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OF SPLIT MIXED EQUILIBRIUM PROBLEMS AND FIXED

POINT PROBLEMS OF λ –HYBRID MULTIVALUED MAPPINGS

WENLONG SUN, YANQIU LIU ∗ , YUANFENG JIN ∗ AND CHOONKIL PARK ∗

(Communicated by J. K. Kim)

Abstract. In this paper, we present an iterative algorithm for solving split mixed equilibrium
problems, fixed point problems of an infinite family of nonexpansive mappings and fixed point
problems of λ -hybrid multivalued mappings in real Hilbert spaces. We prove that the proposed
iterative algorithm converges weakly to a common solution of the considered problems under
some mild assumptions.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖ , respectively.
Let C be a nonempty closed convex subset of H and Θ : C×C → R be a nonlinear
bifunction. Let ψ : H → R be a function and F : C → H be a nonlinear mapping. Let
T : C →C be an operator and Fix(T ) = {u ∈C|u = Tu}.

Recall that an equilibrium problem is to find an element x† ∈C such that

Θ(x†,x) � 0, ∀x ∈C, (1.1)

which was initially introduced by Blum and Oettli [3]. Equilibrium problems are inter-
esting and useful, since they provide a novel and unified method to deal with various
problems arising in pure and applied sciences such as image reconstruction, network,
economics, finance, ecology, optimization, elasticity and transportation. A large num-
ber of important problems can be regarded as special cases of equilibrium problems,
for instance, fixed point problem, variational inequalities problem, game theory and
Nash equilibrium problem. The iterative methods has been studied for the equilibrium
problem (1.1) by many authors (see [9], [11], [19], [22], [23]).

More generally, we consider the following mixed equilibrium problem: find z� ∈C
such that

Θ(z�,y)+ ψ(y)−ψ(z�)+ 〈Fz�,y− z�〉 � 0, ∀y ∈C. (1.2)
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The set of solutions of the mixed equilibrium problem (1.2) is denoted by MEP(Θ,F,ψ) .
If F ≡ 0, then the mixed equilibrium problem (1.2) becomes the following mixed equi-
librium problem: find z� ∈C such that

Θ(z�,y)+ ψ(y)−ψ(z�) � 0, ∀y ∈C. (1.3)

The set of solutions of the mixed equilibrium problem (1.3) is denoted by MEP(Θ,ψ) .
The mixed equilibrium problem was studied by Ceng et al. [6].

The another motivation of this article is to be the split common fixed point problem
which aims to find a point u such that

u ∈ Fix(T ) and Au ∈ Fix(S). (1.4)

The split common fixed point problem can be regarded as a generalization of the split
feasibility problem. Recall that the split feasibility problem is to find a point satisfying

u ∈C and Au ∈ Q,

where C and Q are two nonempty closed convex subsets of real Hilbert spaces H1

and H2 , respectively and A : H1 → H2 is a bounded linear operator. Problem (1.4) was
firstly introduced by Censor and Segal [7]. Note that solving (1.4) can be translated to
solve the fixed point equation

u = S(u− τA∗(I−T )Au), τ > 0.

Whereafter, Censor and Segal [7] proposed an algorithm for directed operators. Since
then, there has been growing interest in the split common fixed point problem [1, 5].

In 2013, Kazmi and Rizvi [10] introduced and studied a split equilibrium problem.
In 2014, Bnouhachem [4] suggested an iterative scheme for finding the approximate
element of the common set of solutions of a split equilibrium problem and a hierarchical
fixed point problem in a real Hilbert space. In 2016, Suantai et al. [16] introduced
and studied iterative schemes for solving split equilibrium problems and fixed point
problems of nonspreading multi-valued mappings in Hilbert spaces and proved that
the modified Mann iteration converges weakly to a common solution of the considered
problems.

In this article, we study the following split equilibrium problem and fixed point
problem to find an element z� such that

z� ∈ Fix(S)
⋂

MEP(Θ1,F1,ψ1) and Az� ∈
∞⋂

n=1

Fix(Tn)
⋂

MEP(Θ2,F2,ψ2). (1.5)

Subsequently, we construct a new algorithm for solving the split common fixed point
problem (1.5). Weak convergence theorems are established under some mild assump-
tions.
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2. Preliminaries

In this section, we collect some tools including some definitions, useful inequali-
ties and lemmas which will be used to derive our main results in the next section.

Now we give some definitions related to the involved operators.

