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Abstract. In a recent manuscript, Chu (2018) applied the self–normalized large deviations for
i.i.d. random variables to the Lotka–Nagaev estimation of a supercritical Galton–Watson pro-
cess. In this paper, we consider decay rates for the Lotka–Nagaev estimation of a supercriti-
cal branching process with immigration. We have two main contributions. On the one hand,
Chu’s paper considered the self–normalizing constants of second order, otherwise, we consider
the maximum case. On the other hand, except for large deviations, we also studied the self–
normalized moderate deviations. The classical large deviation probabilities for Lotka–Negaev
estimation show three different decay rates according to the degree of heavy tail of offspring
distribution, but our results show that there is only one decay rate in the self–normalized version.

1. Introduction

In the last two decades, large deviation theory has been used as an important tool
to measure deviations between the offspring mean and its Lotka–Nagaev estimator for a
supercritical branching process with or without immigration, see [1], [4]–[9] and [12].
In a recent manuscript [2], Chu studied the self–normalized large deviations for the
Lotka–Nagaev estimator of a supercritical Galton–Watson process.

Formally, let {Zn,n � 0} be a supercritical Galton–Watson process with offspring
distribution {pk,k � 0} and Z0 = 1, p0 = 0. The Lotka–Nagaev estimator of offspring
mean m =: ∑k kpk is defined by Rn = Zn+1/Zn . If E(Z1 logZ1) < ∞ , p1 > 0, for any
x > 0, Chu showed that

P

(√
Zn

∑Zn
i=1(Xni −Rn)2

|Rn−m| � x

)
∼C(x)pn

1

as n → ∞ , where C(x) is some positive constant, Xni denotes the number of offsprings
of the i th individual in the n th generation and fn ∼ gn means fn/gn → 1 as n → ∞ .

In this manuscript, we consider the Lotka–Nagaev estimator for a supercritical
Galton–Watson process with immigration defined by X0 = Z0 = 1 and

Xn = Zn +Yn,1 + · · ·+Yn,n, n � 1,
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where Yn,i is the number of direct descendants of the individuals from the immigration
at time i, i = 1, · · · ,n− 1 and Yn := Yn,n is the number of individuals immigrated at
time n with distribution {hk,k � 0} .

The Lotka–Nagaev estimator of the offspring mean is defined by Ln = Xn+1/Xn .
One of the interesting topics is to consider the decay rates of deviation probabilities

Pn(ε) = P(an|Ln −m|> ε) (1)

for ε > 0 as n → ∞ .
If an = O(1) a.s. , then (1) belongs to large deviation probability. For an ≡ 1,

under the condition that the offspring distribution and immigrating distribution satisfy
the Cramér condition, Liu and Zhang (2016) showed that Pn(ε) ∼ C(ε)(h0p1)n for
some positive constant C(ε) . In addition, using the results on harmonic moments,
Sun and Zhang (2017) showed that the large deviation probabilities have three different
decay rates according to the degree of heavy tail of offspring distribution. Conditioning
large deviations were given in L. Y. Li and J. P. Li (2019).

If an = O(
√

Xn) a.s. , then (1) belongs to normal deviation probability. For
an =

√
Xn , Heyde and Seneta(1971) considered the asymptotic normality of the Lotka–

Nagaev estimator.
If an → ∞ and an = o(

√
Xn) a.s. , we say that (1) is a moderate deviation proba-

bility. Moderate deviations for the Lotka–Nagaev estimator of a supercritical Galton–
Watson process without immigration were given in Fleischmann and Wachtel (2008),
where {an} is a sequence of positive and non–randomconstants satisfying an → ∞ and
an = o(mn/2) . Moderate deviations for the case with immigration are still open.

