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(Communicated by J. Pečarić)

Abstract. In this paper, we introduce and investigate a new subclass of harmonic mappings
which satisfy a third-order differential inequality. Such results as close-to-convexity, coefficient
bounds, growth estimates, sufficient coefficient condition and convolution properties are derived.
Furthermore, we obtain several improved versions of the sharp Bohr radius for harmonic map-
pings.

1. Introduction

A harmonic mapping in the open unit disk D = {z ∈ C : |z| < 1} is a complex-
valued function f = u + iv in D , which satisfies the Laplace equation Δ f = 4 fzz =
0, where fz = ( fx − i fy)/2 and fz = ( fx + i fy)/2, u and v are real-valued harmonic
functions in D . It is convenient to use the canonical representation f = h+ g , where
h is the analytic part and g is the co-analytic part of f . The Jacobian Jf of f = h+g

is given by Jf = |h′|2 − |g′|2 . By Lewy’s theorem (see [15]), f is locally univalent
and sense-preserving in D , if and only if Jf (z) > 0, or equivalently, if h′ �= 0 and the
dilation ω f = g′/h′ has the property |ω f | < 1 in D .

Let H denote the class of complex valued harmonic functions f defined in D ,
and normalized by f (0) = fz(0)−1 = 0. Also, let H 0 = { f ∈ H : fz(0) = 0} . Each
function f ∈ H 0 can be expressed as f = h+g, where

h(z) = z+
∞

∑
n=2

anz
n and g(z) =

∞

∑
n=1

bnz
n (1.1)

are analytic in D.
Denote by SH the class of functions f = h + g that are harmonic, univalent,

and sense-preserving in D . Furthermore, let S 0
H = { f ∈ SH : fz(0) = 0} . Note that,

when g(z) = 0, the classical family S of analytic univalent and normalized functions
in D is a subclass of S 0

H .
For two analytic functions f (z) = z + ∑∞

n=2 anzn and g(z) = z + ∑∞
n=2 bnzn in

S , the Hadamard product (or convolution) of f and g is defined by ( f ∗ g)(z) =
z+ ∑∞

n=2 anbnzn.
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Goodloe [21] considered the Hadamard product of a harmonic function with an
analytic function, which is defined as f ∗̂φ = h∗φ +g ∗φ, where f = h+g is harmonic
function and φ is an analytic function in D .

For two functions f and g analytic in D , f is subordinate to g , written as f (z) ≺
g(z) , if there is an analytic function w satisfying w(0) = 0 and |w(z)| < 1, such that
f (z) = g(w(z)) . If g is univalent in D , then f ≺ g is equivalent to f (D) ⊂ g(D) and
f (0) = g(0) .

In 2013, Ponnusamy et al. [37] introduced the following function class:

PH =
{

f = h+g∈ H : ℜ
(
h′(z)

)
>
∣∣g′(z)∣∣ (z ∈ D)

}
,

and P0
H = PH ∩H 0 , they proved that the functions in the class PH are close-to-

convex. At the same time, Li and Ponnusamy [29] obtained univalency and convexity
of the partial sums of for the class P0

H (α) defined by

P0
H (α) = { f = h+g∈ H : ℜ

(
h′(z)−α

)
>
∣∣g′(z)∣∣

with 0 � α < 1,g′(0) = 0 for z ∈ D}.

Later, Nagpal and Ravichandran [36] studied the class

W 0
H =

{
f = h+g∈ H : ℜ

(
h′(z)+ zh′′(z)

)
>
∣∣g′(z)+ zg′′(z)

∣∣ for z ∈ D
}

,

and obtained the coefficient bounds for the functions in the class W 0
H .

In 2019, Ghosh and Vasudevarao [20] studied the class W 0
H (α) , where

W 0
H (α)=

{
f = h+g∈ H 0 : ℜ

(
h′(z)+ αzh′′(z)

)
>
∣∣g′(z)+ αzg′′(z)

∣∣ (α � 0; z ∈ D)
}

,

and they investigated coefficient bounds, growth estimates, convolution, and radius of
convexity for the partial sums of the function class.

In 2020, Rajbala and Prajapat [38] studied the class of W 0
H (α,β ) defined by

W 0
H (α,β ) =

{
f = h+g ∈ H 0 : ℜ

(
h′(z)+αzh′′(z)−β

)
>
∣∣g′(z)+αzg′′(z)

∣∣ (z ∈ D)
}

,

where α � 0 and 0 � β < 1.
Recently, Yaşar and Yalçın [45] studied the class R0

H (λ ,δ ) of functions f =
h+g∈ H 0 that satisfy

ℜ
(
h′(z)+ λ zh′′(z)+ δ z2h′′′(z)

)
>
∣∣g′(z)+ λ zg′′(z)+ δ z2g′′′(z)

∣∣ ,
where λ � δ � 0.

For more recent results involving harmonic mappings, we refer the reader to [30,
41, 43, 44].

Motivated essentially by the work of Rajbala and Prajapat [38], Yaşar and Yalçın
[45], we define the following class of close-to-convex harmonic mappings.
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DEFINITION 1.1. For α � γ � 0 and 0 � β < 1, let W 0
H (α,β ,γ) denote the

class of harmonic mappings f = h+g , which is defined by

W 0
H (α,β ,γ) =

{
f = h+g∈ H 0 : ℜ

(
h′(z)+ αzh′′(z)+ γz2h′′′(z)−β

)
>
∣∣g′(z)+ αzg′′(z)+ γz2g′′′(z)

∣∣ (z ∈ D)

}
.

(1.2)

We observe that, the class W 0
H (α,β ,γ) generalizes several classes of harmonic

mappings, such as W 0
H (α,0,γ) := W 0

H (α,γ)= R0
H (λ ,δ ) , W 0

H (α,β ,0)= W 0
H (α,β ) ,

W 0
H (α,0,0) = W 0

H (α) , W 0
H (0,0,β ) = P0

H (α) . By putting α = δ/γ,β = λ/γ,γ =
(α −1)/2, where 0 � λ < γ � δ , we get the class R0

H (γ,δ ,λ ) introduced by Çakmak
et al. [12].

Let W (α,β ,γ) denote the class of functions h ∈ S such that

ℜ
(
h′(z)+ αzh′′(z)+ γz2h′′′(z)

)
> β (α � γ � 0; 0 � β < 1).

The class W (α,β ,γ) was considered by Ali et al. [9]. we note that the class W (α,β ,0)
introduced by Gao and Zhou [19] for β < 1 and α > 0. The class W (α,0,0) studied
by Chichra [13] and W (1,0,0) are starlike in D proved by Singh and Singh [40].

The Bohr phenomenon was reappeared in the 1990s due to the extensions to holo-
morphic function in Cn and to abstract setting [7]. Under this framework, Boas and
Khavinson [11] found bounds for Bohr’s radius in any complete Reinhard domains.

Let B be the class of analytic functions f in D such that | f (z)| < 1 for all z ∈ D ,
and let B0 = { f ∈ B : f (0) = 0} . In 1914, Bohr [10] proved that if f ∈ B is of the
form f (z) = ∑∞

n=0 anzn , then the majorant series Mf (r) = ∑∞
n=0 |an||z|n of f satisfies

Mf0(r) =
∞

∑
n=1

|an||z|n � 1−|a0| = d( f (0),∂ f (D)) (1.3)

for all z ∈ D with |z| = r � 1/3, where f0(z) = f (z) − f (0) . Bohr actually ob-
tained the inequality (1.3) for |z| � 1/6. Later, Wiener, Riesz and Schur, indepen-
dently established the Bohr inequality (1.3) for |z| � 1/3 (known as Bohr radius for
the class B ) and hence proved that 1/3 is the best possible. Moreover, for φa(z) =
(a− z)/(1−az) (0 � a < 1), it concludes that Mφa(r) > 1 if and only if r > 1/(1+2a) ,
which for a → 1 shows that 1/3 is optimal.

