2BaAs) x,y)|?
< [[{(D1C1B1AL)x, )| + [{(D2C2B2A)x, ) |

1 1 1 1
<\31A1\2x,x>2 <|(D1C1)*\2y’>’>2 + <|Bzz‘\2|2x’x>2 <\(D2C2)*|2y,)’>2



SOME GENERALIZED NUMERICAL RADIUS INEQUALITIES 547

for any x,y € 7.
Now, by using the elementary inequality

(ab+cd)? < (a*+A)(b*+d*),  ab,c,dE€R,
we then conclude that

= [((D1C1B1A1 + DyCyBoAs) x,y)
< [(IBiA1Px,x) + ([B2A2x,x) ] [([(D1C1)* Py,y) + ([(D262) Py.y)]

for any x,y € 7.
Applying the arithmetic-geometric mean inequality and then the convexity of the
function f(¢) =9 (¢ > 1), we have for all r,s > 1 that

[(|B1A[2x,x) + (|B2As [*x,x)] . [{|(D1C1) [P, y) + (| (D2C2)* [*y,¥)]

1
BiA 2r BrA 2r D.C 2s D-C 2s s
<4<<| 1A er\ 24| >x7x> <<|( 1€ ;L|( 2C)"| )y’y>

for all unit vectors x,y € J7 .
Consequently, we have

2

'< |:D1C131A1 +D2C232A2:| N y>
2 b

1 1
. IBIA{ " + [BoAo|* "/ (1(D1C)* %+ [(D2Cy)* |* ’
~ 2 xrx 2 y?y

for all unit vectors x,y € 7.
Taking the supremum all unit vectors x,y € ¢, we deduce the desired result. [

Inequality (24) includes several operator norm inequalities as special cases.

COROLLARY 4. Let T,S€ B(H#), oo+ B > 1 and y+ 6 > 1. Then

1
T|T|ﬁ71T‘T‘a71+S|S|y71S|S|671 2 ‘T|2m—|—|S|2r6 ‘T*|2Sﬁ—|—|S*‘2W s
2 = 2 2
(25)
forall s,r > 1. In particular,
T|T|ﬁ71T|T‘a71+S|S|y71S‘S|671 r |T|2m—|—‘S‘2r6 |T*‘2rﬁ+|S*‘2r7
2 h 2 2

forall r > 1
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Proof. Let T = U|T| and S = V|S| be the polar decomposition of the operator

T and S, where U,V are partial isometry and the kernel ker(U) = ker(|T|), ker(V) =
ker(|S|). If wetake Dy =U, C, =|T|f,Bi=U and A; =|T|* and D, =V, C, =S|,
By =V and A; = |S|%, we have

DiCiBiA; = T|T|P~'T|7|*!

D2CyBrAy = SIS|7s]81°!
and

BiAL]® = |T|*UU|T|* = [T, |BaAof* = |
(D1C) P = UITPPU = TP, [(D2Co) P = |57

Now, the result follows by Theorem 2. [

REMARK 2. In Corollary 4,

(a) if wetake o =3 =1=7y= 0, we have

1 1
r

T2+S2 2 - ‘T‘2r+|S|2r |T*‘2\+ ‘S*|2S s
2 h 2 2
for all r,s > 1. In particular,
T2+SZ 2r _ ‘T‘2r+‘s‘2r ‘T*|2r+|S*‘2r
2 = 2 2

forall r > 1.

(b) If wetake T=S and o« =3 =1 =7y= 5, we have

HT2H2<H‘T‘2r 1 ‘T*‘Zs H

forall s > 1.

