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CONVERGENCE RATE FOR WEIGHTED SUMS OF

ψ –MIXING RANDOM VARIABLES AND APPLICATIONS

YANCHUN YI, PINGYAN CHEN AND SOO HAK SUNG ∗

(Communicated by N. Elezović)

Abstract. The complete convergence result is obtained for weighted sums of ψ -mixing random
variables without any conditions on mixing rate. As a special case, we can obtain the law of
large numbers of Liu and Jin (J. Math. Ineq., 12, 2018). As applications, necessary and sufficient
conditions are provided for the complete consistency of LS estimators in the errors-in-variables
regression model with ψ -mixing errors.

1. Introduction

Convergence rate of the strong and weak law of large numbers is used prevalently
in probability and statistics, and the complete convergence is a good tool to characterize
the convergence rate. The concept of complete convergence was introduced by Hsu
and Robbins (1947) as follows: a sequence {Un,n � 1} of random variables is said to
converge completely to a constant u if

∞

∑
n=1

P{|Un−u|> ε} < ∞, ∀ ε > 0.

By the Borel-Cantelli lemma, this implies that Un → u a.s. The converse is true if
Un,n � 1, are independent. Hsu and Robbins (1947) proved that the sequence of arith-
metic means of independent and identically distributed (i.i.d.) random variables con-
verges completely to the expected value if the variance of the summands is finite. Erdös
(1949) proved the converse.

The result of Hsu and Robbins (1947) has been generalized and extended by many
authors. In the independent case, the celebrated results are due to Spitzer (1956) and
Baum and Katz (1965) for partial sums, to Stout (1968) and Li et al. (1995) for weighted
sums. In the negatively associated dependent case, Shao (2000) obtained the complete
convergence for partial sums, and Sung (2012) and Wang et al. (2011) obtained the
complete convergence for weighted sums. Chen et al. (2008) obtained the complete
convergence for the moving average processes based on negatively associated random
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variables. In the mixing case, Shao (1988) and Shao (1995) extended the result of Hsu
and Robbins (1947) to the partial sums of ϕ -mixing and ρ -mixing random variables,
respectively. Peligrad and Gut (1999) extended it to ρ∗ -mixing random variables.

The limiting behavior for weighted sums of independent random variables plays
an important role in probability theory and statistics, since many useful linear statis-
tics, such as least squares estimators, nonparametric regression function estimators and
jackknife estimates, are weighted sums. However, the independence assumption is not
reasonable in many real applications of statistical problems. Hence, it is necessary to
study the limiting properties for weighted sums of dependent random variables. When
we study the limiting properties for weighted sums of mixing random variables such
as ϕ -mixing and ρ -mixing, some conditions on mixing rate are often needed (see, for
example, Yang (1995) and Huang et al. (2014)). However, it is not easy to check such
mixing rate conditions.

We recall the concept of ψ -mixing random variables or random vectors.

DEFINITION 1.1. Define the ψ -mixing coefficient for a sequence of random vari-
ables or random vectors {Xn,n � 1} as

ψ(n) = sup
m�1

sup
A∈Fm

1 ,B∈F∞
m+n,P(A)P(B) �=0

∣∣∣∣ P(AB)
P(A)P(B)

−1

∣∣∣∣ ,
where Fm

n = σ(Xi : n � i � m) . Then {Xn,n � 1} is said to be ψ -mixing or *-mixing
if ψ(n) → 0 as n → ∞ .

The concept of ψ -mixing was introduced by Blum et al. (1963), who obtained the
Kolmogorov strong law of large numbers for identically distributed ψ -mixing random
variables without any conditions on mixing rate. Under the condition ∑∞

n=1 ψ(n) < ∞
on ψ -mixing rate, Yang (1995) obtained the moment inequality, exponent inequality
and strong law for weighted sums, Wang et al. (2010) obtained the maximal inequal-
ity and gave some applications, and Xu and Tang (2013) discussed the strong law for
Jamison’s type weighted sums.

