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MONOTONIC PROPERTIES FOR RATIO OF THE

GENERALIZED (p,k)–POLYGAMMA FUNCTIONS

LI YIN

(Communicated by L. Mihoković)

Abstract. In this paper, we show monotonic properties for ratio of the generalized (p,k) -polygamma
functions by using Mehrez-Sitnik method. The new inequalities extend the known result ob-
tained by Feng Qi.

1. Introduction

The Euler gamma function is defined by

Γ(x) =
∫ ∞

0
tx−1e−tdt, x > 0. (1.1)

The logarithmic derivative of Γ(x) is called the psi or digamma function. That is

ψ(x) =
d
dx

lnΓ(x) =
Γ′(x)
Γ(x)

= −γ − 1
x

+
∞

∑
n=1

x
n(n+ x)

, (1.2)

where γ = 0.5772 . . . is the Euler-Mascheroni constant, and ψ(m)(x) for m ∈ N are
known as the polygamma functions. The gamma, digamma and polygamma functions
play an important role in the theory of special functions, and have many applications in
other many branches, such as statistics, fractional differential equations, mathematical
physics and theory of infinite series. The reader may see references [5, 7, 9, 14]. some
of the work about the complete monotonicity, convexity and concavity, and inequalities
of these special functions may refer to [1, 2, 4, 8, 17, 18, 19, 20, 21, 22, 23, 24].

In [6], R. Diaz and E. Pariguan defined the k -analogue of the gamma function for
k > 0 and x > 0 as

Γk(x) =
∫ ∞

0
tx−1e−

tk
k dt = lim

n→∞

n!kn(nk)
x
k−1

(x)n,k
(1.3)
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where lim
k→1

Γk(x) = Γ(x) . Similarly, the k -analogue of the digamma and polygamma

functions are defined by ψk(x) = d
dx logΓk(x) = Γ′

k(x)
Γk(x)

and ψ(m)
k (x) = dm

dxm logΓk(x) for
x > 0, respectively.

Later, Nantomah, Prempeh and Twum [13] introduced a new (p;k)-analogue of
gamma function with two parameters as follows: for p,k > 0,

Γp,k(x) =
(p+1)!kp+1(pk)

x
k−1

(x)p,k
,x > 0 (1.4)

where (x)p,k = x(x+ k)(x+2k) . . . (x+ pk) and lim
p→∞

Γp,k(x) = Γk(x). Furthermore, we

naturally define the (p,k)- analogue of the digamma and polygamma functions as fol-

lows: ψp,k(x) =
Γ′

p,k(x)
Γp,k(x)

and ψ(m)
p,k (x) = dm

dxm ψp,k(x). The functions ψp,k(x) and ψ(m)
p,k (x)

satisfy the following series and integral representations.

ψp,k(x) =
1
k

ln(pk)−
p

∑
n=0

1
nk+ x

=
1
k

ln(pk)−
∫ ∞

0

1− e−k(p+1)t

1− e−kt e−xtdt

(1.5)

and

ψ(m)
p,k (x) = (−1)mm!

p

∑
n=0

1
(nk+ x)m+1

= (−1)m+1
∫ ∞

0

1− e−k(p+1)t

1− e−kt tme−xtdt.

(1.6)

For more details, the reader may see references [11, 12].
Let α = (α1,α2, · · · ,αn) and β = (β1,β2, · · · ,βn) ∈ R

n . A n -tuple α is said to
strictly majorize β (in symbols α � β ) if (α[1],α[2], · · · ,α[n]) �= (β[1],β[2], · · · ,β[n]) ,
∑k

i=1 α[i] � ∑k
i=1 β[i] for 1 � k � n−1, and ∑n

i=1 αi = ∑n
i=1 βi where α[1] � α[2] � · · ·�

α[n],β[1] � β[2] � · · · � β[n] are rearrangements of α and β in a descending order.
In [3], it was discovered that if m � 2, then

m−1
m

<

[
ψ(m)(x)

]2

ψ(m−1)(x)ψ(m+1)(x)
<

m
m+1

(1.7)

holds true for x > 0.
In [[15], Remark 6.2], F. Qi guessed that,
(1) for m,n ∈ N , the function

Qm,n(x) =
ψ(m+n)(x)

ψ(n)(x)ψ(m)(x)
(1.8)

should be decreasing on (0,∞) ;
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(2) for m,n, p,q ∈ N such that (p,q) � (m,n) , the function

Qm,n;p,q(x) =
ψ(m)(x)ψ(n)(x)
ψ(p)(x)ψ(q)(x)

(1.9)

should be decreasing on (0,∞) ;
Later, F. Qi [16] proved the above decreasing properties by virtue of convolution

theorem for the Laplace transforms, with the aid of three monotonicity rules for the
ratios of two functions, of two definite integrals, and of two Laplace transforms, in
terms of the majorization, and in the light of other analytic techniques.

Motivated by the work of F. Qi, we generalized the inequality (1.9) to a decreasing
monotonic property for ratio of the generalized (p,k)-polygamma functions. It is worth
noting that our proof is different, and very simple.

THEOREM 1.1. For p,k > 0 and every s,t,λ ,μ ∈ N such that (λ ,μ)� (s,t) , the
function

Qs,t,λ ,μ,p,k(x) =
ψ(s)

p,k(x)ψ
(t)
p,k(x)

ψ(λ )
p,k (x)ψ(μ)

p,k (x)

is decreasing on (0,∞) onto the interval
(

(s−1)!(t−1)!
(λ−1)!(μ−1)! ,

s!t!
λ !μ!

)
. As a result, for p,k > 0

and every s, t,λ ,μ ∈ N such that (λ ,μ) � (s,t) , we have

(s−1)!(t−1)!
(λ −1)!(μ −1)!