COROLLARY 5. Let T,S € B(), o,B,v,8 >0 suchthat a«+ > 2 and y+
8 >2. Then

1 1
2 i H

T*|T*|0HB=27 4 g*|§*|7+6-2g T|2ro 4 | g|2ré T|2B 4 | 5|27
F e il k) O e e id WO
2 2 2
orall r,s > 1. In particular,
fe p
2
T*‘T*‘a+ﬁ72T+S*‘S*‘y+372s r< |T|2ro¢+|S|2r6 ‘ |T|2rﬁ+‘s‘2r7
2 = 2 2

forr>1.
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Proof. Let T* = U|T*|, $* = V|S*| be the polar decomposition of the operator
T* and S*, where U,V are the partial isometry and the kernel ker(U) = ker(|T|) and
ker(V) = ker(|S|). Then T = |T*|U* and S = |S*|V*. If we take D; =U, D, =V,
C,=|T*|B, C; = |S*|", B = |T*|%, B, = |T*|® and A, = U*, Ay = V*, we have

D\CiB 1A, = T*|T*|*"B=21 = y|T*|B+ey~
DyCyByAy = S*IST|TTOTES = V| T[TV
Hence

BiAL* = |T[**, |(DiCy)"|* = |T|*P
BoAs|* = [S]7, [(D2Go)* = |S|%2.

Now, the result follows by Theorem 2. [J

REMARK 3. In Corollary 5,

(i) f wetake a =B =1=7y= 0, we have

=

T*T +S§*S 2 _ ‘T‘2r+‘s‘2r 7 |T|2s+|S|2s 5
2 = 2
forall r,s > 1. In particular,
HT*T—FS* H |T|2r+‘S‘2r ‘|T2r+S2r ‘
2 2

forall r>1.

(ii) If wetake c =B =1=y=0 and S =T", we have

\T\Z"—i- ‘T*‘Z\' K
2

H T*T+TT*

2 _ H ‘T|2r+|T*|2r 7
2 ~

forall r,s > 1. In particular,

T"T+TT*
2

r 2r *|2r
o et

forall r > 1.

By the same arguments of Theorem 1, we can generalize Theorem 2 as follows.

THEOREM 3. Let A;,B;,C;,D; € B() (i=1,---,n). Then

2 l

< Z\BAIQ’ gl\(DC)le 27)

1 n
- > DiCiBiA;
iz
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forall r,s > 1. In particular,
2r

Z‘BA|2V

1 n
- ; D;C;BiA;

|—EI(DC) >

i=1

forall r > 1.

The following lemma is very useful in the sequel which is known as the general-
ized mixed Schwartz inequality.

LEMMA 2. Let T € B(H) and x,y € A be any vectors.
(i) If o0, B >0 such that o+ B =1, then | (Tx,y) |* < (|T[**x,x) <\T|2ﬂy,y>,

(ii) If f,g are non-negative continuous functions on [0,0) satisfying f(t)g(t) =1t
(t 2 0), then | (Tx,y) | < [lF(IT x| lg(IT*)yll-

THEOREM 4. Let A,B,C,D € B(.H°) such that |A|B = B*|A| and |C|D = D*|C|.
If f and g are as in Lemma 2, then for all r,s > 1, we have
1
Y, (28)

1
2 — r * sk
IAB+CD|* < 52> || £ (1A + £ (IC || 7 [|€* (|4*]) + > (IC*)

where ro = max{r(B),r(D)} and m =1+ 1. In particular, for all r > 1, we have
IAB+CDIP" < 2% 2| £ (AN + £ (1CD) | |87 (147 ) + & (||

To prove Theorem 4, we need the following lemma was established by Kittaneh

[9].

LEMMA 3. Let A,B € B(°) such that |A|B = B*|A|. If f and g are as in
Lemma 2, then

[(ABx,y)| < r(B) || f(|ADx[lg(|A" Dyl 29)
forall x,y € 7.