DEFINITION 2.1. [2] An operator T : C −→C is called nonexpansive if ‖Tu−
Tv‖ � ‖u− v‖ for all u,v ∈C .

DEFINITION 2.2. [2] An operator T : C −→ C is called firmly nonexpansive if
‖Tu−Tv‖2 � ‖u− v‖2−‖(I−T )u− (I−T )v‖2 for all u,v ∈C , or equivalently,

〈Tu−Tv,u− v〉� ‖Tu−Tv‖2

for all u,v ∈C .

DEFINITION 2.3. [2] An operator T : C −→C is called α -averaged if there ex-
ists a nonexpansive operator U such that T = (1−α)I + αU , where I is an identity
mapping.

DEFINITION 2.4. [2] An operator T :C −→C is said to be quasinonexpansive if
‖Tx− x†‖ � ‖x− x†‖ for all x ∈C and x† ∈ Fix (T ) , or equivalently,

〈x−Tx,x− x†〉 � 1
2
‖x−Tx‖2

for all x ∈C and x† ∈ Fix (T ) .

REMARK 2.5. Obviously, if Fix(T ) 
= /0 , then the nonexpansive operator T is
quasinonexpansive.

DEFINITION 2.6. [2] An operator T : C −→C is said to be strictly quasinonex-
pansive if ‖Tx− x†‖ < ‖x− x†‖ for all x ∈C and x† ∈ Fix (T ) .

REMARK 2.7. It is well known that an averaged operator T with Fix(T ) 
= /0 is
strictly quasinonexpansive. For more details, see [2].

DEFINITION 2.8. [2] An operator F : C → H is said to be α -inverse strongly
monotone if 〈Fx− Fx†,x− x†〉 � α‖Fx− Fx†‖2 for some constant α > 0 and all
x,x† ∈C.

Usually, some additional smoothness properties of mappings are required in the
study of fixed point algorithms such as demiclosedness.

DEFINITION 2.9. [2] An operator T is said to be demiclosed at w if, for any
sequence {un} which converges weakly to u∗ and Tun → w , Tu∗ = w .
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Recall that the projection from H onto C , denoted by PC , assigns to each u ∈ H ,
the unique point PCu ∈C satisfying

‖u−PCu‖ = inf{‖u− v‖ : v ∈C}.

Then PC can be characterized by

〈u−PCu,v−PCu〉 � 0

for all u ∈ H,v ∈C , and PC : H →C is firmly nonexpansive, that is,

〈u − v,PCu−PCv〉 � ‖PCu−PCv‖2

⇐⇒ ‖PCu−PCv‖2 � ‖u− v‖2−‖(I−PC)u− (I−PC)v‖2

for all u,v ∈ H (see [15]).
For all u,v ∈ H , the following conclusions hold:

‖tu+(1− t)v‖2 = t‖u‖2 +(1− t)‖v‖2− t(1− t)‖u− v‖2, t ∈ [0,1],

‖u+ v‖2 = ‖u‖2 +2〈u,v〉+‖v‖2

and

‖u+ v‖2 � ‖u‖2 +2〈v,u+ v〉.

In the following text, we employ the following notations:
• un ⇀ u stands for that {un} converges weakly to u ;
• un → u stands for that {un} converges strongly to u ;
• Fix(T ) means the set of fixed points of T ;
• ωw(un) means the set of cluster points in the weak topology, that is,

ωw(un) = {u : ∃unj ⇀ u}.

DEFINITION 2.10. [2] A sequence {xn} is called Fejér-monotone with respect
to a given nonempty set Ω if for every x† ∈ Ω ,

‖xn+1− x†‖ � ‖xn− x†‖

for all n � 0.

LEMMA 2.11. [20] Let H be a Hilbert space and C(
= /0)⊂H be a closed convex
set. If F : C → H is an α -inverse strongly monotone operator, then

‖x− γFx− (y− γFy)‖2 � ‖x− y‖2 + γ(γ −2α)‖Fx−Fy‖2, ∀x,y ∈C.

Especially, I− γF is nonexpansive provided 0 � γ � 2α .
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LEMMA 2.12. [8] Let C be a nonempty closed convex subset of a real Hilbert
space H . Let T : C → C be a nonexpansive mapping. Then I − T is demi-closed at
zero. That is, if xn ⇀ x ∈C and xn −Txn → 0 , then x = Tx.