In recent years, Bohr inequality and Bohr radius have become an active research
field in the theory of univalent functions. The Bohr’s phenomenon for the complex-
valued harmonic mappings have been widely studied (see [1, 2, 4, 3]). In 2016, Ali
et al. [8] studied Bohr radius for the starlike log-harmonic mappings. In 2021, Liu
and Ponnusamy [33] established a version of multidimensional analogue of the refined
Bohr inequality. Bohr-type inequalities for harmonic mappings with a multiple zero at
the origin have been discussed by Huang et al. [22]. The Bohr radius for intriguing as-
pects, such as, locally univalent harmonic mappings, lacunary series, k -quasiconformal



768 X.-Y. WANG, Z.-G. WANG, J.-H. FAN AND Z.-Y. HU

mappings have been extensively researched in [23, 25]. For more various of classes and
Bohr’s phenomenon for harmonic mappings, we refer the reader to [6, 18, 27, 32, 42]
and the references therein.

In 2017, Kayumov and Ponnusamy [24] derived a modified version of Bohr in-
equality for analytic functions as follows.

THEOREM A. Let f (z) = ∑∞
n=0 anzn be analytic in D, | f (z)| � 1 and Sr denote

the area of the disk |z| < r under the harmonic mapping f . Then

B1(r) :=
∞

∑
n=0

|an|rn +
16
9

(
Sr

π

)
� 1 for r � 1

3
,

and the values 1/3 and 16/9 cannot be improved. Moreover,

B2(r) := |a0|2 +
∞

∑
n=1

|an|rn +
8
9

(
Sr

π

)
� 1 for r � 1

2
,

and the values 1/2 and 8/9 cannot be improved.

Similar to Bohr radius, Bohr-Rogosinski radius has also been defined (see [39])
which is described: If f ∈ B , then for N � 1, we have |SN(z)| < 1 in the disk D1/2

and this radius is sharp, where SN(z) = ∑N
n=0 anzn denotes the partial sum of f . There

is a relevant quantity, which we call the Bohr-Rogosinski sum Rf
N(z) of f defined by

Rf
N(z) := | f (z)|+

∞

∑
n=N

|an| rn (|z| = r). (1.4)

It is important to note that for N = 1, the quantity (1.4) is reduces to the classical
Bohr sum in which f (0) is replaced by | f (z)|. In 2017, Kayumov and Ponnusamy [24]
proved the following interesting result on Bohr-Rogosinski radius for analytic func-
tions.

THEOREM B. Suppose that f (z) = ∑∞
n=0 anzn is analytic in the unit disk D and

| f (z)| < 1 in D . Then

| f (z)|+
∞

∑
n=N

|an|rn � 1 for r � RN ,

where RN is the positive root of the equation

2(1+ r)rN − (1− r2)= 0.

The radius RN is the best possible. Moreover,

| f (z)|2 +
∞

∑
n=N

|an|rn � 1 for r � R′
N ,

where R′
N is the positive root of the equation

(1+ r)rN − (1− r2)= 0.
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The radius R′
N is the best possible.

In this paper, we mainly deal with the functions f = h + g ∈ H 0 of the class
W 0

H (α,β ,γ) which is defined by the third-order differential inequality (1.2). In Section
3, we exhibit the close-to-convexity, coefficient bounds, growth estimates, and sufficient
coefficient condition of the class W 0

H (α,β ,γ) . Furthermore, we show that this class
is closed under convex combination and convolution of its members. In Section 4, we
establish various Bohr inequalities for the harmonic functions in a suitable fashion. In
Section 5, we give the proofs of the results.

2. Preliminary results

In order to derive our main results, we need following lemmas.

LEMMA 2.1. (See [14]) Suppose h and g are analytic in D with |g′(0)|< |h′(0)|
and Fε = h + εg is close-to-convex for each ε (|ε| = 1) , then f = h + g is close-to-
convex in D .

The following Lemma (known as Jack-Miller-Mocanu Lemma) contributed by
Miller and Mocanu [34, p.19] or [35, p.290].

LEMMA 2.2. Let ω(z) = cmzm + cm+1zm+1 + · · · be analytic in D with cm �= 0 ,
and let z0 �= 0 be a point of D such that

|ω (z0)| = max
|z|�|z0|

|ω(z)|.

Then there exists a real number k (k � m � 1) such that

z0ω ′ (z0)
ω (z0)

= k and ℜ
(

1+
z0ω ′′ (z0)

ω ′ (z0)

)
� k.

LEMMA 2.3. If f ∈W (α,β ,γ) with α � γ � 0 , then ℜ( f ′(z)) > β (0 � β < 1) ,
and hence f is close-to-convex in D .

Proof. If f ∈ W (α,β ,γ) , then ℜ(ψ(z)) > 0, where ψ(z) = f ′(z)+ αz f ′′(z) +
γz2 f ′′′(z)−β . Let w be an analytic function in D such that w(0) = 0 and

f ′(z) =
1+(1−2β )w(z)

1−w(z)
.

To prove the result, we need to show that |w(z)| < 1 for all z in D . If not, then by
Lemma 2.2, we could find some ξ (|ξ | < 1) , such that |w(ξ )| = 1 and ξw′(ξ ) =
kw(ξ ) , where k � 1. Since

ℜ(ψ(ξ )) = ℜ

(
1+(1−2β )w(ξ )

1−w(ξ )
+

2αk(1−β )w(ξ )
(1−w(ξ ))2

+
2(1−β ) ·

(
(1−w(ξ ))2w′′(ξ )+2(1−w(ξ ))(w′(ξ ))2

)
(1−w(ξ ))4 −β

)
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= (1−β )ℜ

(
2αkw(ξ )+

(
1−w2(ξ )

)
(1−w(ξ ))2 +

2γzw′(ξ )
(1−w(ξ ))2 · zw′′(ξ )

w′(ξ )
+

4γ (zw′(ξ ))2

(1−w(ξ ))3

)

= (1−β )

(
4αk(ℜ(w(ξ ))−1)

|1−w(ξ )|4 +
4γk(k−1)(ℜ(w(ξ ))−1)

|1−w(ξ )|4

+
2γk2

(
w2(ξ )+w2(ξ )−8ℜ(w(ξ ))+6

)
|1−w(ξ )|6

)

� 4(1−β )
(ℜ(w(ξ ))−1)(α − γ)k

|1−w|4 � 0

for |w(ξ )| = 1. This contradicts the hypotheses. Hence, |w(z)| < 1, which leads to
ℜ( f ′(z)) > β . �

3. Properties of the class of W 0
H (α,β ,γ)

This section is devoted to the results required to obtain the members of close-to-
convexity, coefficient inequalities and growth estimates between the classes W 0

H (α,β ,γ)
of harmonic mappings and the class W (α,β ,γ) of analytic functions.

Firstly, we derive a sufficient condition for f ∈ H to be close-to-convex.

THEOREM 3.1. The harmonic mapping f = h+ g ∈ W 0
H (α,β ,γ) if and only if

Fε = h+ εg∈ W (α,β ,γ) for each ε (|ε| = 1) .

THEOREM 3.2. The functions in the class W 0
H (α,β ,γ) are close-to-convex in D .

The following results provide sharp coefficient bounds for the functions in
W 0

H (α,β ,γ) .

THEOREM 3.3. Let f = h+ g ∈ W 0
H (α,β ,γ) be of the form (1.1) with b1 = 0 .

Then for n � 2 , we have

|bn| � 1−β
γn3 +(α −3γ)n2 +(1−α +2γ)n

. (3.1)

The result (3.1) is sharp for the function given by

f (z) = z+
1−β

γn3 +(α −3γ)n2 +(1−α +2γ)n
zn. (3.2)



A NEW SUBCLASS OF CLOSE-TO-CONVEX HARMONIC MAPPINGS 771

THEOREM 3.4. Let f = h+ g ∈ W 0
H (α,β ,γ) be of the form (1.1) with b1 = 0.