Proof of Theorem 4. By the Schwarz inequality in the Hilbert space, we have for
all x,y e 57

((AB +CD)x,y)[?
(ABx,y) + (CDx,y)[* < [[(ABx,y)| + [(CDx,y) ||

|
= |
< [r(B)[lF(ADx] g (A" Dyl
+r(D) [l £(IC)x] ls(Ic* )2 (by Lemma 3)
2

< 2 [P 0ADxx)? (@A Dy + (A(Cx ) (2(C Dy |

where ry = max{r(B),r(D)}.
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Now, on utilizing the elementary inequality
(ab+cd)* < (> +F) (B> +d?),  ab,c,d R,

we then conclude that

(P(ADx)E (24 Dyy) T + (P(C)x) T (82 yy)?

< [(F(Axx) + (2 0] [ (A" Dyy) + (&1 )]

forall x,y € 7.
Utilizing the arithmetic-geometric mean inequality and then the convexity of the
function f(r) =14 (¢ > 1), we have for all r,s > 1 that

[(F2(ADx,x) + (2 (), x)] [< (14" )y.y) +(&*(IC* )y, )]

< 4< [f2’<A> ;f2’<|6|>} > <[gzs<|A*|>;g2f<c*>] y’y>5~

for all unit vectors x,y € J#. Taking the supremum all unit vectors x,y € J¢, we
deduce the desired result. [

In Theorem 4, if we take f(1) =1%, g(t) =t'~%*, we have

COROLLARY 6. Let A,B,C,D € B(H°) such that |A|B = B*|A| and |C|D =
D*|C| and 0 < ot < 1. Then for all ;s > 1 we have

|AB+CD|* < 32> ™|||A"* +|C

‘2\1 o _’_‘C*‘%l o)

)

where ro = max{r(B),r(D)} and m = % + . In particular, for all r > 1, we have

HAB+CDH2’ < r322r—2 H |A|2ra + ‘C‘2rocH H |A*‘2S(1—0‘) + ‘C*‘k(l—a)

Note that our inequality in the previous theorem is a generalization of the second
inequality (9)whenwe set B=D =1.

3. Generalized numerical radius inequalities

In this section, we will prove several numerical radius inequalities. We have ob-
tained the recently proved numerical radius inequality as a special case, we will the
current numerical radius inequality is sharper than the recently proved numerical radius
inequality. Our results summarize many results in the literature.

THEOREM 5. If A € B(), then
- l-a\ ., I1+o ,
i< (S50 wads (5% P 60)

forany r>1 and o € [0,1].
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To prove Theorem 5, we need the following two lemmas.

LEMMA 4. For every vectors a,b,e € S with |le|| =1, we have

@aten< (52 latel+ (15%) b <lalllpl o)

forevery a €[0,1].

Proof. We recall the following refinement of the Cauchy-Schwartz inequality ob-
tained by Dragomir in [2]. It says that

(@, b)| < [{a,b) —{a,e) (e,b)| + [(a,e) (e,b)| < la] |[b] (32)

forall a,b,e € 5 with |le]| =1.
From inequality (32), we conclude that

|<ave> <evb>| = OC‘ <ave> <evb> ‘ +(l —OC)‘ <a e> <e b>‘
alal ol + (5% lal 161+ (a1

<l+a> lall||b]| + (1 Za) |{a,b)| < ||a|| ||b]|

< lallllBl]-

N

This completes the proof. [l

The second lemma is a simple consequence of the classical Jensen and Young
inequalities (see [17]).

LEMMA 5. Let a,b >0, 0< oo < 1 and p,q > 1 such that I%—l—é =1. Then

(i) a®b'~* < aa+(1—a)b< (ad +(1—a)b')’;

1
P pa pro par\ v
(ii) ab < a_+_ (a—+—) ;
q p q

forevery r > 1.