Let {Tn}∞
n=1 :C→C be an infinite family of nonexpansivemappings and λ1,λ2, · · ·

be real numbers such that 0 � λi � 1 for all i ∈ N . For each n ∈ N , define a mapping
Wn of C into C as follows:

Un,n+1 = I,

Un,n = λnTnUn,n+1 +(1−λn)I,
Un,n−1 = λn−1Tn−1Un,n +(1−λn−1)I,
...

Un,k = λkTkUn,k+1 +(1−λk)I,
Un,k−1 = λk−1Tk−1Un,k +(1−λk−1)I,
...

Un,2 = λ2T2Un,3 +(1−λ2)I,
Wn = Un,1 = λ1T1Un,2 +(1−λ1)I.

Such a mapping Wn is called the W -mapping generated by T1,T2, · · · ,Tn and λ1,λ2, · · · ,λn .
We have the following crucial lemma concerning Wn .

LEMMA 2.13. [14] Let {Tn}∞
n=1 : C → C be an infinite family of nonexpansive

mappings such that
⋂∞

n=1 Fix (Tn) 
= /0 . Let λ1,λ2, · · · be real numbers such that 0 �
λi � b < 1 for all i � 1 . Then we have the following:

(1) For any x ∈C and k � 1 , limn→∞Un,kx exists;
(2) Fix (W ) =

⋂∞
n=1 Fix (Tn) , where Wx = limn→∞Wnx = limn→∞Un,1x, ∀x ∈C;

(3) For any bounded sequence {xn} ⊂C, limn→∞Wxn = limn→∞Wnxn .

LEMMA 2.14. [21] If the sequence {xn} is Fejér monotone with respect to Ω ,
then we have the following conclusions:

(i) xn ⇀ x† ∈ Ω if and only if ωw(xn) ⊂ Ω;
(ii) the sequence {PΩxn} converges strongly;
(iii) if xn ⇀ x† ∈ Ω , then x† = limn→∞ PΩxn .

We denote by CB(C) and K(C) the collection of all nonempty closed bounded
subsets and nonempty compact subsets of C , respectively. The Hausdorff metric H
on CB(C) is defined by

H (A,B) := max{sup
x∈A

dist(x,B),sup
y∈B

dist(y,A)}, ∀A,B ∈CB(C),

where dist(x,B) = inf{d(x,y) : y ∈ B} . Let S : C →CB(C) be a multivalued mapping.
An element x ∈C is said to be a fixed point of S if x ∈ Sx . The set of all fixed points
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of S is denoted by Fix(S) , that is, Fix(S) = {x ∈C : x ∈ Sx} . Recall that a multivalued
mapping S : C →CB(C) is said to be

(i) nonexpansive if

H (Sx,Sy) � ‖x− y‖, x,y ∈C;

(ii) quasinonexpansive if Fix(S) 
= /0 and

H (Sx,Sx�) � ‖x− x�‖, x ∈C,x� ∈ Fix(S);

(iii) nonspreading if

2H (Sx,Sy) � dist(y,Sx)2 +dist(x,Sy)2, ∀x,y ∈C;

(iv) λ -hybrid if there exists λ ∈ R such that

(1+ λ )H (Sx,Sy)2 � (1−λ )‖x− y‖2+ λdist(y,Sx)2 + λdist(x,Sy)2, ∀x,y ∈C.

REMARK 2.15. It can be readily seen that 0-hybrid is nonexpansive, 1-hybrid is
nonspreading, and if S is λ -hybrid with Fix(S) 
= /0 , then S is quasinonexpansive. It is
well known that if S is λ -hybrid, then Fix(S) is closed. In addition, if S satisfies the
condition: Sx� = x� for all x� ∈ Fix(S) , then Fix(S) is also convex. For more details,
please see [17].

The following result is a demiclosedness principle for λ -hybrid multivalued map-
ping in a real Hilbert space.

LEMMA 2.16. [17] Let C be a nonempty closed convex subset of a real Hilbert
space H and S :C → K(C) be a λ -hybrid multivalued mapping. If {xn} is a sequence
in C such that xn ⇀ x and yn ∈ Sxn with ‖xn− yn‖→ 0 , then x ∈ Sx .