Recently, some limit theorems for ψ -mixing random variables have been estab-
lished without any conditions on mixing rate. Hu et al. (2017) extended the strong law
of large numbers of Blum et al. (1963) to weighted sums. Liu and Jin (2018) extended
the Spitzer (1956) law of large numbers for i.i.d. random variables to ψ -mixing case.

In this paper, we obtain the complete convergence for weighted sums of ψ -mixing
random variables without mixing rate conditions. The result of Liu and Jin (2018) can
be obtained as a special case of our result. We also apply our result to the errors-in-
variables (EV) regression models with ψ -mixing errors.

We now state the main result. The proof of this result will be detailed in the next
section. The applications of Theorem 1.1 will be shown in Section 3

THEOREM 1.1. Let r � 1, p > 1 and q > 1 with 1/p+1/q= 1 . Let {X ,Xn,n �
1} be a sequence of identically distributed ψ -mixing random variables, and let {ank,n �
1,1 � k � n} be an array of constants satisfying

n

∑
k=1

|ank|p = O(n). (1.1)
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If

EX = 0,

⎧⎪⎨
⎪⎩

E|X |r < ∞, if r < p,

E|X |r log(1+ |X |) < ∞, if r = p,

E|X |(r−1)q < ∞, if r > p,

(1.2)

then
∞

∑
n=1

nr−2P

{
max

1�m�n

∣∣∣∣∣
m

∑
k=1

ankXk

∣∣∣∣∣> εn

}
< ∞, ∀ ε > 0. (1.3)

Conversely, if (1.3) holds for any array {ank} satisfying (1.1) for some p > 1,
then EX = 0 , E|X |(r−1)q < ∞ and E|X |r < ∞ hold.

REMARK 1.1. Recently, Wu and Wang (2021) proved Theorem 1.1 for m-exten-
ded negatively dependent random variables. They proved that the moment condition
EX |r log(1+ |X |) < ∞ is also necessary. However, their proof is not correct (the state-
ment “It is easy to check that (1.2) is satisfied” on lines 7–8, page 17 is incorrect).

By Theorem 1.1, we immediately have the following corollary.

COROLLARY 1.1. Let r � 1 . Let {X ,Xn,n � 1} be a sequence of identically
distributed ψ -mixing random variables. Then

∞

∑
n=1

nr−2P

{
max

1�m�n

∣∣∣∣∣
m

∑
k=1

Xk

∣∣∣∣∣> εn

}
< ∞, ∀ ε > 0 (1.4)

holds if and only if EX = 0 and E|X |r < ∞ .

REMARK 1.2. Liu and Jin (2018) proved Corollary 1.1 when r = 1.
Throughout this paper, C always stands for a positive constant whose value is of

no importance and may differ from one place to another, I(A) denotes the indicator
function of the event A .

2. Lemmas and proofs

To prove the main result, we need the following lemmas. The first one can refer to
Lemma 2.1 in Liu and Jin (2018).

LEMMA 2.1. Let {Yn,n � 1} be a sequence of random variables with the mixing
coefficient ψ(·) . Suppose that E|Yn| < ∞ for each n � 1 . Then

|E(Yn+1|G )−EYn+1| � ψ(1)E|Yn+1| a.s.

for each σ field G ⊂ σ(Yi : 1 � i � n) , and each n � 1 .