Proof of Theorem 5. In inequality (31), put e = x with ||x|]| =1, a =Ax, b =A*x
in inequality (31) and use Lemma 5 to get

ax)® < (152 ) lawarnl+ (5% laxd i
< (550) )l (52 vt jacx)

< [(59) et + (52 pastriacar]
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Hence 1 |
, - +
an < (52 )+ (S5 land jar. o)

Taking the supremum over all unit vectors x € ¢, we deduce the desired result. [

PROPOSITION 1. Let A € B(A) and [ and g be nonnegative continuous func-
tions on [0,0) satisfying f(t)g(t) =1t (t >0). Then

W) < (F5%) | e+ ey + (5

’+ (”“) AP G4

forall r>1, p,g>1 with L +——1andprqr>2

Proof. Let x € 7 be a unit vector, we have

{a2ex) | < ||F (1A% ]| [l (1(a*)?

)x||" (by Lemma 2)

(£ (AP) 2.0 (82 (1A% x.x)
< Il? (f (|A|2)x»x>% + é (g% (1(a*) \)x,x>% (by Lemma 5)
% (frr (|A|2)x,x> + é (g% (|(A2) ) x,x) (by Lemma 6)

It follows from inequality (33) that

sl < (S5 %) ([0 (AP + 2o (102D o)+ (5% ) hnl paca

Taking the supremum over all unit vectors x € 7, we deduce the desired result. [

Inequality (34) induces several numerical radius inequalities as special cases. For
example the following result may be stated as well.

COROLLARY 7. If we take f(t) =1V, g(t) =t'"" and p = q =2 in inequality

(34), then
1+o 2
— | |A
(551l
1

In addition, by choosing o = % and v = 5, We have

11— _
W2r(A) < E <T) H‘A‘4rv+|A*‘4r(l V)

forany r>1,0< o<1 and 0<v <1,

1 2
WA (A) < g AP+ A+ S AT
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4. Numerical radius inequalities for product of operators

To prove our main results, we need the following two lemmas.
The first lemma follows from the spectral theorem for positive operators and Jensen’s
inequality (see [9]).

LEMMA 6. (Holder Mc-Carty inequality). Let T € B(s), T >0 andlet x € A’
be any unit vector. Then we have

(i) (Tx,x)" <{T"x,x) for r > 1.
(ii) (T"x,x) <{Tx,x)" for 0 <r<1.
The second lemma concerned with positive real numbers, and it is a consequence

of the convexity of the function f(r) =1", r> 1.

LEMMA 7. Let aj,i=1,---,n be positive real numbers. Then

n r n
(20,‘) <n! Eaf forr> 1. (35)

i=1 i=1

The next result is a generalization of inequality (14) and [21, Theorem 3.3].

THEOREM 6. Suppose that A;,B;,X; € B(7) (i=1,---,n) suchthat A;,B; (i=
L,---,n) are positive. Then

1 1 “
— AP ;Bf%" (36)
1 i

n n
w <2A$‘X,-B;"> <n x|y
i=1

i=1

forall 0 < o< 1, r}l,pi,qi>lwith1%+%:l (i=1,---,n) and pir,qir > 2 and

1] = max [

Proof. For any unit vector x € 7 and by the Cauchy-Schwarz inequality we have

n " n "
S APXBY | xx )| =Y (APXiB{x,x)
i=1 i=1
n r n
= | 2 (XiB{x, Ax) iIIHB?‘H

X AZ( B (by Lemma 7)
i=1

< XT3 (AR (B ) (X)) = ma 1))
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nor rp; r

XY | <Ai2ax,X>’2+ql<B,-2°‘x,x>2} (by Lemma 5)
i=1 LPi i
o

x| ; (AP"x x>a+$<B?"rx,x>a] (by Lemma 6)
i=1 4 1

r 1 C _1 pir 1 qir ¢

X1 2 — (Al"x,x) + — (B{"x.x)
1 LPi qi

(by the convexity of (1) =1%)

— x| 2<< A”’+IB‘1’) >a.

Taking the supremum over all unit vectors x € .77, we deduce the result. [

Our next result is to find an upper bound for power of the numerical radius of
i lAf‘X,-Bil’“ under assumption 0 < o < 1.