In this paper, we consider the self–normalized large and moderate deviations for
Ln . For partial sum Sn = ξ1 + · · ·+ ξn , where {ξn} are i.i.d., Shao(1997) use

n(p−1)/p

(
n

∑
i=1

|ξi|p
)1/p

(p > 1)

as the normalizing constant to establish a self–normalized large deviation without any
moment conditions. Rozovsky (2009) derived the self–normalized large deviations for
the case that p = ∞ , that is, maxn

i=1 |ξi| is used as the normalizing constant.
The main task of this manuscript is the estimation of the decay rates for

P(VnX
δ
n |Ln−m| � x)

as n → ∞ , where δ ∈ [0,1/2) and

Vn =
1

max1�i�Xn |Xni−Ln| .

Let {ξ ,ξn,n � 1} be a sequence of i.i.d. random variables with offspring distribu-
tion {pk} and η be a random variable with immigrating distribution {hk} . In addition,
we assume that {ξ ,ξn} is independent of η . Define

Sk = (ξ1 + · · ·+ ξk)/k+ η/k and S̃k = (ξ1 + · · ·+ ξk)/k. (2)
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Through out this paper, we assume that m ∈ (1,∞) , p0 = 0, p1h0 > 0 and pk < 1
for all k .

THEOREM 1. (Large deviation) If δ = 0 and there exists a positive constant θ
such that E(exp(θη)) < ∞ , then for all x > 0 , we have

lim
n→∞

1
(h0p1)n P(Vn|Ln −m|� x) =

∞

∑
k=1

ukϕ(k,x) < ∞,

where uk = ∑k
i=0 viqk−i , {vi},{qi} are defined in Lemma 2 and

ϕ(k,x) = P

(
|Sk −m|� x max

1�i�k
|ξi − Sk|

)
.

Sun and Zhang (2017) showed that the probability of classical large deviation
P(|Ln−m|� ε) presents three different decay rates according to the degree of heavy tail
of ξ . From Theorem 1, one can see there is only one decay rate for the self–normalized
version.

Now, we consider the decay rates of moderate deviation probabilities.

THEOREM 2. (Moderate deviation) If δ ∈ (0,0.5) and there exists a positive con-
stant θ such that E(exp(θξ )) < ∞ and E(exp(θη)) < ∞ , then for all x > 0 , we have

lim
n→∞

1
(h0p1)n P(VnX

δ
n |Ln−m| � x) =

∞

∑
k=1

ukφ(k,x) < ∞,

where uk = ∑k
i=0 viqk−i , {vi},{qi} are defined in Lemma 2 and

φ(k,x) = P

(
|Sk −m| � xk−δ max

1�i�k
|ξi − Sk|

)
.

The rest of this article is organized as follows. In Section 2, we deal with the self–
normalized large deviations. The proofs of moderate deviations are given in Section
3.

Throughout this manuscript, we denote C an absolute positive constant which may
vary from line to line.

2. Large deviations

We need the following two lemmas to prove Theorem 1. The first one due to
Rozovsky (2009) which is a generalization of Shao’s self–normalized large deviation
result for the maximum case.

LEMMA 1. For x > 0 and V ′
n = max1�i�n |ξi −m| ,

lim
n→∞

[
P

(
S̃n

V ′
n

� x

)]1/n

= sup
ν�0

inf
t�0

e−txν
Eet(ξ−m)I[(ξ −m) � ν],

where S̃k is defined in formula (2) and I(A) stands for the indictor function of set A.
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The second lemma is about the decay rates of generating functions of branching
process with immigration for the case p1h0 > 0.

LEMMA 2. (Proposition 1 of [12]) If p1h0 > 0 , for any s ∈ (0,1) , one has

gn(s) ∼ (p1h0)nV (s)Q(s),

where gn(s) = E(sXn) , V (s) and Q(s) satisfy the following functional equations:

h(s)V ( f (s)) = h0V (s), 0 � s < 1, V (0) = 1, V (1) = ∞;

Q( f (s)) = p1Q(s), 0 � s < 1, Q(0) = 1, Q(1) = ∞.

Moreover, V (s), Q(s) can be represented as power series

V (s) =
∞

∑
i=0

vis
i, Q(s) =

∞

∑
i=0

qis
i

respectively.