From now on, we assume that Θ : C×C → R satisfies the following conditions:
(H1) Θ(x,x) � 0 for all x ∈C ;
(H2) Θ is monotone, that is, Θ(x,y)+ Θ(y,x) � 0 for all x,y ∈C ;
(H3) For each y ∈C , the function x → Θ(x,y) is upper-hemicontinuous, that is,

limsup
t→0

Θ(tz+(1− t)x,y) � Θ(x,y), ∀x,y,z ∈C, t ∈ [0,1];

(H4) For each x∈C , the function y→Θ(x,y) is convex and lower semi-continuous.

LEMMA 2.17. [13] Let Θ : C×C → R be a nonlinear bifunction. Let ψ : C →
R be a convex lower semi-continuous function. For any r > 0 and x ∈ H , define a
mapping Tr : H →C as follows:

T Θ
r (x) =

{
z ∈C : Θ(z,y)+ ψ(y)−ψ(z)+

1
r
〈y− z,z− x〉� 0, ∀y ∈C

}
.

Suppose that the following conditions are satisfied:
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(i) Θ satisfies the condition (H1)–(H4);
(ii) For each x ∈ H , there exists a compact subset Dx ⊂ H and yx ∈C

⋂
Dx such

that, for all z ∈C\Dx,

Θ(z,yx)+ ψ(yx)−ψ(z)+
1
r
〈yx − z,z− x〉< 0.

Then we have the following results:
(1) For each x ∈ H , TΘ

r (x) 
= /0 and T Θ
r (x) is single-valued;

(2) TΘ
r : H →C is firmly nonexpansive, that is, for all x,y ∈ H ,

‖Trx−Try‖2 � 〈Trx−Try,x− y〉;
(3) Fix(TΘ

r ) = MEP(Θ,ψ) .

REMARK 2.18. It is easy to see that Fix(T Θ
r (I− rF)) = MEP(Θ,F,ψ) .

LEMMA 2.19. [12, 18] Assume that {αn} is a sequence of nonnegative real num-
bers such that

αn+1 � (1− γn)αn + δn, n ∈ N,

where {γn} is a sequence in (0,1) and {δn} is a sequence such that
(1) ∑∞

n=1 γn = ∞;
(2) limsupn→∞

δn
γn

� 0 or ∑∞
n=1 |δn| < ∞ .

Then limn→∞ αn = 0.

3. Main results

In this section, assume that H1 and H2 are two real Hilbert spaces. Let C(
= /0) ⊂
H1 and Q(
= /0) ⊂ H2 be closed convex sets. We use 〈·, ·〉 to denote the inner product
and ‖ · ‖ stands for the corresponding norm.

Next, we show a lemma which will be very useful for our main theorem.

LEMMA 3.1. Let T1 : C → C be a strictly quasinonexpansive operator and T2 :
C →C be a quasinonexpansive operator. Suppose that Fix (T1)

⋂
Fix (T2) 
= /0 . Then

Fix(T1)
⋂

Fix(T2) = Fix(T1T2).

Proof. Fix (T1)
⋂

Fix (T2) ⊂ Fix (T1T2) is obvious. We only need to prove that
Fix (T1T2) ⊂ Fix (T1)

⋂
Fix (T2). Let x� ∈ Fix(T1T2) and z ∈ Fix(T1)

⋂
Fix(T2) . We

consider the following two cases:
(i) The case T2x� ∈Fix(T1) . Then T2x� = T1T2x� = x� . Thus x� ∈Fix(T2)

⋂
Fix(T1) .

(ii) The case T2x� /∈ Fix(T1) and hence x� /∈ Fix(T2) . Since T1 is strictly quasi-
nonexpansive, we have that ‖x� − z‖ = ‖T1T2x� − z‖ < ‖T2x� − z‖ � ‖x�− z‖ , which is
a contradiction. �

In the sequel, we state several assumptions and symbols:
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(A1): A : H1 −→ H2 is a bounded linear operator with its adjoint A∗ .
(A2): {Tn}∞

n=1 : H2 → H2 is an infinite family of nonexpansive mappings given in
the statement of Lemma 2.13.

(A3): S : H1 −→ K(H1) is a λ -hybrid multivalued mapping with Sp = {p} for
all p ∈ Fix(S) .

(A4): 0 < liminfn→∞ αn � limsupn→∞ αn < 1.
(A5): F1 : H1 → H1 is a θ1 -inverse strongly monotone operator.
(A6): F2 : H2 → H2 is a θ2 -inverse strongly monotone operator.
(A7): Ω = {z�|z� ∈Fix(S)

⋂
MEP(Θ1,F1,ψ1) and Az� ∈⋂∞

n=1 Fix(Tn)
⋂

MEP(Θ2,F2,
ψ2)} .