Then for n � 2 , we have

|an|+ |bn| � 2(1−β )
γn3 +(α −3γ)n2 +(1−α +2γ)n

,

||an|− |bn|| � 2(1−β )
γn3 +(α −3γ)n2 +(1−α +2γ)n

,

|an| � 2(1−β )
γn3 +(α −3γ)n2 +(1−α +2γ)n

.

All these results are sharp for the function

f (z) = z+
∞

∑
n=2

2(1−β )
γn3 +(α −3γ)n2 +(1−α +2γ)n

zn. (3.3)

The following result gives a sufficient condition for a function f belonging to the
class W 0

H (α,β ,γ) .

THEOREM 3.5. Let f = h+g∈ H 0 , where h and g are of the form (1.1). If

∞

∑
n=2

n[1+(n−1)(α + γ(n−2))](|an|+ |bn|) � 1−β , (3.4)

then f ∈ W 0
H (α,β ,γ) .

COROLLARY 3.1. Let f = h+g∈ H 0 , α � 1 and 0 � β < 1 . If

∞

∑
n=2

n2[3−n+ α(n−1)](|an|+ |bn|) � 2(1−β ),

then f ∈ W 0
H (α,β ,(α −1)/2) .

The following result gives sharp growth theorem for the class W 0
H (α,β ,γ) .

THEOREM 3.6. If f = h+g∈ W 0
H (α,β ,γ) , then

|z|+2
∞

∑
n=2

(−1)n−1(1−β )|z|n
γn3 +(α −3γ)n2 +(1−α +2γ)n

� | f (z)|

� |z|+2
∞

∑
n=2

(1−β )|z|n
γn3 +(α −3γ)n2 +(1−α +2γ)n

.

(3.5)

Both the inequalities are sharp when

f (z) = z+
∞

∑
n=2

2(1−β )
γn3 +(α −3γ)n2 +(1−α +2γ)n

zn

or its rotations.
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Finally, we shall prove that the class W 0
H (α,β ,γ) is closed under convex combi-

nations and convolutions.

THEOREM 3.7. The class W 0
H (α,β ,γ) is closed under convex combinations.

THEOREM 3.8. If functions f1 and f2 belong to W 0
H (α,β ,γ) , then f1 ∗ f2 ∈

W 0
H (α,β ,γ) .

THEOREM 3.9. Let f ∈ W 0
H (α,β ,γ) and φ ∈ A with ℜ

(
φ(z)

z

)
> 1

2 for z ∈ D ,

then f ∗̂φ ∈ W 0
H (α,β ,γ) .

COROLLARY 3.2. Suppose that f ∈ W 0
H (α,β ,γ) and φ ∈ K , then f ∗̂φ ∈

W 0
H (α,β ,γ) .

REMARK 1. (1) The process of the proofs of the results in this section we can
refer to references Liu and Yang [31], Yaşar and Yalçın [45], Ghosh and Vasudevarao
[20] and Rajbala and Prajapat [38].

(2) As an application, we also can construct harmonic polynomials involving
Gaussian hypergeometric function which belong to the considered class W 0

H (α,β ,γ) .
The method can be found in Yaşar and Yalçın [45] and Rajbala and Prajapat [38], we
omit it here.

4. Bohr’s phenomenon for the class W 0
H (α,β ,γ)

The main aim of this section is to study the Bohr phenomenon for the class
W 0

H (α,β ,γ) for α � γ � 0 and 0 � β < 1. We find the improved Bohr radius as
well as Bohr-Rogosinski inequality for functions in the class W 0

H (α,β ,γ) . In this sec-
tion, we state the main results of the paper, and in next section, we shall give the proofs
of main results.

Before stating the main results, we recall the definition of polylogarithm. The
polylogarithm function Lis(z) is defined by the power series, which is also a Dirichlet
series in s , Lis(z) = ∑∞

n=1
zn
ns (|z| < 1) is valid for arbitrary complex order s . It can

be extended to |z| � 1 by the process of analytic continuation. The special case s = 1
involves Taylor series of the ordinary natural logarithm, Li1(z) = − log(1− z) , while
the special cases s = 2 and s = 3 are called the dilogarithm (also referred to as Spence’s
function) and trilogarithm, respectively. The definition and the name of the polyloga-
rithm function come from the fact that it may also be defined as the repeated integral of
itself: Lis+1(z) =

∫ z
0

Lis(t)
t dt, thus the dilogarithm is an integral involving the logarithm

Li2(z) = −∫ z
0 log(1− u) du

u (z ∈ C\[1,∞)), and so on. The polylogarithm is a special
case of the Lerch transcendent [17]. The structural properties of polylogarithms we can
refer the book [28].

Using Theorem 3.4 and Theorem 3.6, considering power of the coefficient |an|+
|bn| , we prove the following sharp Bohr radius for the class W 0

H (α,β ,γ) .
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THEOREM 4.1. Let f ∈ W 0
H (α,β ,γ) for α � γ � 0,0 � β < 1 be of the form

(1.1). Then for n � 2 and p � 1 ,

|z|+
∞

∑
n=2

(|an|+ |bn|) |z|n +
∞

∑
n=2

(|an|+ |bn|)p |z|pn � d( f (0),∂ f (D)) (4.1)

for |z| = r � rp(α,β ,γ) := rp , where rp is the unique root of

r+
∞

∑
n=2

2(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n
+

∞

∑
n=2

(
2(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n

)p

= 1+
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n
.

(4.2)

Here rp is the best possible.

For particular choices of α = 2, β = 0, γ = 1/2 and p = 2, we have the following
corollaries of Theorem 4.1.

COROLLARY 4.1. Let f ∈W 0
H (2,0,1/2) and be of the form (1.1). Then for |z|=

r ,

|z|+
∞

∑
n=2

(|an|+ |bn|) |z|n +
∞

∑
n=2

(|an|+ |bn|)2 |z|2n � d( f (0),∂ f (D))

for r � r2(2,0,1/2) := r2 ≈ 0.585660 , where r2 is the unique root of the equation

4

[
4

(
1
r2 +3

)
Li2
(
r2)−8Li3

(
r2)+4Li4

(
r2)−r2 +16log

(
1−r2)−16log

(
1−r2

)
r2 −20

]

+4Li2(r)+ r−2(r2 +2)+
4(r−1) log(1− r)

r
−3− π2

3
+8log2 = 0

in (0,1). Here r2 ≈ 0.585660 is the best possible.

COROLLARY 4.2. Let f ∈ W 0
H (2,0,1/2) be of the form (1.1). Then for |z| = r ,

|z|+
∞

∑
n=2

(|an|+ |bn|)2 |z|2n � d( f (0),∂ f (D))

for r � r∗2(2,0,1/2) := r∗2 ≈ 0.713982 , where r∗2 is the unique root of the equation

r+4

[
4

(
1
r2 +3

)
Li2
(
r2)−8Li3

(
r2)+4Li4

(
r2)− r2 +16log

(
1− r2)

− 16log
(
1− r2

)
r2 −20

]
−3− π2

3
+8log2 = 0

in (0,1). Here r∗2 ≈ 0.713982 is the best possible.
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REMARK 2. For a particular choice of α = 2, β = 1/2, γ = 1/2 and p = 2, we
obtain r2(2,1/2,1/2) ≈ 0.737687; For α = 2, β = 0, γ = 1/2 and p = 3, we get
r3(2,0,1/2)≈ 0.593252.

THEOREM 4.2. Let f ∈ W 0
H (α,β ,γ) for α � γ � 0,0 � β < 1 be of the form

(1.1). Then for n � 2 ,

| f (z)|+
∞

∑
n=2

(|an|+ |bn|)|z|n � d( f (0),∂ f (D)) (4.3)

for |z| = r � r̃(α,β ,γ) := r̃ , where r̃ is the unique root of

r+
∞

∑
n=2

4(1−β )rn

γn3+(α−3γ)n2+(1−α+2γ)n
−1−

∞

∑
n=2

2(1−β )(−1)n−1

γn3+(α−3γ)n2+(1−α +2γ)n
= 0.