< Qs,t,λ ,μ,p,k(x) <
s!t!

λ !μ!
(1.10)

is valid on (0,∞).

REMARK 1.1. By taking p → ∞ and k = 1 in Theorem 1.1, we obtain the Theo-
rem 4.1 in [16].

2. Lemmas

LEMMA 2.1. ([10, 26]) Let {an} and {bn},(n = 0,1,2, · · ·) be real numbers such
that bn > 0 and { an

bn
}n�0 is increasing(decreasing), then { a0+a1+···+an

b0+b1+···+bn
} is increas-

ing(decreasing).

LEMMA 2.2. ([25]) For p,k,x > 0 and every m � 1 , the following limit identity
holds true:

lim
x→0+

xm+1ψ(m)
p,k (x) =

(−1)m(m−1)!
k

.
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3. Proof of Theorem 1.1

Without losing the generality, we suppose λ � μ . By using (1.6) and direct com-
putation, we have

ψ(s)
p,k (x)ψ(t)

p,k (x)

ψ(λ )
p,k (x)ψ(μ)

p,k (x)
=

s!t!
p
∑

n=0

1
(nk+x)s+1 .

p
∑

n=0

1
(nk+x)t+1

λ !μ!
p
∑

n=0

1
(nk+x)λ+1 .

p
∑

n=0

1
(nk+x)μ+1

=
s!t!

λ !μ!

p2

∑
n=0

n
∑
i=0

1
(ik+x)s+1[(n−i)k+x]t+1

p2

∑
n=0

n
∑
i=0

1
(ik+x)λ+1[(n−i)k+x]μ+1

=
s!t!

λ !μ!

p2

∑
n=0

An (x)

p2

∑
n=0

Bn (x)

where

An (x) =
n

∑
i=0

1

(ik+ x)s+1 [(n− i)k+ x]t+1

and

Bn (x) =
n

∑
i=0

1

(ik+ x)λ+1 [(n− i)k+ x]μ+1
.

Let us define sequences {αi}i�0 ,{βi}i�0 and {ωi}i�0 by

αi =
1

(ik+ x)s+1 [(n− i)k+ x]t+1

βi =
1

(ik+ x)λ+1 [(n− i)k+ x]μ+1

and

ωi =
αi

βi
=

[(n− i)k+ x]μ−t

(ik+ x)s−λ .

It follows that
ωi+1

ωi
=

[(n− i−1)k+ x]μ−t (ik+ x)s−λ

[(i+1)k+ x]s−λ [(n− i)k+ x]μ−t

Noting the fact λ + μ = s+ t and μ � t , we easily obtain ωi+1
ωi

� 1 is equivalent to

[(n− i−1)k+ x]μ−t (ik+ x)μ−t � [(i+1)k+ x]μ−t [(n− i)k+ x]μ−t .
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If μ �= t , this is equivalent to

[(n− i−1)k+ x] (ik+ x) < [(i+1)k+ x] [(n− i)k+ x]

⇔−nk2−2kx < 0.

If μ = t , we easily obtain λ = s , and ωi+1 = ωi . So, we conclude that the sequence

{ωi}i�0 is decreasing and consequently the sequence
{

An(x)
Bn(x)

}
n�0

is also decreasing by

Lemma 2.1. Hence using Lemma 2.1 again, we prove that the function Qs,t;λ ,μ,p,k (x)
is decreasing on (0,∞) . From the identity

ψ(m)
p,k (x+ k) = (−1)m m!

xm+1 − (−1)m m!

(x+ pk+ k)m+1 + ψ(m)
p,k (x) ,

and Lemma 2.2, we easily obtain

lim
x→0+

Qs,t;λ ,μ,p,k (x) =
s!t!

λ !μ!
,

and

lim
x→∞

Qs,t;λ ,μ,p,k (x) =
(s−1)!(t−1)!
(λ −1)!(μ −1)!

.

This completes the proof.

4. A remark

In [27], Li Yin et. al. proved the following result: For p,k > 0 and every positive
integer m � 4, the function

φm,p,k(x) =

[
ψ(m)

p,k (x)
]4

ψ(m−3)
p,k (x)ψ(m−1)

p,k (x)ψ(m+1)
p,k (x)ψ(m+3)

p,k (x)

is strictly decreasing on (0,∞) with

lim
x→∞

φm,p,k(x) =
(m−3)(m−2)(m−1)2

m2(m+1)(m+2)
(4.1)

and

lim
x→0

φm,p,k(x) =
(m−2)(m−1)m2

(m+1)2(m+2)(m+3)
. (4.2)

As a result, for p,k,x > 0 and every positive integer m � 4, we have

(m−3)(m−2)(m−1)2

m2(m+1)(m+2)
<

[
ψ(m)

p,k (x)
]4

ψ(m−3)
p,k (x)ψ(m−1)

p,k (x)ψ(m+1)
p,k (x)ψ(m+3)

p,k (x)

<
(m−2)(m−1)m2

(m+1)2(m+2)(m+3)
.

Naturally, we can conjecture Theorem 1 to the more general case.



920 L. YIN

CONJECTURE 4.1. For p,k > 0 and every α1,α2, · · ·αn,β1,β2, · · ·βn ∈ N such
that (α1,α2, · · · ,αn) ≺ (β1,β2, · · · ,βn) , the function

Qα1,α2,···,αn;β1,β2,···,βn,p,k(x) =
ψ(α1)

p,k (x) · · ·ψ(αn)
p,k (x)

ψ(β1)
p,k (x) · · ·ψ(βn)

p,k (x)

is decreasing on (0,∞) onto the interval
(

(α1−1)!···(αn−1)!
(β1−1)!···(βn−1)! ,

(α1)!···(αn)!
(β1)!···(βn)!

)
.
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