The proof of Theorem 1. By the total probability, we have

P(Vn|Ln −m|� x) =
∞

∑
k=1

P(Xn = k)P
(
|Sk −m|� x max

1�i�k
|ξi− Sk|

)

=
∞

∑
k=1

P(Xn = k)ϕ(k,x), (3)

where Sk is defined in (2) and ϕ(k,x) is defined in Theorem 1.
The main step is to prove that ϕ(k,x) convergent to 0 exponentially as k → ∞ . In

fact, we can divide ϕ(k,x) into the following two parts:

ϕ(k,x) = P(Sk −m � x max
1�i�k

|ξi − Sk|)

+P(Sk −m � −x max
1�i�k

|ξi − Sk|)
=: A(k,x)+B(k,x). (4)

In addition, for any 0 < ε < 1, A(k,x) has the following decomposition,

A(k,x) = P(Sk −m � x max
1�i�k

|ξi − Sk|, |Sk −m|< εV ′
k)

+P(Sk −m � x max
1�i�k

|ξi − Sk|, |Sk −m| � εV ′
k)

=: A1(k,x)+A2(k,x), (5)

where V ′
k = max1�i�k |ξi −m| .
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By triangular inequality, we obtain

max
1�i�k

|ξi − Sk| � max
1�i�k

(|ξi −m|− |Sk −m|)

= max
1�i�k

|ξi−m|− |Sk −m|

= V ′
k −|Sk −m|. (6)

Consequently,

A1(k,x) = P(Sk −m � x max
1�i�k

|ξi − Sk|, |Sk −m| < εV ′
k)

� P(Sk −m � x(V ′
k −|Sk −m|), |Sk −m|< εV ′

k)

� P(Sk −m � x(1− ε)V ′
k)

= P(Sk −m � x(1− ε)V ′
k,η/k < xεV ′

k)

+P(Sk −m � x(1− ε)V ′
k ,η/k � xεV ′

k)
� P(S̃k −m � x(1−2ε)V ′

k)+P(η/k � xεV ′
k),

where S̃k is defined in formula (2). Applying Lemma 1, there exists a constant λ1(x,ε)∈
(0,1) such that for k large enough, one has

P(S̃k −m � x(1−2ε)V ′
k) = P

(
S̃k −m

V ′
k

� x(1−2ε)
)

� λ k
1 (x,ε). (7)

On the other hand, by Chebyshev’s inequality,

P(η/k � xεV ′
k) =

∫ ∞

0
P(η/k � xεy)dP(V ′

k � y)

�
∫ ∞

0
E(exp(θη))exp(−kxεy)dP(V ′

k � y)

= E(exp(θη))E(exp(−xεkV ′
k)).

Let u be the essential supremum of |ξ −m| , that is,

u = inf{c : P(|ξ −m| � u) = 1 and for any v < u we have P(|ξ −m| < v) < 1}.
Note that pk < 1 for all k , one has u > 0. For any ν ∈ (0,u) ,

P(V ′
k � ν) = (P(|ξ −m| � ν))k.

Consequently,

E(exp(−xεkV ′
k)) = E(exp(−xεkV ′

k)I(V
′
k � ν))+E(exp(−xεkV ′

k)I(V
′
k > ν))

� P(V ′
k � ν)+ exp(−xεkν)

= (P(|ξ −m| � ν))k +(exp(−xεν))k.



604 D. YUAN AND Z. GAO

Thus, there exists a constant λ2(x,ε) ∈ (0,1) such that for k large enough, one has

P
(
η/k � xεV ′

k

)
� Cλ k

2 (x,ε). (8)

At this point, we have shown that A1(k,x) convergent to 0 exponentially as k →
∞ . Next, for A2(k,x) , we have

A2(k,x) = P(Sk −m � x max
1�i�k

|ξi − Sk|, |Sk −m|� εV ′
k)

� P(|Sk −m| � εV ′
k)

� P

(
Sk −m

V ′
k

� ε

)
+P

(
−(Sk −m)

V ′
k

� ε

)
.