Here r̃ is the best possible.

For a particular choice of α , β , γ , we have the following corollary of Theorem
4.2.

COROLLARY 4.3. Let f ∈ W 0
H (2,0,1/2) be of the form (1.1). Then for |z| = r ,

| f (z)|+
∞

∑
n=2

(|an|+ |bn|)|z|n � d( f (0),∂ f (D))

for r � r̃∗ ≈ 0.521468 , where r̃∗ is the unique root of the equation

8Li2(r)+ r−4(r+2)+
8(r−1) log(1− r)

r
− π2

3
−3+8log2 = 0

in (0,1) . Here r̃∗ ≈ 0.521468 is the best possible.

THEOREM 4.3. Let f ∈ W 0
H (α,β ,γ) for α � γ � 0,0 � β < 1 be of the form

(1.1). Then for integers m � 1 , n,N � 2 , we have

| f (zm)|+
∞

∑
n=N

(|an|+ |bn|)|z|n � d( f (0),∂ f (D)) (4.4)

for |z| = r � Rm,N(α,β ,γ) := Rm,N , where Rm,N is the unique root of

rm +
∞

∑
n=2

2(1−β )rmn

γn3 +(α −3γ)n2 +(1−α +2γ)n
+

∞

∑
n=N

2(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n

−1−
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n
= 0.

Here Rm,N is the best possible.
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THEOREM 4.4. Let f ∈W 0
H (α,β ,γ) for α � γ � 0,0 � β < 1 be given by (1.1).

Then

(i)

|z|+
∞

∑
n=2

(|an|+ |bn|) |z|n +
Sr

π
� d( f (0),∂ f (D))

for |z| = r � r f (α,β ,γ) := r f , where r f is the unique root of the equation

r2 + r+
∞

∑
n=2

2(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n

+
∞

∑
n=2

4(1−β )2nr2n

γn3 +(α −3γ)n2 +(1−α +2γ)n

−1−
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n
= 0

in (0,1) . Here r f is the best possible.

(ii)

| f (z)|2 +
∞

∑
n=2

(|an|+ |bn|) |z|n +
(

Sr

π

)2

� d( f (0),∂ f (D))

for |z| = r � r∗f (α,β ,γ) := r∗f , where r∗f is the unique root of the equation(
r+

∞

∑
n=2

2(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n

)2

+
∞

∑
n=2

2(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n

+

(
r2 +

∞

∑
n=2

4(1−β )2nr2n

[γn3 +(α −3γ)n2 +(1−α +2γ)n]2

)2

−1−
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n
= 0

in (0,1) . Here r∗f is the best possible.

For particular choices of α , β , γ , we have the following corollary of Theorem
4.4.

COROLLARY 4.4. Let f ∈ W 0
H (α,β ,γ) be given by (1.1). Then

(i) for α = 2 , β = 0 , γ = 1/2 ,

|z|+
∞

∑
n=2

(|an|+ |bn|) |z|n +
Sr

π
� d( f (0),∂ f (D))



776 X.-Y. WANG, Z.-G. WANG, J.-H. FAN AND Z.-Y. HU

for |z| = r � ṙ f (2,0,1/2) := ṙ f ≈ 0.451007 , where ṙ f is the unique root of the
equation

4

(
− 4

r2 −8

)
Li2
(
r2)+16Li3

(
r2)+4Li2(r)−3r2 +

48log
(
1− r2

)
r2

−48log
(
1− r2)+ r−2(r+2)+

4(r−1) log(1− r)
r

− π2

3
+61+8log2 = 0

in (0,1) . Here ṙ f ≈ 0.451007 is the best possible.

(ii) for α = 2 , β = 0 , γ = 1/2 ,

| f (z)|2 +
∞

∑
n=2

(|an|+ |bn|) |z|n +
(

Sr

π

)2

� d( f (0),∂ f (D))

for |z| = r � r̈ f (2,0,1/2) := r̈ f ≈ 0.566259 , where r̈ f is the unique root of the
equation[

4

(
− 4

r2−8

)
Li2
(
r2)+16Li3

(
r2)−3r2+

48log
(
1−r2

)
r2 −48log

(
1−r2)+64

]2

+4Li2(r)+
[
−4Li2(r)+ r+

(
4
r
−4

)
log(1− r)+4

]2
−2(r+2)+

4(r−1) log(1− r)
r

− π2

3
−3+8log2 = 0

in (0,1) . Here r̈ f ≈ 0.566259 is the best possible.

THEOREM 4.5. Let f ∈ W 0
H (α,β ,γ) be given by (1.1).

(i)

|z|+ |h(z)|+
∞

∑
n=2

|an||z|n � d( f (0),∂ f (D))

for |z| = r � rh(α,β ,γ) := rh , where rh is the unique root of the equation

2r+
∞

∑
n=2

4(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n
−1

−
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n
= 0 (4.5)

in (0,1) . Here rh is the best possible.

(ii)

|z|+ |g(z)|+
∞

∑
n=2

|bn||z|n � d( f (0),∂ f (D))
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for |z| = r � rg(α,β ,γ) := rg , where rg is the unique root of the equation

r+
∞

∑
n=2

2(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n
−1

−
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n
= 0 (4.6)

in (0,1) . Here rg is the best possible.

REMARK 3. For more calculations, the radii are rh(2,0,1/2) ≈ 0.331050,
rh(2,1/2,1/2)≈ 0.404384, rg(2,0,1/2)≈ 0.671758, rg(2,1/2,1/2)≈ 0.787798.

REMARK 4. The results in this section yields the results of the class W 0
H (α,0,0)

in [5].

5. Proofs of the main results

Proof of Theorem 4.1. Let f ∈W 0
H (α,β ,γ) be given by (1.1). Then, by Theorem

3.4 and Theorem 3.6, it is evident that the Euclidean distance d( f (0),∂ f (D)) between
f (0) and the boundary of f (D) is

d( f (0),∂ f (D)) = liminf
|z|→1

| f (z)− f (0)| � 1+
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n
.

(5.1)
Let Θ1 : [0,1] → R be defined by

Θ1(r) = r+
∞

∑
n=2

2(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n

+
∞

∑
n=2

(
2(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n

)p

−1−
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n
.

(5.2)

Clearly, the function Θ1(r) is continuous on [0,1] and differentiable on (0,1) . Since∣∣∣∣∣ ∞

∑
n=2

(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n

∣∣∣∣∣� 1
2
,

we get

Θ1(0) = −1−
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n
< 0.

On the other hand, since for n � 2,

∞

∑
n=2

1−β
γn3 +(α −3γ)n2 +(1−α +2γ)n

�
∞

∑
n=2

(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n
,
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it follows that

Θ1(1) =
∞

∑
n=2

2(1−β )
γn3+(α−3γ)n2+(1−α +2γ)n

+2p
∞

∑
n=2

(1−β )p

[γn3+(α−3γ)n2+(1−α+2γ)n]p

−
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n

� 2p
∞

∑
n=2

(1−β )p

[γn3 +(α −3γ)n2 +(1−α +2γ)n]2
> 0.

Therefore, Θ1(0)Θ1(1) < 0, and then, by the intermediate value theorem, the function
Θ1(r) has roots in (0,1). In order to show that Θ1(r) has exactly one root in (0,1) , it
is sufficient to show that Θ1 is strictly monotonic function in (0,1). It follows that

Θ′
1(r) = 1+

∞

∑
n=2

2(1−β )nrn−1

γn3 +(α −3γ)n2 +(1−α +2γ)n

+
∞

∑
n=2

np(1−β )p2prnp−1

[γn3 +(α −3γ)n2 +(1−α +2γ)n]p
> 0

for all r ∈ (0,1) , which shows that Θ1(r) is strictly increasing function. Therefore,
Θ1(r) has a unique root in (0,1) , say rp(α,β ,γ) := rp . Thus, the function Θ1 (rp) = 0
and hence from (5.2), we obtain

rp +
∞

∑
n=2

2(1−β )rn
p

(γn3 +(α −3γ)n2 +(1−α +2γ)n
+

∞

∑
n=2

2p(1−β )prnp
p

[γn3 +(α −3γ)n2 +(1−α +2γ)n]p

= 1+
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n
.