Throughout this paper, we assume that Ω 
= /0 .
In the sequel, we present the following iterative algorithm to solve (1.5).

ALGORITHM 3.2. Let x1 ∈H1 be an initial value. Let {αn} be a real number se-
quence in (0,1) . Let ς ∈ (0,2) , r1 ∈ (0,2θ1) and r2 ∈ (0,2θ2) be three real constants.
Assume that a sequence {xn} is given. For each xn , compute

yn = xn−TΘ1
r1 (I− r1F1)xn,

zn = Axn−WnT
Θ2
r2 (I− r2F2)Axn.

Case 1. If ‖yn+A∗zn‖ 
= 0, then we continue to construct un and xn+1 via the following
manner:

un = xn− ςτn(yn +A∗zn),
xn+1 = αnxn +(1−αn)wn, wn ∈ Sun,

where

τn =
‖yn‖2 +‖zn‖2

‖yn +A∗zn‖2 .

Case 2. If ‖yn + A∗zn‖ = 0, then we continue and construct xn+1 via the following
manner:

xn+1 = αnxn +(1−αn)wn, wn ∈ Sxn.

REMARK 3.3. Note that Wn and W are averaged operators and therefore strictly
quasinonexpansive operators (see [2]). By Lemma 3.1, we obtain that

Fix(WnT
Θ2
r2 (I− r2F2)) = Fix(Wn)

⋂
MEP(Θ2,F2,ψ2)

and
Fix(WT Θ2

r2 (I− r2F2)) = Fix(W )
⋂

MEP(Θ2,F2,ψ2).

From now on, we will divide our main result into several propositions.
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PROPOSITION 3.4. ‖yn +A∗zn‖ = 0 if and only if xn ∈ Ωn , where

Ωn = {z�|z� ∈ MEP(Θ1,F1,ψ1) and Az� ∈ Fix(Wn)
⋂

MEP(Θ2,F2,ψ2)}.
Evidently, Ω ⊂ Ωn .

Proof. Note that Fix(Wn) =
⋂n

j=1 Fix(Tj) . It is obvious that if xn ∈ Ωn then ‖yn +
A∗zn‖= 0. To see the converse, assume that ‖yn+A∗zn‖= 0. By Lemma 2.17, we have
that T Θ1

r1 (I− r1F1) and WnT
Θ2
r2 (I− r2F2) are nonexpansive. Then, for each x† ∈ Ωn , in

the light of Definition 2.4, we have

0 = 〈yn +A∗zn,xn− x†〉
= 〈xn −TΘ1

r1 (I− r1F1)xn,xn − x†〉+ 〈A∗(I−WnT
Θ2
r2 (I− r2F2))Axn,xn − x†〉

= 〈xn −TΘ1
r1 (I− r1F1)xn,xn − x†〉+ 〈(I−WnT

Θ2
r2 (I− r2F2))Axn,Axn−Ax†〉

� 1
2
(‖xn−TΘ1

r1 (I− r1F1)xn‖2 +‖(I−WnT
Θ2
r2 (I− r2F2))Axn‖2)

=
1
2
(‖yn‖2 +‖zn‖2).

(3.1)

It follows that

‖xn−TΘ1
r1 (I− r1F1)xn‖2 +‖(I−WnT

Θ2
r2 (I− r2F2))Axn‖2 = 0,

which implies that xn ∈ Fix(T Θ1
r1 (I− r1F1)) and Axn ∈ Fix(WnT

Θ2
r2 (I− r2F2)) . Accord-

ing to Remark 3.3, we have that xn ∈MEP(Θ1,F1,ψ1) and Axn ∈ Fix(Wn)
⋂

MEP(Θ2,
F2,ψ2) . That is, xn ∈ Ωn . This completes the proof. �

PROPOSITION 3.5. The sequence {xn} generated by Algorithm 3.2 is bounded.