LEMMA 2.2. Let {Yn,n � 1} be a sequence of ψ -mixing random variables with
supn�1 |Yn| � M a.s. for some constant M > 0, and let {ank,n � 1,1 � k � n} be an
array of constants satisfying (1.1) for some p > 1 . Then for any r � 1 ,

∞

∑
n=1

nr−2P

{
max

1�m�n

∣∣∣∣∣
m

∑
k=1

ankYk

∣∣∣∣∣> εn

}
< ∞, ∀ ε > 0.
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Proof. By the same argument as the proof of Lemma 2.3 in Hu et al. (2017), we
have the desired result. �

LEMMA 2.3. (see Theorem 2.11 in Hall and Heyde, 1980) Let {Yk,Fk,1 � k �
n} be a sequence of martingale differences and s > 0 . Then there exists a constant C
depending only on s such that

E

∣∣∣∣∣
n

∑
k=1

Yk

∣∣∣∣∣
s

� C

⎧⎨
⎩E

(
n

∑
k=1

E(Y 2
k |Fk−1)

)s/2

+
n

∑
k=1

E|Yk|s
⎫⎬
⎭ .

Proof of Theorem 1.1. Sufficiency. We can assume that 0 � ψ(1) < ∞ by the
subsequence method, since ψ(n) → 0 as n → ∞ , where ψ(·) is the ψ -mixing coeffi-
cient of {Xn,n � 1} . By (1.1), without loss of generality, we can assume that for all
n � 1,

n

∑
k=1

|ank|p � n,

which implies that
n

∑
k=1

|ank|t � n (2.1)

for all t ∈ (0, p) by the Hölder inequality. For any fixed ε > 0, there exists a positive
number M = M(ε) such that

E|X |I(|X |> M) < ε/(8+8ψ(1)), (2.2)

since E|X | < ∞ . Note that by EX = 0,{
max

1�m�n

∣∣∣∣∣
m

∑
k=1

ankXk

∣∣∣∣∣> εn

}

⊂
{

max
1�m�n

∣∣∣∣∣
m

∑
k=1

ank(XkI(|Xk| � M)−EXkI(|Xk| � M))

∣∣∣∣∣> εn/2

}

∪
{

max
1�m�n

∣∣∣∣∣
m

∑
k=1

ank(XkI(|Xk| > M)−EXkI(|Xk| > M))

∣∣∣∣∣> εn/2

}
, (2.3)

and by (2.1) and (2.2),{
max

1�m�n

∣∣∣∣∣
m

∑
k=1

ank(XkI(|Xk| > M)−EXkI(|Xk| > M))

∣∣∣∣∣> εn/2

}

⊂
{

n

∑
k=1

|ankXk|I(|Xk| > M) > (ε/2−E|X |I(|X |> M))n

}
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⊂
{

n

∑
k=1

|ankXk|I(|Xk| > M) > 3εn/8

}

⊂ ∪n
k=1{|ankXk| > n}∪

{
n

∑
k=1

|ankX
′
k|I(|ankX

′
k| � n) > 3εn/8

}
, (2.4)

where X ′
k = XkI(|Xk| > M) . Since |XnI(|Xn| � M)| � M for all n � 1, we have by

Lemma 2.2 that

∞

∑
n=1

nr−2P

{
max

1�m�n

∣∣∣∣∣
m

∑
k=1

ank(XkI(|Xk| � M)−EXkI(|Xk| � M))

∣∣∣∣∣> εn/2

}
< ∞. (2.5)

By Lemma 2.2 in Chen and Sung (2018),

∞

∑
n=1

nr−2P(∪n
k=1{|ankXk| > n}) �

⎧⎪⎨
⎪⎩

CE|X |r, if r < p,

CE|X |r log(1+ |X |), if r = p,

CE|X |(r−1)q, if r > p

< ∞. (2.6)

Therefore, to prove (1.3), it suffices by (2.3)–(2.6) to show that

∞

∑
n=1

nr−2P

{
n

∑
k=1

|ankX
′
k|I(|ankX

′
k| � n) > 3εn/8

}
< ∞. (2.7)

Set Xnk = |ankX ′
k|I(|ankX ′

k| � n) , Fn,k = σ(Xni : 1 � i � k) for 1 � k � n , and Fn,0 =
{ /0,Ω} . By Lemma 2.1, (2.1) and (2.2),∣∣∣∣∣

n

∑
k=1

E(Xnk|Fn,k−1)

∣∣∣∣∣�
n

∑
k=1

(|E(Xnk|Fn,k−1)−EXnk|+EXnk)

� (1+ ψ(1))
n

∑
k=1

EXnk a.s.