(5.3)

To show that rp is the best possible, considering the function f = f(α ,β ,γ) defined by
(3.3). It holds for the function f(α ,β ,γ) ∈ W 0

H (α,β ,γ) and for f = f(α ,β ,γ) and

d( f (0),∂ f (D)) = 1+
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n
. (5.4)

It is obvious that

r+
∞

∑
n=2

2(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n
+

∞

∑
n=2

2p(1−β )prnp

(γn3 +(α −3γ)n2 +(1−α +2γ)n)p

� 1+
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n

for r � rp . Depending on (5.3) and (5.4) for the function f = f(α ,β ,γ) and r = rp , we
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show that

|z|+
∞

∑
n=2

(|an|+ |bn|) |z|n +
∞

∑
n=2

(|an|+ |bn|)p |z|np

= r+
∞

∑
n=2

2(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n

+
∞

∑
n=2

2p(1−β )prnp

(γn3 +(α −3γ)n2 +(1−α +2γ)n)p

= rp +
∞

∑
n=2

2(1−β )rn
p

γn3 +(α −3γ)n2 +(1−α +2γ)n

+
∞

∑
n=2

2p(1−β )prnp
p

[γn3 +(α −3γ)n2 +(1−α +2γ)n]p

= 1+
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n

= d( f (0),∂ f (D)).

Therefore, rp is the best possible. The proof of the theorem is completed. �

Proof of Corollary 4.1. Let f ∈ W 0
H (α,β ,γ) be given by (1.1). Then in view

of Theorem 3.4 and Theorem 3.6, and (5.1), for |z| = r and α = 2,β = 0,γ = 1/2, we
obtain

|z|+
∞

∑
n=2

(|an|+ |bn|) |z|n +
∞

∑
n=2

(|an|+ |bn|)2 |z|2n � r+
∞

∑
n=2

4rn

n3 +n2 +
∞

∑
n=2

(
4rn

n3 +n2

)2

.

(5.5)

It follows that

∞

∑
n=2

4rn

n3 +n2 =
∞

∑
n=2

4rn

n2 +
∞

∑
n=2

4rn

n+1
−

∞

∑
n=2

4rn

n

= −4r+4
∞

∑
n=1

rn

n2 +
4
r

(
− r2

2
− r+

∞

∑
n=1

rn

n

)
+4r−4

∞

∑
n=1

rn

n

= −4r+4Li2(r)+
4
r

[
− r2

2
− r− log(1− r)

]
+4r+4log(1− r)

= 4Li2(r)−2(r+2)+
4(r−1) log(1− r)

r
.

On the other hand, we see that

∞

∑
n=2

(
4rn

n3 +n2

)2

=
∞

∑
n=2

16r2n

n4 +
∞

∑
n=2

−32r2n

n3 +
∞

∑
n=2

48r2n

n2 +
∞

∑
n=2

−64r2n

n

+
∞

∑
n=2

16r2n

(n+1)2 +
∞

∑
n=2

64r2n

n+1
.
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By the definition of dilogarithm function Lis , it follows that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞

∑
n=2

16r2n

n4 = −16r2 +16Li4(r2),

∞

∑
n=2

−32r2n

n3 = 32r2 +32Li3(r2),

∞

∑
n=2

48r2n

n2 = −48r2 +48Li2(r2),

∞

∑
n=2

−64r2n

n
= 64r2 +64log(1− r2),

∞

∑
n=2

16r2n

(n+1)2 =
16
r2

[
− r4

4
− r2 +Li2

(
r2)] ,

∞

∑
n=2

64r2n

n+1
=

64
r2

[
− r4

2
− r2− log

(
1− r2)] .

(5.6)

Therefore, by (5.6), we deduce that

∞

∑
n=2

(
4rn

n3 +n2

)2

=
[−16r2 +16Li4(r2)

]
+
[
32r2 +32Li3(r2)+ (−48r2 +48Li2(r2))

]
+
[
64r2 +64log(1− r2)

]
+

16
r2

[
− r4

4
− r2 +Li2

(
r2)]+

64
r2

[
− r4

2
− r2− log

(
1− r2)]

= 4

[
4

(
1
r2 +3

)
Li2
(
r2)−8Li3

(
r2)+4Li4

(
r2)− r2 +16log

(
1− r2)

− 16log
(
1− r2

)
r2 −20

]
.

Hence, from (5.1) and (5.5), we get

|z|+
∞

∑
n=2

(|an|+ |bn|) |z|n +
∞

∑
n=2

(|an|+ |bn|)2 |z|2n

= 4

[
4

(
1
r2 +3

)
Li2
(
r2)−8Li3

(
r2)+4Li4

(
r2)− r2 +16log

(
1− r2)

− 16log
(
1− r2

)
r2 −20

]
+4Li2(r)+ r−2(r+2)+

4(r−1) log(1− r)
r

.
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Furthermore, we show that

4

[
4

(
1
r2 +3

)
Li2
(
r2)−8Li3

(
r2)+4Li4

(
r2)− r2 +16log

(
1− r2)

− 16log
(
1− r2

)
r2 −20

]
+4Li2(r)+ r−2(r+2)+

4(r−1) log(1− r)
r

� 1+
(

2+
π2

3
−8log2

)
for r � r2(2,0,1/2) := r2 , where r2 ≈ 0.585660 is a root of F1(r) = 0 in (0,1) and
F1 : [0,1] → R is defined by

F1(r) := 4

[
4

(
1
r2 +3

)
Li2
(
r2)−8Li3

(
r2)+4Li4

(
r2)− r2 +16log

(
1− r2)

− 16log
(
1− r2

)
r2 −20

]
+4Li2(r)+ r−2(r2 +2)

+
4(r−1) log(1− r)

r
−3− π2

3
+8log2.

An analogous calculation as in the proof of Theorem 4.1, we can show that the function
F1(r) has the unique root r2 ≈ 0.585660 in (0,1) . Hence, it yields

4

[
4

(
1

r2
2

+3

)
Li2
(
r2
2

)−8Li3
(
r2
2

)
+4Li4

(
r2
2

)−r2
2 +16log

(
1−r2

2

)−16log
(
1−r2

2

)
r2
2

−20

]

+4Li2(r2)+ r2−2(r2 +2)+
4(r2 −1) log(1− r2)

r2
−3− π2

3
+8log2 = 0,

or equivalently,

4

[
4

(
1

r2
2

+3

)
Li2
(
r2
2

)−8Li3
(
r2
2

)
+4Li4

(
r2
2

)−r2+16log
(
1−r2

2

)−16log
(
1−r2

2

)
r2
2

−20

]

+4Li2(r2)+ r2−2(r2 +2)+
4(r2 −1) log(1− r2)

r2
= 1+

(
2+

π2

3
−8log2

)
.

(5.7)

To show that r2 is the best possible, considering the function f = f(2,0,1/2) defined by

f(2,0,1/2)(z) = z+
∞

∑
n=2

4zn

n3 +n2 . (5.8)

In view of (5.1), we see that

d( f (0),∂ f (D)) = 1+
∞

∑
n=2

4(−1)n−1

n3 +n2 = 1+
(

2+
π2

3
−8log2

)
. (5.9)
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By (5.5), (5.7) and (5.9), for f = f(2,0,1/2) and r = r2 , it implies that

|z|+
∞

∑
n=2

(|an|+ |bn|) |z|n +
∞

∑
n=2

(|an|+ |bn|)2 |z|2n

= r+4

[
4

(
1

r2
2

+3

)
Li2
(
r2
2

)−8Li3
(
r2)+4Li4

(
r2
2

)− r2
2

+16log
(
1− r2

2

)− 16log
(
1− r2

2

)
r2
2

−20

]

+4Li2(r2)2 −2(r2 +2)+
4(r2−1) log(1− r2)

r2

= 1+
(

2+
π2

3
−8log2

)
= d( f(2,0,1/2)(0),∂ f(2,0,1/2)(D)).