Proof. Let x� ∈Ω . Then TΘ1
r1 (I−r1F1)x� = x� , Sx� = {x�} and T Θ2

r2 (I−r2F2)Ax� =
TnAx� = Ax� for all n � 1. First, in Case 1, by virtue of (3.1), we have

‖un− x�‖ = ‖xn− x�− ςτn(yn +A∗zn)‖2

� ‖xn− x�‖2 + ς2τ2
n‖yn +A∗zn‖2−2〈ςτn(yn +A∗zn),xn − x�〉

� ‖xn− x�‖2 + ς2τ2
n‖yn +A∗zn‖2− ςτn(‖yn‖2 +‖zn‖2)

� ‖xn− x�‖2− ς(1− ς)
(‖yn‖2 +‖zn‖2)2

‖yn +A∗zn‖2 .

(3.2)

Since ‖wn − x�‖ � H (Sun,Sx�) � ‖un− x�‖ , by Remark 2.15 and (3.2), we have that

‖xn+1− x�‖ = ‖αnxn +(1−αn)wn − x�‖
= ‖αn(xn − x�)+ (1−αn)(wn − x�)‖
� αn‖xn− x�‖+(1−αn)‖wn − x�‖
� αn‖xn− x�‖+(1−αn)‖un− x�‖
� αn‖xn− x�‖+(1−αn)‖xn− x�‖
� ‖xn− x�‖.
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In Case 2, we can obtain that ‖wn − x�‖ � H (Sxn,Sx�) � ‖xn − x�‖ and conse-
quently,

‖xn+1− x�‖ = ‖αnxn +(1−αn)wn − x�‖
� αn‖xn− x�‖+(1−αn)‖xn− x�‖
� ‖xn− x�‖.

Hence, ‖xn+1− x�‖ � ‖xn− x�‖, which implies that the sequence {xn} is Fej é r mono-
tone with respect to Ω andlimn→∞ ‖xn− x�‖ exists. So the sequence {xn} is bounded.

�

THEOREM 3.6. Under the assuptions (A1)–(A7) , the sequence {xn} generated
by Algorithm 3.2 converges weakly to a solution x̂ ∈ Ω , where x̂ = limn→∞ PΩxn .

Proof. Let x� ∈ Ω . We will show that every weak cluster point of the sequence
{xn} belongs to the solution set, that is, ωw(xn) ⊂ Ω . By the boundedness of the
sequence {xn} , we can assume that there exists a subsequence {xn j} such that xn j ⇀ x̂ .
Furthermore, we can also assumee that the sequence {xn j} satisfies Case 1. Hence

‖xn j+1− x�‖2

= ‖αn j(xn j − x�)+ (1−αn j)(wn − x�)‖2

� αn j‖(xn j − x�)‖2 +(1−αn j)‖wnj − x�‖2−αn j(1−αn j)‖xn j −wnj‖2

� αn j‖(xn j − x�)‖2 +(1−αn j)‖unj − x�‖2−αn j(1−αn j)‖xn j −wnj‖2

� ‖xn j − x�‖2− (1−αn j)ς(1− ς)
(‖yn j‖2 +‖zn j‖2)2

‖yn j +A∗zn j‖2

−αn j(1−αn j)‖xn j −wnj‖2.

Thus we have

(1−αn j)ς(1− ς)
(‖yn j‖2 +‖zn j‖2)2

‖yn j +A∗zn j‖2 + αn j(1−αn j)‖xn j −wnj‖2

� ‖xn j − x�‖2−‖xn j+1− x�‖2,

which implies that

lim
j→∞

(‖yn j‖2 +‖zn j‖2)2

‖yn j +A∗zn j‖2 = 0 (3.3)

and

lim
j→∞

‖xn j −wnj‖ = 0 (3.4)



ITERATIVE ALGORITHMS FOR COMMON SOLUTIONS OF PROBLEMS 1071

due to the assumption (A4). It follows from (3.3) that

lim
j→∞

‖xn j −unj‖ = lim
j→∞

‖ςτn j (yn j +A∗zn j )‖ = ς lim
j→∞

‖yn j‖2 +‖zn j‖2

‖yn j +A∗zn j‖
= 0.

This together with (3.4) implies that

lim
j→∞

‖unj −wnj‖ = 0. (3.5)

By the boundedness of the sequence {yn +A∗zn} , it follows from (3.3) that

lim
j→∞

‖yn j‖2 +‖zn j‖2 = 0,

which implies that

lim
j→∞

‖yn j‖ = lim
j→∞

‖xn j −TΘ1
r1 (I− r1F1)xn j‖ = 0

and

lim
j→∞

‖zn j‖ = lim
j→∞

‖Axnj −WnjT
Θ2
r2 (I− r2F2)Axnj‖ = 0. (3.6)

Note that TΘ1
r1 (I − r1F1) and WnT

Θ2
r2 (I − r2F2) is nonexpansive. By Lemma 2.12, we

have that x̂ ∈ Fix(T Θ1
r1 (I− r1F1) and Ax̂ ∈ Fix(WnT

Θ2
r2 (I− r2F2)) . By the boundedness

of the sequence {TΘ2
r2 (I− r2F2)Axnj} and Lemma 2.13, we obtain that

lim
j→∞

‖WT Θ2
r2 (I− r2F2)Axnj −WnT

Θ2
r2 (I− r2F2)Axnj‖ = 0.