THEOREM 7. Suppose that A;,B;,X; € B(H) (i=1,---,n) suchthat A;,B; (i=
1,---,n) are positive. Then

w' (ZA?‘X:-B%‘“) < HXH’; oA} + (1 — o) B (37
1=

i=1

Jorall r =22 and 0 < a < 1 and ||X|| = max || X;||.
1<i<n
Proof. For any unit vector x € 7 and by the Cauchy-Schwarz inequality we have

r
i=1

r r
n n
= |3 (xBI o, A%) | < | Y11 1A% ||B
i=1 i=1

r

= |3 (AZX:B!"“x,x)
i=1

P LS  A%” [[BE||” (by Lemma 7)
i=1

r—1 "N 20 5/ p2(l—a) 5

P IXI Y (A2 (B D) (1)) = max (1))
i=1 SIsn
n

b i Z (Afx,x)* <fo,x>1_a (by Lemma 6)
i=1

n x| Z o (ATx,x) + (1 — &) (Bix,x)) (by Lemma 5)

<X S (oAl + (1 — 0)BY] ).

i=1
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Taking the supremum over all unit vectors x € .7, we deduce the result. [

The next lemma is a direct consequence of [1, Theorem 2.3].

LEMMA 8. Let f be a non-negative non-decreasing convex function on [0,eo)
andlet A,B € B(I) be positive operators. Then for any 0 < L < 1,

1f(uA+ (1 - m)B)| <

luf(A)+ (1 —u)f(B). (38)

THEOREM 8. Let T,S € B(°), r =1 and o, €[0,1]. Then

W (S'T) < B |l lalF + (1 - o) BIT7 |

+(1=BW(S'T) |l & + (1 — o) BT

4r 4r
< Hawa +(1- )BT (39)
Proof. Forall a,f € [0,1], we have
W (ST) = B (S°T) + (1 = B)w¥($°T) < B|old|¥ + (1 — ) Bl ™
1
(1= B)W(S°T) Ha\A|% +(1—a)|B|7%||” (by inequality (12))

<B

(a|A|i’+(1—a)|B|f—’a)2H

+(1= B (S°T) |l ¥ + (1 - )| B2

L
2

< B[] € + (1 - o) BT

1
+(1 =B (S'T) Haw% +(1-a)B/%e | (by Lemmas)

1
2

< Ha\A|4Fr+(l—a)|B|l%c O

Note that our inequality in the previous theorem is a generalization of [4, Theorem
2]. Letting r=1, a = % and § = %,Wehave

COROLLARY 8. Let T,S € B(). Then
1
w?(S*T) —|||T|8+|S| ||2+ wS* T)|[IT1*+|s* Hz |||A|8+\B\8}|2.

Manasrah and Kittaneh [15] obtained the following result which is a refinement of
the scalar Young inequality.
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LEMMA 9. Let a,b >0, and p,q > 1 such that 11—7—1—5 =1. Thenfor m=1,2
we have N
r bl’ T
(“ +—> ,r>1 (40)

i)+ i (a¥ ~ %)

p q

ﬁl'—‘
al»—‘
VAN

where ry = min{%7 1
The next result is an extension and refinement of the inequality (8)

THEOREM 9. Let A,B € B(H) such that |A|B = B*
1. If f and g are nonnegative continuous functions on [0,0) satisfying f(t)g(t) =1t

(t>0). Thenforall ke N and s > 1

25(3)H})fzp"<|A|>+$gzq"<|A*|>r—ﬂ% ) inf o). @1)

%(AB) < r

k (12
where ¢(x) := [<f21’(|A|)x,)C>7 - <g2‘1(|A*|)x,x>7] and ro = min{% é

Proof. Letting x =y in (29), we get

> (B )Hf(IAI)xIIZSIIg(I L)l

|(ABx,x)|* < r
|A* X x>

< rz‘( < |A| X x>

(8%(
< (B) < 7 (A]) ,x> 7 (]4%| xx>

L

p<2q|A| >

_—

(B )<<f2p (JA])x,x) )S (by Lemma 6)