Therefore, r2 is the best possible. �

Proof of Corollary 4.2. Let f ∈ W 0
H (α,β ,γ) be given by (1.1). Then in view of

Theorem 3.4 and Theorem 3.6, and (5.1), for |z| = r and α = 2, β = 0, γ = 1/2, we
obtain

|z|+
∞

∑
n=2

(|an|+ |bn|)2 |z|2n � r+
∞

∑
n=2

16r2n

(n3 +n2)2

= 4

[
4

(
1
r2 +3

)
Li2
(
r2)−8Li3

(
r2)+4Li4

(
r2)+ r− r2

+16log
(
1− r2)− 16log

(
1− r2

)
r2 −20

]
.

(5.10)

Without loss of generality, we show that

r+4

[
4

(
1
r2 +3

)
Li2
(
r2)−8Li3

(
r2)+4Li4

(
r2)− r2 +16log

(
1− r2)

− 16log
(
1− r2

)
r2 −20

]
� 1+

(
2+

π2

3
−8log2

)
for r � r∗2(2,0.5,0) := r∗2 , where r∗2 ≈ 0.713982 is a root of F2(r) = 0 in (0,1) , and
F2 : [0,1] → R is defined by

F2(r) := 4

[
4

(
1
r2 +3

)
Li2
(
r2)−8Li3

(
r2)+4Li4

(
r2)+ r− r2

+16log
(
1− r2)− 16log

(
1− r2

)
r2 −20

]
−3− π2

3
+8log2.
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By using the same argument as the proof of Theorem 4.1, we see that F2(r) has a
unique root r∗2 ≈ 0.713982 in (0,1) and r∗2 is the best possible. �

Proof of Theorem 4.2. Let f ∈ W 0
H (α,β ,γ) be given by (1.1). Then in view of

Theorem 3.4, Theorem 3.6 and (5.1), for |z| = r , we obtain

| f (z)|+
∞

∑
n=2

(|an|+ |bn|) |z|n

� |z|+
∞

∑
n=2

2(1−β )|z|n
γn3 +(α −3γ)n2 +(1−α +2γ)n

+
∞

∑
n=2

2(1−β )|z|n
γn3 +(α −3γ)n2 +(1−α +2γ)n

= r+
∞

∑
n=2

4(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n
.

(5.11)

Furthermore, we know that

r+
∞

∑
n=2

4(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n
� 1+

∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n

for r � r̃(α,β ,γ) := r̃ , where r̃ is a root of Θ2(r) = 0 in (0,1) and Θ2 : [0,1] → R is
defined by

Θ2(r) := r+
∞

∑
n=2

4(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n
−1

−
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n
.

By observing that Θ2(r) is continuous on [0,1] and differentiable on (0,1) ,

Θ2(0) = −1−
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n
< 0,

and

Θ2(1) =
∞

∑
n=2

4(1−β )
γn3 +(α −3γ)n2 +(1−α +2γ)n

−
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n

=
∞

∑
n=2

(4−2(−1)n−1)(1−β )
γn3 +(α −3γ)n2 +(1−α +2γ)n

> 0,

thus, Θ2 has a root in (0,1) . By noting that

Θ′
2(r) = 1+

∞

∑
n=2

4(1−β )nrn−1

γn3 +(α −3γ)n2 +(1−α +2γ)n
> 0 for n � 2, (5.12)
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the function Θ2(r) is strictly increasing function in (0,1) . Therefore, the function Θ2

has a unique root r̃ in (0,1) , that is Θ2(r̃) = 0, or equivalently,

r̃+
∞

∑
n=2

4(1−β )r̃n

γn3 +(α −3γ)n2 +(1−α +2γ)n
= 1+

∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n
.

(5.13)
To show that r̃ is the best possible, we consider the function f = f(α ,β ,γ) defined by
(3.3). Clearly, the function f(α ,β ,γ) belongs to the class W 0

H (α,β ,γ) . By means of
(5.4), (5.12) and (5.13), for f = f(α ,β ,γ) and r = r̃ , we see that

| f(α ,β ,γ)(z)|+
∞

∑
n=2

(|an|+ |bn|) |z|n = r̃+
∞

∑
n=2

4(1−β )r̃n

γn3 +(α −3γ)n2 +(1−α +2γ)n

= 1+
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n

= d( f (0),∂ f (D)).

This shows that r̃ is the best possible. �

Proof of Corollary 4.3. Let f ∈W 0
H (α,β ,γ) be given by (1.1). Then for α = 2,

β = 0, γ = 1/2, in view of Theorem 3.4, Theorem 3.6 and (5.11), we obtain

| f (z)|+
∞

∑
n=2

(|an|+ |bn|) |z|n � r+4
∞

∑
n=2

2rn

n3 +n2 , (5.14)

it follows that

∞

∑
n=2

2rn

n3 +n2 =
∞

∑
n=2

2rn

n2 +
∞

∑
n=2

2rn

n+1
−

∞

∑
n=2

2rn

n

= −2r+2
∞

∑
n=1

rn

n2 +
2
r

(
− r2

2
− r+

∞

∑
n=1

rn

n

)
+2r−2

∞

∑
n=1

rn

n

= −2r+2Li2(r)+
2
r

[
− r2

2
− r− log(1− r)

]
+2r+2log(1− r)

= 2Li2(r)− (r+2)+
2(r−1) log(1− r)

r
.

On the other hand, we know that

∞

∑
n=2

2(−1)n−1

n3 +n2 = 1+
π2

6
−4log2.

In view of (5.1) and (5.14), we have

| f (z)|+
∞

∑
n=2

(|an|+ |bn|) |z|n � r+4

[
2Li2(r)− (r+2)+

2(r−1) log(1− r)
r

]
.
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Moreover,

r+4

[
2Li2(r)− (r+2)+

2(r−1) log(1− r)
r

]
� 1+2

(
1+

π2

6
−4log2

)
.

for r � r̃∗(2,0,1/2) := r̃∗ , where r̃∗ is a root of F3(r) = 0 in (0,1) and F3 : [0,1]→ R

is defined by

F3(r) : = r+4

[
2Li2(r)− (r+2)+

2(r−1) log(1− r)
r

]
−1−2

(
1+

π2

6
−4log2

)
= 8Li2(r)+ r−4(r+2)+

8(r−1) log(1− r)
r

− π2

3
−3+8log2.

By using the same argument as in the proof of Theorem 4.2, we can show that F3(r)
has a unique root r̃∗ ≈ 0.521468 and r̃∗ ≈ 0.521468 is the best possible. �

Proof of Theorem 4.3. Let f ∈W 0
H (α,β ,γ) be given by (1.1). Then, by Theorem

3.4, Theorem 3.6, and (5.1), for |z| = r , we obtain

| f (zm)|+
∞

∑
n=N

(|an|+ |bn|) |z|n

� |z|m +
∞

∑
n=2

2(1−β )|z|mn

γn3 +(α −3γ)n2 +(1−α +2γ)n
+

∞

∑
n=N

2(1−β )|z|n
γn3 +(α −3γ)n2 +(1−α +2γ)n

= rm +
∞

∑
n=2

2(1−β )rmn

γn3 +(α −3γ)n2 +(1−α +2γ)n
+

∞

∑
n=N

2(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n
.