� (1+ ψ(1))
n

∑
k=1

|ank|E|Xk|I(|Xk| > M) a.s.

= (1+ ψ(1))

(
n

∑
k=1

|ank|
)

E|X |I(|X |> M) � εn/8 a.s.

Thus, to prove (2.7), it suffices to prove that

∞

∑
n=1

nr−2P

{∣∣∣∣∣
n

∑
k=1

(Xnk −E(Xnk|Fn,k−1))

∣∣∣∣∣> εn/4

}
< ∞. (2.8)

Note that {Xnk−E(Xnk|Fn,k−1),1 � k � n} is a sequence of martingale differences for
any n � 1. By the Markov inequality, Lemma 2.3, and the Jensen inequality, we have
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that for any s � 1,

P

{∣∣∣∣∣
n

∑
k=1

(Xnk −E(Xnk|Fn,k−1))

∣∣∣∣∣> εn/4

}

� Cn−sE

∣∣∣∣∣
n

∑
k=1

(Xnk −E(Xnk|Fn,k−1))

∣∣∣∣∣
s

� Cn−s

⎧⎨
⎩E

(
n

∑
k=1

E(X2
nk|Fn,k−1)

)s/2

+
n

∑
k=1

EXs
nk

⎫⎬
⎭ .

Noting that Xnk = |ankX ′
k|I(|ankX ′

k| � n) and X ′
k = XkI(|Xk| > M) , we have by Lemma

2.1 that
E(X2

nk|Fn,k−1) � (1+ ψ(1))E|ankXk|2I(|ankXk| � n) a.s.,

and
EXs

nk � E|ankXk|sI(|ankXk| � n).

Therefore, for all s � 1,

P

{∣∣∣∣∣
n

∑
k=1

(Xnk −E(Xnk|Fn,k−1))

∣∣∣∣∣> εn/4

}

� Cn−s

⎧⎨
⎩
(

n

∑
k=1

E|ankXk|2I(|ankXk| � n)

)s/2

+
n

∑
k=1

E|ankXk|sI(|ankXk| � n)

⎫⎬
⎭ . (2.9)

By the same argument as the proof of Theorem 3.1 in Chen and Sung (2018), we have
that for some s (when r = 1, s = 2; when r > 1, s > max{p,(r−1)q,2(r−1)/(t−1)},
where 1 < t < min{2, p,r}),

∞

∑
n=1

nr−2−s

(
n

∑
k=1

E|ankXk|2I(|ankXk| � n)

)s/2

< ∞ (2.10)

and
∞

∑
n=1

nr−2−s
n

∑
k=1

E|ankXk|sI(|ankXk| � n) < ∞. (2.11)

Hence (2.8) holds from (2.9)–(2.11).

Necessity. Set ank = 0 if k = 1, · · · ,n− 1, and ann = n1/p. Then (1.1) holds and
we can rewrite (1.3) as

∞

∑
n=1

nr−2P{n1/p|Xn| > εn} < ∞, ∀ ε > 0,

which is equivalent to E|X |(r−1)q < ∞.
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It remains to show that EX = 0 and E|X |r < ∞. To do these, set ank = 1 for all
1 � k � n. Then (1.1) holds and we can rewrite (1.3) as

∞

∑
n=1

nr−2P

{
max

1�m�n
|

m

∑
k=1

Xk| > εn

}
< ∞, ∀ ε > 0. (2.12)

For the case r = 1, (2.12) is equivalent to EX = 0, which is due to Liu and Jin (2018).
We now consider the case r > 1. Clearly (2.12) implies that