This together with (3.6) implies that

lim
j→∞

‖Axnk j
−WT Θ2

r2 (I− r2F2)Axnj‖ = 0.

Since WTΘ2
r2 (I− r2F2) is nonexpansive, by Lemma 2.12, we have that

Ax̂ = WTΘ2
r2 (I− r2F2)Ax̂.

By Remark 3.3, we can also get that Ax̂ ∈ Fix(W )
⋂

MEP(Θ2,F2,ψ2) . By (3.5) and
xn j ⇀ x̂ , we get that unj ⇀ x̂ . According to Lemma 2.16, we have that Sx̂ = {x̂} .
Hence we obtain that x̂ ∈ Ω .

Suppose that there exists a subsequence {xn j} satisfying Case 2. By Proposition

3.4, we get that xn j ∈ Ωn j , which implies that xn j ∈ Fix(T Θ1
r1 (I − r1F1) and Axnj ∈

Fix(WnT
Θ2
r2 (I− r2F2)) . By employing an argument similar to the above, we can obtain

that Ax̂ ∈ Fix(W )
⋂

MEP(Θ2,F2,ψ2) . We can also get that

‖xn j+1− x�‖2

= ‖αn j(xn j − x�)+ (1−αn j)(wnj − x�)‖2

� αn j‖(xn j − x�)‖2 +(1−αn j)‖wnj − x�‖2−αn j(1−αn j)‖xn j −wnj‖2

� αn j‖(xn j − x�)‖2 +(1−αn j)‖xn j − x�‖2−αn j(1−αn j)‖xn j −wnj‖2

� ‖xn j − x�‖2−αn j(1−αn j)‖xn j −wnj‖2
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and consequently,

αn j (1−αn j)‖xn j −wnj‖2 � ‖xn j − x�‖2−‖xn j+1− x�‖2,

which implies that

lim
j→∞

‖xn j −wnj‖ = 0.

By Lemma 2.16, we have that Sx̂ = {x̂} . Hence we obtain that x̂ ∈ Ω . By Lemma
2.14, we obtain that the sequence {xn} converges weakly to the solution x̂ ∈ Ω , where
x̂ = limn→∞ PΩxn . �

ALGORITHM 3.7. Let x1 ∈ H1 be an initial value. Let T be a nonexpansive op-
erator. Let {αn} be a real number sequence in (0,1) . Let δ ∈ (0,1) , ς ∈ (0,2) ,
r1 ∈ (0,2θ1) and r2 ∈ (0,2θ2) be three real constants. Assume that a sequence {xn} is
given as follows. For each xn , compute

yn = xn −TΘ1
r1 (I− r1F1)xn,

zn = Axn− (δT +(1− δ )I)TΘ2
r2 (I− r2F2)Axn.

Case 1. If ‖yn+A∗zn‖ 
= 0, then we continue to construct un and xn+1 via the following
manner:

un = xn− ςτn(yn +A∗zn),
xn+1 = αnxn +(1−αn)wn, wn ∈ Sun,

where

τn =
‖yn‖2 +‖zn‖2

‖yn +A∗zn‖2 .

Case 2. If ‖yn + A∗zn‖ = 0, then we continue and construct xn+1 via the following
manner:

xn+1 = αnxn +(1−αn)wn, wn ∈ Sxn.

COROLLARY 3.8. Let

Ω̂ = {z�|z� ∈ Fix(S)
⋂

MEP(Θ1,F1,ψ1)

and
Az� ∈ Fix(T )

⋂
MEP(Θ2,F2,ψ2)}.

Suppose that Ω̂ 
= /0 . Under the assumptions (A1),(A3)−(A6) , the sequence {xn}
generated by Algorithm 3.7 converges weakly to a solution x̂∈Ω , where x̂ = limn→∞ PΩ̂xn .
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