For the first part of the right hand of the above inequality, one has

P

(
Sk −m

V ′
k

� ε

)
� P

(
Sk −m

V ′
k

� ε,
η
k

<
εV ′

k

2

)
+P

(
Sk −m

V ′
k

� ε,
η
k

� εV ′
k

2

)

� P

(
S̃k −m

V ′
k

� ε
2

)
+P

(
η
k

� εV ′
k

2

)
.

Similar to (7) and (8), one can obtain that A2(k,x) also has an exponential decay rate
as k → ∞ .

According to (4) and (5),

ϕ(k,x) � ρk(x)

for some constant ρ(x) ∈ (0,1) and k large enough. Define

hn(k) =
P(Xn = k)
(h0p1)n ϕ(k,x).

For k large enough, one has

0 � hn(k) � C
P(Xn = k)
(h0p1)n ρk(x).

According to Lemma 2,

1
(h0p1)n

∞

∑
k=1

P(Xn = k)ρk(x) =
gn(ρ(x,ε))

(h0p1)n

→ V (ρ(x))Q(ρ(x))
< ∞.

Therefore, by the dominated convergence theorem and (3), we have

lim
n→∞

1
(h0p1)n P(Vn|Ln−m| � x) = lim

n→∞

∞

∑
k=1

hn(k)

=
∞

∑
k=1

ukϕ(k,x).

We complete the proof of Theorem 1. �
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3. Moderate deviations

It is turned out that the decay rates of moderate deviation probabilities are slower
that that of large deviation probabilities, which means that φ(k,x) may not have an
exponential decay rate as k→∞ , where φ(k,x) is defined in Theorem 2. Thus, we need
the following result on harmonic moments of a supercritical Galton–Watson process
with immigration which was given in Sun and Zhang(2017).

LEMMA 3. For any r such that h0p1mr > 1 , one has

lim
n→∞

E(X−r
n )

(h0p1)n = C(r) < ∞,

where C(r) is a positive constant.

We also need the following classical moderate deviations for i.i.d. random vari-
ables, see Theorem 3.7.1 in Dembo and Zeitouni(1998).

LEMMA 4. Assume that δ ∈ (0,0.5) and E(exp(θξ )) < ∞ for some θ > 0 , then
for any x > 0 , one has

lim
n→∞

1

n1−2δ lnP

(
Sn−m � xn−δ

)
= −x2

2
.

The proof of Theorem 2. By the total probability, we have

P(VnX
δ
n |Ln −m|� x) =

∞

∑
k=1

P(Xn = k)P
(
|Sk −m| � xk−δ max

1�i�k
|ξi − Sk|

)

=
∞

∑
k=1

P(Xn = k)φ(k,x), (9)

where Sk is defined in (2) and φ(k,x) is defined in Theorem 2.
Similar to (4), we can divide φ(k,x) into the following two parts:

φ(k,x) = P(Sk −m � xk−δ max
1�i�k

|ξi − Sk|)

+P(Sk −m � −xk−δ max
1�i�k

|ξi − Sk|)
=: I(k,x)+ J(k,x). (10)

In addition, for any 0 < ε < 1, I(k,x) has the following decomposition,

I(k,x) = P(Sk −m � xk−δ max
1�i�k

|ξi − Sk|, |Sk −m| < εV ′
k)

+P(Sk −m � xk−δ max
1�i�k

|ξi − Sk|, |Sk −m|� εV ′
k)

=: I1(k,x)+ I2(k,x), (11)
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where V ′
k = max1�i�k |ξi −m| .