(5.15)

It follows that

rm +
∞

∑
n=2

2(1−β )rmn

γn3 +(α −3γ)n2 +(1−α +2γ)n
+

∞

∑
n=N

2(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n

� 1+
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n

for r � Rm,N(α) , where Rm,N(α) is a root of Θ3(r) = 0 in (0,1) , and Θ3 : [0,1] → R

is defined by

Θ3(r) := rm +
∞

∑
n=2

2(1−β )rmn

γn3 +(α −3γ)n2 +(1−α +2γ)n

+
∞

∑
n=N

2(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n
−1

−
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n
.



786 X.-Y. WANG, Z.-G. WANG, J.-H. FAN AND Z.-Y. HU

We deduce that Θ3(0)Θ3(1) < 0. Further, Θ3(r) is strictly increasing basing on the
fact that

Θ′
3(r) = mrm−1 +

∞

∑
n=2

2(1−β )mnrmn−1

γn3 +(α −3γ)n2 +(1−α +2γ)n

+
∞

∑
n=N

2(1−β )nrn−1

γn3 +(α −3γ)n2 +(1−α +2γ)n
> 0.

The function Θ3 is differentiable and strictly increasing on (0,1) , which asserts that
Θ3(r) has a unique root in (0,1) , say Rm,N(α,β ,γ) := Rm,N . Therefore, we have
Θ3(Rm,N) = 0, or equivalently,

Rm
m,N +

∞

∑
n=2

2(1−β )Rmn
m,N

γn3 +(α −3γ)n2 +(1−α +2γ)n
+

∞

∑
n=N

2(1−β )Rn
m,N

γn3 +(α −3γ)n2 +(1−α +2γ)n

= 1+
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n
.

(5.16)

To show that Rm,N is the best possible, we consider the function f = f(α ,β ,γ) defined
by (3.3). In view of (5.4), (5.15) and (5.16), for f = f(α ,β ,γ) and z = Rm,N , we obtain

| f(α ,β ,γ)(z
m)|+

∞

∑
n=N

(|an|+ |bn|) |z|n

= Rm
m,N +

∞

∑
n=2

2(1−β )Rmn
m,N

γn3 +(α −3γ)n2 +(1−α +2γ)n

+
∞

∑
n=N

2(1−β )Rn
m,N

γn3 +(α −3γ)n2 +(1−α +2γ)n

= 1+
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n

= d( f(α ,β ,γ)(0),∂ f(α ,β ,γ)(D)).

This shows that Rm,N is the best possible. �

Proof of Theorem 4.4. For f ∈ W 0
H (α,β ,γ) , the Jacobian of f is given by

Jf (z) = | fz(z)|2 −| fz(z)|2 = |h′(z)|2 −|g′(z)|2.
It is well-known that (see [15, p.113]) the area of the disk Dr := {z ∈ C : |z|< r} under
the harmonic mapping f = h+g is

Sr =
∫∫
Dr

J f (z)dxdy =
∫∫
Dr

(|h′(z)|2 −|g′(z)|2)dxdy = π
∞

∑
n=1

n(|an|+ |bn|)(|an|− |bn|)r2n.

(5.17)
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In view of Theorem 3.4, and (5.17), we have

Sr

π
=

1
π

∫∫
Dr

(|h′(z)|2 −|g′(z)|2)dxdy

= r2 +
∞

∑
n=2

n
(|an|2 −|bn|2

)
r2n

= r2 +
∞

∑
n=2

4(1−β )2nr2n

[γn3 +(α −3γ)n2 +(1−α +2γ)n]2
.

(5.18)

(i) By virtue of Theorem 3.4, Theorem 3.6 and (5.18) for |z| = r , we obtain

|z|+
∞

∑
n=2

(|an|+ |bn|) |z|n +
Sr

π
� r+

∞

∑
n=2

2(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n

+ r2 +
∞

∑
n=2

4(1−β )2nr2n

[γn3 +(α −3γ)n2 +(1−α +2γ)n]2
.

(5.19)

Moreover,

r2 + r+
∞

∑
n=2

2(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n

+
∞

∑
n=2

4(1−β )2nr2n

[γn3 +(α −3γ)n2 +(1−α +2γ)n]2

� 1+
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n
.

for r � r f (α,β ,γ) := r f , where r f is the root of Θ4(r) = 0, where Θ4 : [0,1] → R is
defined by

Θ4(r) := r2 + r+
∞

∑
n=2

2(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n

+
∞

∑
n=2

4(1−β )2nr2n

[γn3 +(α −3γ)n2 +(1−α +2γ)n]2
−1

−
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n
.

It is easy to see that Θ4(0)Θ4(1) < 0 and Θ′
4(r) > 0 for r ∈ (0,1) . Then, the function
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Θ4 has a unique root r f in (0,1) . Therefore, we have

r2
f + r f +

∞

∑
n=2

2(1−β )rn
f

γn3 +(α −3γ)n2 +(1−α +2γ)n

+
∞

∑
n=2

4(1−β )2nr2n
f

[γn3 +(α −3γ)n2 +(1−α +2γ)n]2

= 1+
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n
.

(5.20)

To show that r f is the best possible, we consider the function f = f(α ,β ,γ) given by
(3.3). By (5.4), (5.19) and (5.20), for f = f(α ,β ,γ) and r = r f , we see that

|z|+
∞

∑
n=2

(|an|+ |bn|) |z|n +
Sr f

π

= r2
f + r f +

∞

∑
n=2

2(1−β )rn
f

γn3 +(α −3γ)n2 +(1−α +2γ)n

+
∞

∑
n=2

4(1−β )2nr2n
f

[γn3 +(α −3γ)n2 +(1−α +2γ)n]2

= 1+
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n

= d( f(α ,β ,γ)(0),∂ f(α ,β ,γ)(D)).

Therefore, r f is the best possible. This completes the proof of (i).

(ii) In view of Theorem 3.4, Theorem 3.6 and (5.18) for |z| = r , we obtain

| f (z)|2 +
∞

∑
n=2

(|an|+ |bn|) |z|n +
(

Sr

π

)2

�
(
|z|+

∞

∑
n=2

(|an|+ |bn|)|z|n
)2

+
∞

∑
n=2

(|an|+ |bn|)|z|n

+

(
r2 +

∞

∑
n=2

4(1−β )2nr2n

[γn3 +(α −3γ)n2 +(1−α +2γ)n]2

)2

�
(

r+
∞

∑
n=2

2(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n

)2

+
∞

∑
n=2

2(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n

+

(
r2 +

∞

∑
n=2

4(1−β )2nr2n

[γn3 +(α −3γ)n2 +(1−α +2γ)n]2

)2

.

(5.21)
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It follows that (
r+

∞

∑
n=2

2(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n

)2

+
∞

∑
n=2

2(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n

+

(
r2 +

∞

∑
n=2

4(1−β )2nr2n

[γn3 +(α −3γ)n2 +(1−α +2γ)n]2

)2

� 1+
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n

for r � r∗f (α,β ,γ) := r∗f , where r∗f is a root of Θ5(r) = 0 in (0,1) , and Θ5 : [0,1]→ R

is defined by

Θ5(r) =

(
r+

∞

∑
n=2

2(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n

)2

+
∞

∑
n=2

2(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n

+

(
r2 +

∞

∑
n=2

4(1−β )2nr2n

[γn3 +(α −3γ)n2 +(1−α +2γ)n]2

)2

−1

−
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n
.

By using the same argument as in the proof of Theorem 4.1, we can easily show that
Θ5(r) has a unique root r∗f , and r∗f is the best possible. �

Proof of Corollary 4.4. (i) Let f ∈ W 0
H (α,β ,γ) , then for |z| = r and α = 2,

γ = 1/2, β = 0, using Theorem 3.4, we obtain

|z|+
∞

∑
n=2

(|an|+ |bn|) |z|n +
Sr

π
� r2 + r+

∞

∑
n=2

4rn

n3 +n2 +
∞

∑
n=2

16nr2n

(n3 +n2)2 . (5.22)

It follows from (5.22) that

∞

∑
n=2

4rn

n3 +n2 = 4Li2(r)−2(r+2)+
4(r−1) log(1− r)

r
,

and
∞

∑
n=2

4(−1)n−1

n3 +n2 =
π2

3
+2−8log2.
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On the other hand, we find that

∞

∑
n=2

16nr2n

(n3 +n2)2 =
∞

∑
n=2

16r2n

n3 +
∞

∑
n=2

−32r2n

n2 +
∞

∑
n=2

48r2n

n
+

∞

∑
n=2

− 16r2n

(n+1)2 +
∞

∑
n=2

−48r2n

n+1

= 4

[(
− 4

r2 −8

)
Li2
(
r2)+4Li3

(
r2)− r2

+
12log

(
1− r2

)
r2 −12log

(
1− r2)+16

]
.