∞

∑
n=1

nr−2P

{
max

1�k�n
|Xk| > εn

}
< ∞, ∀ ε > 0, (2.13)

which also implies that

P

{
max

1�k�n
|Xk| > n

}
→ 0 (2.14)

as n → ∞ . We can assume that 0 � ψ(1) < ∞ by the subsequence method, since
ψ(n) → 0 as n → ∞ . Note that if (2.12) holds for r > 1, then it also holds for r = 1
and hence EX = 0 from the above case r = 1. By the definition of ψ -mixing, and the
Markov inequality, we obtain that for any i �= j ,

P{|Xi| > n, |Xj| > n} � (1+ ψ(1))P{|Xi| > n}P{Xj| > n}
= (1+ ψ(1))P2{|X |> n}

� (1+ ψ(1))E|X |
n

P{|X |> n}.

It follows that

Var

(
n

∑
k=1

I(|Xk| > n)

)
� E

(
n

∑
k=1

I(|Xk| > n)

)2

=
n

∑
k=1

P{|Xk| > n}+ ∑
1�i�= j�n

P{|Xi| > n, |Xj| > n}

�
n

∑
k=1

P{|Xk| > n}+
(1+ ψ(1))E|X |

n ∑
1�i�= j�n

P{|X |> n}

=
n

∑
k=1

P{|Xk| > n}+
(1+ ψ(1))E|X |

n
·n(n−1)P{|X |> n}

�
n

∑
k=1

P{|Xk| > n}+(1+ ψ(1))E|X | ·nP{|X |> n}

= (1+(1+ ψ(1))E|X |)
n

∑
k=1

P{|Xk| > n}.

By Lemma A.6 in Zhang and Wen (2001),(
1−P

{
max

1�k�n
|Xk| > n

})2 n

∑
k=1

P{|Xk|> n}� (1+(1+ ψ(1))E|X |)P
{

max
1�k�n

|Xk| > n

}
,
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which, together with (2.14), implies that for all large n

nP{|X |> n} =
n

∑
k=1

P{|Xk| > n} � 2(1+(1+ ψ(1))E|X |)P
{

max
1�k�n

|Xk| > n

}
.

Thus, by (2.13),
∞

∑
k=1

nr−1P{|X |> n} < ∞,

which is equivalent to E|X |r < ∞ . The condition EX = 0 has already been obtained
above. So we complete the proof. �

3. Applications

From the complete convergence, we can define the complete consistency. If a
sequence {θ̂n,n � 1} of statistical estimators converges completely to a parameter θ ,
then one says that this sequence is completely consistent, and write θ̂n → θ completely.

In the section, we will consider the complete consistency of the least-squares (LS)
estimators in the EV regression model with ψ -mixing errors. Recall that the simple
linear EV regression model is

ηk = θ + βxk + εk, ξk = xk + δk, 1 � k � n, (3.1)

where θ ,β ,x1, · · · ,xn are unknown parameters or constants, the errors (εk,δk),1 � k �
n, are random vectors and ξk,ηk,1 � k � n, are observable random variables. From
(3.1), we have

ηk = θ + β ξk +(εk −β δk), 1 � k � n.

As a usual regression model of ηk on ξk with the errors εk − β δk , we can get LS
estimators of β and θ as

β̂n = ∑n
k=1(ξk − ξn)(ηk −ηn)

∑n
k=1(ξk − ξ n)2

, θ̂n = ηn− β̂nξ n,

where ξ n = n−1 ∑n
k=1 ξk and ηn = n−1 ∑n

k=1 ηk. The notations δ n and xn are defined
in the same way. Based on these notations, we have

β̂n−β =
∑n

k=1(δk − δn)εk + ∑n
k=1(xk − xn)(εk −β δk)−β ∑n

k=1(δk − δn)2

∑n
k=1(ξk − ξ n)2

(3.2)

and
θ̂n −θ = xn(β − β̂n)+ (β − β̂n)δ n + ε n −β δn. (3.3)

