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Abstract. In this paper, we derive upper bounds for the covariance of functions of random vari-
ables in different cases, which is the extension of the results established in [4]. Some applications
in statistics are also provided. Comparing to other results, ours can be used in more general cases
involved more complicated statistical dependency.

1. Introduction

Statistical dependency between two random variables X and Y is one common
and key topic in probability theory, finance, and information science and so on. The
covariance is the most popular measure of dependence between two random variables.

There are many results already in the literature to bound the covariance. The most
well-known covariance bounds for Cov(X ,Y ) is

−
√

Var(X)Var(Y ) � Cov(X ,Y ) �
√

Var(X)Var(Y ). (1.1)

It is obvious the lower bounds and upper bounds in (1.1) only involve the variances of
the related random variables, which turns out to be extremely feasible and powerful in
many cases. Actually, many bounds on covariance are derived via the estimating of the
corresponding variances involved, for example, the results in [4].

More precise results may be obtained once more information comes. For exam-
ples, many interesting bounds for the covariance between X and Y are attained when
X = f (Z) and Y = g(Z) are some proper functions of some common random variable
Z based on more powerful techniques, see [3, 5].

The covariance for functions of different random variables are also widely used in
probability and statistical theory, industry, engineering and so on, see [2, 10, 11, 13].
For example, the covariance between two assets which are modeled by random vari-
ables with complicated copula are considered as the measure of dependency in many
term structures models, more detailed information can be find in [12, 9].

Some inequalities for the covariance of functions of some common random vari-
able involving functions with bounded derivatives are established in [4], but the similar
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results for functions of different random variables are still open. This motivates our
work in this paper, we will estimate the covariance of functions based on different ran-
dom variables and explore some applications in computation, sampling, statistics and
so on.

This paper is organized as follows: our main results with tidy proofs are presented
in Section 2, applications with examples will be illustrated in Section 3.

2. Main result

In this paper, inequalities for the covariance of two functions of different random
variables are showed and our main result goes as follows:

THEOREM 2.1. Assume that two functions f : [a,b] → R, g : [c,d] → R are con-
tinuous and differentiable in (a,b) and (c,d) whose derivatives f ′ : (a,b) → R are
bounded in (a,b) and g′ : (c,d) → R are bounded in (c,d); if ξ ,η are random vari-
ables with finite expected values Eξ ,Eη and standard deviation σ(ξ ),σ(η) . Then
one has

|Cov( f (ξ ),g(η))| � 2|| f ′||∞||g′||∞σ(ξ )σ(η),

where a(c) is a real or −∞ ; b(d) is a real or +∞ and

|| f ′||∞ = sup
t∈(a,b)

| f ′(t)| < ∞; ||g′||∞ = sup
t∈(c,d)

|g′(t)| < ∞.

Before the proof of our result, we first mention one result given in [4], in which the
upper bound for the covariance of two functions of one common random variable were
obtained. To make the paper readable, one proof which is based on the powerful tech-
nique named symmetrization argument which will be more probabilistic and feasible
are also provided.

LEMMA 2.2. ([4]) Assume that two functions f ,g : [a,b] → R are continuous
and differentiable in (a,b) whose derivatives f ′,g′ : (a,b)→R are bounded in (a,b);
if ξ is random variable which has finite expected value Eξ and variance Varξ . Then
one has

|Cov( f (ξ ),g(ξ ))| � 2|| f ′||∞||g′||∞ Varξ

where a is a real or −∞ ; b is a real or +∞ and

|| f ′||∞ = sup
t∈(a,b)

| f ′(t)| < ∞; ||g′||∞ = sup
t∈(a,b)

|g′(t)| < ∞.

Proof of Lemma 2.2. We will use the same idea but one different technique used
in the original proof in [4] to give upper bounds of the corresponding variances respec-
tively.