Therefore, we have

r2 + r+
∞

∑
n=2

4rn

n3 +n2 +
∞

∑
n=2

16nr2n

(n3 +n2)2

= r2 + r+4Li2(r)−2(r+2)+
4(r−1) log(1− r)

r
+4

[(
− 4

r2 −8

)
Li2
(
r2)

+4Li3
(
r2)− r2 +

12log
(
1− r2

)
r2 −12log

(
1− r2)+16

]

= 4

(
− 4

r2 −8

)
Li2
(
r2)+16Li3

(
r2)+4Li2(r)−3r2 +

48log
(
1− r2

)
r2

−48log
(
1− r2)+ r−2(r+2)+

4(r−1) log(1− r)
r

+64.

(5.23)

It is easy to see that

4

(
− 4

r2 −8

)
Li2
(
r2)+16Li3

(
r2)+4Li2(r)−3r2 +

48log
(
1− r2

)
r2

−48log
(
1− r2)+ r−2(r+2)+

4(r−1) log(1− r)
r

+64

� 1+
(

π2

3
+2−8log2

)
for r � ṙ f (2,0,1/2) := ṙ f , where ṙ f is root of F4(r) = 0 in (0,1) and F4 : [0,1] → R

is defined by

F4(r) : = 4

(
− 4

r2 −8

)
Li2
(
r2)+16Li3

(
r2)+4Li2(r)−3r2 +

48log
(
1− r2

)
r2

−48log
(
1− r2)+ r−2(r+2)+

4(r−1) log(1− r)
r

− π2

3
+61+8log2.

By using the standard argument as in the proof of Theorem 4.4, we can show that F4(r)
has a unique root ṙ f ≈ 0.451007 in (0,1) , and ṙ is the best possible. This completes
the proof of (i).
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(ii) By Theorem 3.4, for |z| = r , it implies that

| f (z)|2 +
∞

∑
n=2

(|an|+ |bn|) |z|n +
(

Sr

π

)2

�
(

r+
∞

∑
n=2

4rn

n3 +n2

)2

+
∞

∑
n=2

4rn

n3 +n2 +

(
r2 +

∞

∑
n=2

16nr2n

(n3 +n2)2

)2

=

[
4

(
− 4

r2 −8

)
Li2
(
r2)+16Li3

(
r2)−3r2 +

48log
(
1− r2

)
r2 −48log

(
1− r2)+64

]2

+4Li2(r)+
[
−4Li2(r)+ r+

(
4
r
−4

)
log(1− r)+4

]2
−2(r+2)+

4(r−1) log(1− r)
r

.

(5.24)

It follows that[
4

(
− 4

r2 −8

)
Li2
(
r2)+16Li3

(
r2)−3r2 +

48log
(
1− r2

)
r2 −48log

(
1− r2)+64

]2

+4Li2(r)+
[
−4Li2(r)+r+

(
4
r
−4

)
log(1−r)+4

]2

−2(r+2)+
4(r−1) log(1−r)

r

� 1+
(

π2

3
+2−8log2

)
for r � r̈ f (2,0,1/2) := r̈ f , where r̈ f is a root of F5(r) = 0 in (0,1) and F5 : [0,1]→ R

is defined by

F5 :=

[
4

(
− 4

r2−8

)
Li2
(
r2)+16Li3

(
r2)−3r2+

48log
(
1−r2

)
r2 −48log

(
1−r2)+64

]2

+4Li2(r)+
[
−4Li2(r)+ r+

(
4
r
−4

)
log(1− r)+4

]2
−2(r+2)+

4(r−1) log(1− r)
r

− π2

3
−3+8log2.

Furthermore, we can deduce that F5(r) has a unique root in (0,1) . Let r̈ f be the root
of F5(r) . Then we have r̈ f ≈ 0.566259 and r̈ f is the best possible. This completes the
proof of (ii). �

Proof of Theorem 4.5. (i) Let f ∈ W 0
H (α,β ,γ) , then for |z| = r , by Theorem

3.4, if

2r+
∞

∑
n=2

4(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n
� 1+

∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n
,
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we obtain

|z|+ |h(z)|+
∞

∑
n=2

|an||z|n � d( f (0),∂ f (D)). (5.25)

Let Θ6 : [0,1] → R be defined by

Θ6(r) := 2r+
∞

∑
n=2

4(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n
−1

−
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n
.

It is not difficult to show that Θ6 has a unique root in (0,1) . Let rh(α,β ,γ) := rh be
the root of Θ6(r) and hence,

2rh+
∞

∑
n=2

4(1−β )rn
h

γn3+(α−3γ)n2+(1−α+2γ)n
= 1+

∞

∑
n=2

2(1−β )(−1)n−1

γn3+(α−3γ)n2+(1−α+2γ)n
.

(5.26)
It needs to show that rh is the best possible. To prove this, considering the function
f = f(α ,β ,γ) = h(α ,β ,γ) + g(α ,β ,γ) given by (3.3). By using (5.4), (5.25) and (5.26), for
f = f(α ,β ,γ) and z = rh shows that

|z|+ |h(α ,β ,γ)(z)|+
∞

∑
n=2

|an||z|n = 2rh +
∞

∑
n=2

4(1−β )rn
h

γn3 +(α −3γ)n2 +(1−α +2γ)n

= 1+
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n

= d( f(α ,β ,γ)(0),∂ f(α ,β ,γ)(D)),

which shows that rh is the best possible. This completes the proof of (i).

(ii) Let Θ7 : [0,1] → R be defined by

Θ7(r) := r+
∞

∑
n=2

2(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n
−1

−
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n
.

We can show that Θ6(r) has a unique root in (0,1) . For convenience, we denote by
rg(α,β ,γ) := rg . Therefore,

rg(α)+
∞

∑
n=2

2(1−β )rn
g(α)

γn3+(α−3γ)n2+(1−α+2γ)n
= 1+

∞

∑
n=2

(1−β )(−1)n−1

γn3+(α−3γ)n2+(1−α+2γ)n
.

(5.27)
For |z| = r , by Theorem 3.3, if

r+
∞

∑
n=2

2(1−β )rn

γn3 +(α −3γ)n2 +(1−α +2γ)n
� 1+

∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n
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with r � rg , we obtain

|z|+ |g(z)|+
∞

∑
n=2

|bn||z|n � d( f (0),∂ f (D)). (5.28)

In order to show that rg is the best possible, we consider the function f = f ∗(α ,β ,γ)
defined by (3.3). In view of (5.1), it is easy to see that

d( f ∗(α ,β ,γ)(0),∂ f ∗(α ,β ,γ)(D)) = 1+
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n
. (5.29)

By using (5.27), (5.28) and (5.29), for f = f ∗(α ,β ,γ) and z = rg , we know that

|z|+ |g(z)|+
∞

∑
n=2

|bn||z|n = rg +
∞

∑
n=2

2(1−β )rn
g

γn3 +(α −3γ)n2 +(1−α +2γ)n

= 1+
∞

∑
n=2

2(1−β )(−1)n−1

γn3 +(α −3γ)n2 +(1−α +2γ)n

= d( f ∗(α ,β ,γ)(0),∂ f ∗(α ,β ,γ)(D)).

Therefore, we deduce that rg is the best possible. �
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