N

By Lemma 9, we have

(ABx ) < 2 (B) B (PrOApsn)+ 1 <g2q<|A*|>x,x>"}

) [P A (]
<) [ (PP D) + L (" ) i

k k72
™ (B) [(fz”(lAl)X»XV ~(g(A" )x.x) ] (by Lemma 6)

s

N

(@) { |2 AD + a7 )

k £1?
—&2(B) [<f2p(|A|)x,x>2 - <g2"(lA*l)x,x>2] :

Taking the supremum all unit vectors x € 7, we get the result. [

Letting s =k =1 and p = g =2 in Theorem 9, we have
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COROLLARY 9. Let A,B € B(H) such that |A|B= B*|A|. If f and g are non-
negative continuous functions on [0,°) satisfying f(t)g(t) =t (t >0). Then

W2 (4B) < 3P B)||F(AD + £ (A D]| - 57B) inf o0, @)

[lx[|=1
:|2

The following useful estimate of a spectral radius was obtained by Kittaneh in
[12].

Nl—

where ¢(x) := {<f4 |A|)x x>2 — (g*(|A*])x,x)

LEMMA 10. If A,B € B(H), then

1
r(AB) < 5 (ABH +1BA] +/ (4B - BA||>2+4m<A,B>) L@y

where m(A, B) := min{|[A|[ [ BAB|, || B[|[|ABA|| }

The following fundamental norm estimates is very useful in the proof of our result.

2
? ) ) (44)

(45)

1 2
|M+B<§OM'HWW+¢WNFWBW

and L
HAsz

Both estimates are valid for all positive operators A and B. Also, it should be noted
that (44) is sharper than the triangle inequality as pointed out by Kittaneh [13].

THEOREM 10. Let A,B € B(H°) such that |A|B = B*|A|. If f and g are non-
negative continuous functions on [0,°) satisfying f(t)g(t) =t (t >0). Then

i\ 2
ws) < g (18141227 (1 0an]-+ )

U AD ] - llg(1ar

D> +412(aDg2(a" )1
N 2
—§(||B+||B2||2) inf 1(x). o

[lxll=1
2
where 1(x) := [<f4 |A| xx>2 (g*(|1A*)x,x)? }

Proof. By using inequality (43) and A = I, we have

1 1
Am<Z<B4W§W>. (47)
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Now by using inequality (44), we have

Iran ]+ lgaanll < 5 (I *aan]+ li*gan| (48)
U]~ g (A DI + 412 (A Dg (A1)

By substituting (47) and (48) into (42), we deduce the desired result. [

Letting f(¢) =t% g(t) =¢'~% in Theorem 10, we have

COROLLARY 10. Let A,B € B(H°) such that |A|B = B*|A|. If f and g are
nonnegative continuous functions on [0,0) satisfying f(t)g(t) =t (t >0). Then for
all 0<a <1

1 1Y’
WA (AB) < (||B+ HB2H2) (far

([l )

1 12
~3 (B+HBQHZ> inf y(x), (49)

[I¥l=1

+ H ‘A*‘4(1—a)

~[asper-a] ) 4] Jape ja -

1 112
where y(x) := [<A4°‘x,x> 2 — <|A*|4(1_°‘)x7x> 2] .
As an application of Corollary 10, if we take o = % , we have

COROLLARY 11. Let A,B € B(H°) such that |A|B = B*|A|. If f and g are
non-negative continuous functions on [0,0) satisfying f(t)g(t) =t (t > 0). Then

WA(4B) < ¢ (||B+ HBzH%)Q (JJar ]+

2 w1212 L1112
W(HA = lAPIP +4l1ana112]) )

1 1\?
2 (1818 it o, 50

where y(x) = {<A2x,x>% - <|A*2x,x>ﬂ g
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