The model (3.1) is called the EV model or measurement error model which was
poposed by Deaton (1985) to correct the effects of the sampling errors and is more prac-
tical than the ordinary regression model. Fuller (1987) summarized many early works
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for the EV models. The last two decades, the studies for the EV model have attracted
much attention due to its simple form and wide applicability. For the EV model with
i.i.d. errors {(εn,δn),n � 1}, Liu and Chen (2005) obtained the weak and strong consis-
tency of the LS estimators. They proved that a necessary and sufficient condition for β̂n

being weakly and strongly consistent is sn/n → ∞, where sn = ∑n
k=1(xk − xn)2. They

also proved that a necessary and sufficient condition for θ̂n being weakly consistent is
nxn/s∗n → 0, where s∗n = max{n,sn}. Miao et al. (2011) obtained convergence rates of
β̂n → β a.s. and θ̂n → θ a.s. under some conditions. They proved that if sn/n → ∞,

then
√

snn−1/2(β̂n − β ) → 0 a.s., which improves the result of Liu and Chen (2005).
For the EV model with dependent errors, the strong consistency of the LS estimators
was studied by Wang et al. (2015) and Hu et al. (2017).

As applications of Theorem 1.1, we can obtain the complete consistency of the LS
estimators for the unknown parameters, which complement the results of Liu and Chen
(2005). The first one gives the complete consistency for the unknown parameter β .

THEOREM 3.1. Under the model (3.1) , assume that {(ε,δ ),(εn,δn),n � 1} is
a sequence of identically distributed ψ -mixing random vectors with Eε = Eδ = 0 ,
Eε4 < ∞ and Eδ 4 < ∞ . Further, assume that E(εδ )−βEδ 2 �= 0. Then

β̂n → β completely if and only if sn/n → ∞,

where sn = ∑n
k=1(xk − xn)2.

Proof. Sufficiency. Assume that sn/n → ∞ . Noting that

s−1
n

n

∑
k=1

(ξk − ξ n)
2 = 1+2s−1

n

n

∑
k=1

(xk − xn)δk + s−1
n

n

∑
k=1

(δk − δn)2,

we have from (3.2) that for any Δ > 0,

P{|β̂n−β | > Δ}

= P

{
|β̂n−β | > Δ,

∣∣∣∣∣s−1
n

n

∑
k=1

(ξk − ξ n)
2−1

∣∣∣∣∣� 1/2

}

+P

{
|β̂n−β |> Δ,

∣∣∣∣∣s−1
n

n

∑
k=1

(ξk − ξn)
2 −1

∣∣∣∣∣> 1/2

}

� P

{
s−1
n

∣∣∣∣∣
n

∑
k=1

(δk − δ n)εk +
n

∑
k=1

(xk − xn)(εk −β δk)−β
n

∑
k=1

(δk − δn)2

∣∣∣∣∣> Δ/2

}

+P

{
s−1
n

∣∣∣∣∣2
n

∑
k=1

(xk − xn)δk +
n

∑
k=1

(δk − δn)2

∣∣∣∣∣> 1/2

}
.
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Therefore, to prove β̂n → β completely, it suffices to prove that

∞

∑
n=1

P

{
s−1
n

∣∣∣∣∣
n

∑
k=1

(δk − δn)εk

∣∣∣∣∣> Δ

}
< ∞, ∀Δ > 0, (3.4)

∞

∑
n=1

P

{
s−1
n

∣∣∣∣∣
n

∑
k=1

(xk − xn)εk

∣∣∣∣∣> Δ

}
< ∞, ∀Δ > 0, (3.5)

∞

∑
n=1

P

{
s−1
n

∣∣∣∣∣
n

∑
k=1

(xk − xn)δk

∣∣∣∣∣> Δ

}
< ∞, ∀Δ > 0, (3.6)