By formula (6), we have

I1(k,x) = P(Sk −m � xk−δ max
1�i�k

|ξi− Sk|, |Sk −m|< εV ′
k)

� P(Sk −m � xk−δ (V ′
k −|Sk −m|), |Sk −m| < εV ′

k)

� P(Sk −m � xk−δ (1− ε)V ′
k)

Define Sk = ξ1 + · · · + ξk + η , one has

I1(k,x) := P(Sk −m � xk−δ (1− ε)V ′
k)

= P(Sk − km � xk1−δ (1− ε)V ′
k,∪k

i=1{V ′
k = |ξi −m|})

� kP(Sk−1 − (k−1)m � xk1−δ (1− ε)V ′
k − (ξk −m),V ′

k−1 � |ξk −m|)
� kP(Sk−1 − (k−1)m � xk1−δ (1− ε)|ξk −m|− |ξk−m|,V ′

k−1 � |ξk −m|)
� sup

ν>0
kP(Sk−1 − (k−1)m � (xk1−δ (1− ε)−1)ν,V ′

k−1 � ν)

For k large enough, we have xk1−δ ε > 1. Consequently, for any τ > 0

I1(k,x) � sup
ν>0

kP(Sk−1 − (k−1)m � x(k−1)1−δ(1−2ε)ν,V ′
k−1 � ν)

= sup
ν>0

kP(Sk−1 −m � x(k−1)−δ (1−2ε)ν,V ′
k−1 � ν)

= sup
ν>τ

kP(Sk−1−m � x(k−1)−δ(1−2ε)ν,V ′
k−1 � ν)

+ sup
τ�ν>0

kP(Sk−1−m � x(k−1)−δ (1−2ε)ν,V ′
k−1 � ν)

=: E(k,x)+F(k,x).

For E(k,x) , we have

E(k,x) � sup
ν>τ

kP

(
k−1

∑
i=1

(ξi −m)+ η � x(k−1)1−δ(1−2ε)ν

)

= kP

(
k−1

∑
i=1

(ξi −m)+ η � x(k−1)1−δ (1−2ε)τ

)

� kP

(
k−1

∑
i=1

(ξi −m) � x(k−1)1−δ(1−3ε)τ

)

+kP

(
η � x(k−1)1−δ ετ

)
. (12)

On the one hand, by Chebyshev’s inequality,

kP

(
η � x(k−1)1−δ ετ

)
� k exp(−θx(k−1)1−δ ετ)E(exp(θη))

� Ck−α−δ
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for k large enough, where α satisfies h0p1mα = 1.
On the other hand, by Lemma 4,

kP

(
k−1

∑
i=1

(ξi −m) � x(k−1)1−δ(1−3ε)τ

)
� Ck exp

(
− (x(1−3ε)τ)2

2
k1−2δ

)

� Ck−α−δ

for k large enough. From (12), we know that for sufficiently large k ,

E(k,x) � Ck−α−δ . (13)

For F(k,x) , we have

F(k,x) � sup
τ�ν>0

kP(V ′
k−1 � ν)

= kP(V ′
k−1 � τ)

= k(P(|ξ −m|� τ))k−1.

Choose τ ∈ (0,u) , where u is the essential supremum of |ξ −m| , we know

F(k,x) � Ck−α−δ (14)

for sufficiently large k .
At this point, we have shown that I1(k,x) is bounded by Ck−α−δ . Next, similar

to the estimation of A2(k,x) , we have I2(k,x) has an exponential decay rate as k → ∞ .
Combine (10), (11), (13) and (14), we know that

φ(k,x) � Ck−α−δ .

Define

ln(k) =
P(Xn = k)
(h0p1)n φ(k,x).

For k large enough, one has

0 � hn(k) � C
P(Xn = k)
(h0p1)n k−α−δ .

According to Lemma 3,

1
(h0p1)n

∞

∑
k=1

P(Xn = k)k−α−δ =
E(X−α−δ

n )
(h0p1)n

→ C(α + δ )
< ∞.
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Therefore, by the dominated convergence theorem and (9), we have

lim
n→∞

1
(h0p1)n P(VnX

δ
n |Ln −m|� x) = lim

n→∞

∞

∑
k=1

ln(k)

=
∞

∑
k=1

ukφ(k,x).

We complete the proof of Theorem 2. �
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