∞

∑
n=1

P

{
s−1
n

∣∣∣∣∣
n

∑
k=1

(δk − δn)2

∣∣∣∣∣> Δ

}
< ∞, ∀Δ > 0. (3.7)

Since sn/n → ∞ , we have that for all large n,

P

{
s−1
n

∣∣∣∣∣
n

∑
k=1

(δk − δn)εk

∣∣∣∣∣> Δ

}

� P

{
(n/sn) ·n−1

∣∣∣∣∣
n

∑
k=1

δkεk

∣∣∣∣∣> Δ/2

}
+P

{
(n/sn) · |ε nδ n| > Δ/2

}

� P

{
n−1

∣∣∣∣∣
n

∑
k=1

(δkεk −Eδkεk)

∣∣∣∣∣> Δ/4

}
+P

{
|ε nδ n| > Δ/2

}
.

Noting that
E|εδ |2 � (Eε4)1/2(Eδ 4)1/2 < ∞,

we have by Corollary 1.1 that

∞

∑
n=1

P

{
n−1

∣∣∣∣∣
n

∑
k=1

(δkεk −Eδkεk)

∣∣∣∣∣> Δ/4

}
< ∞.

By Corollary 1.1 again, we also have

∞

∑
n=1

P
{
|ε nδ n| > Δ/2

}
�

∞

∑
n=1

P
{
|ε n| >

√
Δ/2

}
+

∞

∑
n=1

P
{
|δ n| >

√
Δ/2

}
< ∞.

Thus (3.4) holds.
To prove (3.5), set ank = n(xk − xn)/sn for n � 1 and 1 � k � n . Then

sup
n�1

n−1
n

∑
k=1

|ank|2 = sup
n�1

n/sn < ∞.

By Theorem 1.1 with r = p = q = 2,

∞

∑
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P

{
s−1
n

∣∣∣∣∣
n

∑
k=1
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}
=

∞

∑
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P
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∑
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∣∣∣∣∣> Δn

}
< ∞,
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which implies (3.5). Similarly, (3.6) holds.
Since sn/n → ∞ , we have that for all large n,

P

{
s−1
n

∣∣∣∣∣
n

∑
k=1

(δk − δ n)2
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}
= P

{
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n

∣∣∣∣∣
n

∑
k=1

δ 2
k −nδ

2
n
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}

= P

{
s−1
n
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n
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k=1

(δ 2
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k )+nEδ 2−nδ
2
n
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k )
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}
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{
s−1
n n
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2
n
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}

� P

{
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(δ 2
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k )
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}
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{
δ

2
n > Δ/4

}
.

By Corollary 1.1,

∞

∑
n=1

P

{
n−1

∣∣∣∣∣
n

∑
k=1

(δ 2
k −Eδ 2

k )

∣∣∣∣∣> Δ/2

}
< ∞

and ∑∞
n=1 P

{
δ

2
n > Δ/4

}
< ∞ , and hence (3.7) holds.

Necessity. By the Borel-Cantelli lemma, β̂n → β completely implies

β̂n → β a.s.

Thus sn/n → ∞ by Hu et al (2017). The proof is completed. �

The following theorem provides the complete consistency for the unknown param-
eter θ .

THEOREM 3.2. Under the assumptions of Theorem 3.1, further assume that
supn�1 nx2

n/s∗n < ∞ and E(εδ )−βEδ 2 �= 0, where s∗n = max{n,sn}. Then

θ̂n → θ completely if and only if nxn/s∗n → 0.

Proof. Sufficiency. Assume that nxn/s∗n → 0. Note that

1
s∗n
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∑
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sn +nEδ 2

s∗n
+

2
s∗n

n

∑
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2
n
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and (sn +nEδ 2)/s∗n � min{1,Eδ 2} from the definition of s∗n . If∣∣∣∣∣∣
2
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n

∑
k=1
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1
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n

∑
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(δ 2
k −Eδ 2
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2
n
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∣∣∣∣∣∣� Δ′,
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then ∑n
k=1(ξk −ξ n)

2/s∗n � Δ′ , where Δ′ = min{1,Eδ 2}/2. Therefore by (3.2), for any
Δ > 0
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2
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⎭ ,

and similarly,

P
{
|(β − β̂n)δ n| > Δ

}

� P
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(
n

∑
k=1
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n

∑
k=1
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n
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k=1

(δk − δn)2
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+P

⎧⎨
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⎭ .

By the same argument as the proof of Theorem 3.1, we get that for all Δ > 0,

∞

∑
n=1

P

{∣∣∣∣∣ xn

s∗n

(
n

∑
k=1

(δk − δn)εk +
n

∑
k=1
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n

∑
k=1

(δk − δn)2
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}
< ∞

and
∞

∑
n=1

P

⎧⎨
⎩
∣∣∣∣∣∣
2
s∗n

n

∑
k=1
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which imply that ∑∞
n=1 P{|xn(β − β̂n)| > Δ} < ∞, ∀Δ > 0.

Noting that

δ n
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∑
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· 1
n
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·δ2
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δ n
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n

∑
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n
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∑
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·δ 3
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we can easily prove that

∞

∑
n=1

P

{∣∣∣∣∣δn

s∗n

n

∑
k=1

(δk − δ n)εk
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}
< ∞, ∀Δ > 0,

∞
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P

{∣∣∣∣∣δn

s∗n

n

∑
k=1

(δk − δ n)2

∣∣∣∣∣> Δ

}
< ∞, ∀Δ > 0.

We can also easily prove that

∞

∑
n=1

P

{∣∣∣∣∣δ n

s∗n

n

∑
k=1

(xk − xn)(εk −β δk)

∣∣∣∣∣> Δ

}
< ∞, ∀Δ > 0,

∞

∑
n=1

P

⎧⎨
⎩
∣∣∣∣∣∣
2
s∗n

n

∑
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(xk − xn)δk +
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(δ 2
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2
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Hence, ∑∞
n=1 P{|δ n(β − β̂n)| > Δ} < ∞, ∀Δ > 0.

Obviously, we have by Corollary 1.1 that

∞

∑
n=1

P{|ε n−β δn| > Δ} < ∞, ∀Δ > 0.

Therefore, by (3.3),

∞

∑
n=1

P{ ˆ|θn−θ | > Δ} < ∞, ∀Δ > 0.

Necessity. It is obvious that θ̂n → θ completely implies

θ̂n → θ a.s.

by the Borel-Cantelli lemma. Then nxn/s∗n → 0 by Hu et al. (2017). Hence the proof
is completed. �

Acknowledgements. The authors would like to thank the referee for the helpful
comments. The research of Soo Hak Sung is supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government (MSIT)
(No. 2020R1F1A1A01050160).



864 Y. YI, P. CHEN AND S. H. SUNG

RE F ER EN C ES

[1] L. E. BAUM, M. KATZ, Convergence rates in the law of large numbers, Trans. Amer. Math. Soc. 120
(1965), 108–123.

[2] J. R. BLUM, D. L. HANSON, L. H. KOOPMANS, On the strong law of large numbers for a class of
stochastic processes, Z. Wahrsch. Verw. Gebiete 2 (1963), 1–11.

[3] P. CHEN, T.-C. HU, A. VOLODIN, Limiting behaviour of moving average processes under negative
association assumption, Theory Probab. Math. Statist. 77 (2008), 165–176 (Teor Imovir ta Matem
Statyst (2007) 77: 149–160).

[4] P. CHEN, S. H. SUNG, On complete convergence and complete moment convergence for weighted
sums of ρ∗ -mixing random variables, J. Ineq. Appl. 2018 (2018), 121.

[5] A. DEATON, Panel data from time series of cross-sections, J. Econometrics 30 (1985), 109–126.
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