Let ξ ′ be an independent copy of ξ , i.e., ξ ′ and ξ are two independent ran-
dom variables with identified probability distribution. Then under the conditions of the
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theorem above, we can apply the Lagrange mean theorem and get

Var( f (ξ ′)) = Eξ ′( f (ξ ′)−Eξ ′ f (ξ ′))2

= Eξ ′( f (ξ ′)−Eξ f (ξ ))2

= Eξ ′E2
ξ [ f (ξ ′)− f (ξ )]

= Eξ ′E2
ξ [ f ′(ξ + θ (ξ ′ − ξ ))(ξ ′ − ξ )]

� Eξ ′ || f ′||2∞E
2
ξ (ξ ′ − ξ )

= || f ′||2∞Eξ ′E2
ξ (ξ ′ − ξ )

� || f ′||2∞Eξ ′Eξ (ξ ′ − ξ )2

= || f ′||2∞Eξ ′ [(ξ ′ −Eξ )2 +Var(ξ )]

= || f ′||2∞Eξ ′ [(ξ ′ −Eξ ′)2 +Var(ξ ′)]

= 2|| f ′||2∞ Var(ξ ′).

(2.1)

With the same argument we can get

Var(g(ξ )) � 2||g′||2∞ Var(ξ ).

Then the inequality in the theorem above follows from

|Cov( f (ξ ),g(ξ ))| �
√

Var( f (ξ ))Var(g(ξ )). �

Proof of Theorem 2.1. With the same technique as in the proof of Theorem 2.2,
we have

Var( f (ξ )) � 2|| f ′||2∞ Var(ξ ), Var(g(η)) � 2||g′||2∞ Var(η).

Then with the inequality

|Cov( f (ξ ),g(η))| �
√

Var( f (ξ ))Var(g(η)),

we complete our proof. �

Moreover, we can give a more interesting result on the covariance of two random
variables

V = f1(X)+g1(Y ), W = f2(X)+g2(Y )

for some proper functions f1, f2, g1, g2 satisfying the same conditions with the ones
in Theorem 2.1 and different variables X ,Y . Similar result goes as follows:

COROLLARY 2.3.

|Cov(V,W )| � 2|| f ′1||∞|| f ′2||∞ Var(X)+2||g′1||∞||g′2||∞ Var(Y )
+2|| f ′1||∞||g′2||∞σ(X)σ(Y )+2|| f ′2||∞||g′1||∞σ(X)σ(Y )

(2.2)
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Proof of Corollary 2.3.

|Cov(V,W )| = |Cov( f1(X)+g1(Y ), f2(X)+g2(Y ))|
= |Cov( f1(X), f2(X))+Cov( f1(X),g2(Y ))

+Cov(g1(Y ), f2(X))+Cov(g1(Y ),g2(Y ))|
� |Cov( f1(X), f2(X))|+ |Cov( f1(X),g2(Y ))|

+ |Cov(g1(Y ), f2(X))|+ |Cov(g1(Y ),g2(Y ))|.

(2.3)

With Theorem 2.1, we can get the desired result. �

REMARK 2.4. If X and Y are two independent random variables, then the result
can be simplified into

|Cov(V,W )| � 2|| f ′1||∞|| f ′2||∞ Var(X)+2||g′1||∞||g′2||∞ Var(Y )

3. Applications

3.1. Application from theoretical aspects

In fact, our results above can give good estimation for the covariance of some
cumbersome random variables once more information comes. We can have very neat
results once the specific random variables are given. In the following part, we will show
some results for classical random variables regarding to Theorem 2.1.

THEOREM 3.1. Let X ∼U(a,b), Y ∼U(c,d) , then

|Cov( f (X),g(Y ))| � (b−a)(d− c)
6

|| f ′||∞||g′||∞.

REMARK 3.2. Our result is much more powerful and feasible, for example when
f (x) = sinx, g(x) = cosx , we can give very good estimation for the covariance with-
out complicated calculations. Moreover, we can always obtain this neat bound for the
covariance of two U(0,1) random variables, nevertheless the statistical dependency
between them.

THEOREM 3.3. Let f , g : (−∞,+∞)→R be continuous in (−∞,+∞) and differ-
ential in (−∞,+∞) whose derivatives f ′, g′ : (−∞,+∞)→R are bounded in (−∞,∞) .
Then for any μ1,μ2 and σ1,σ2 > 0 ,−1 � ρ � 1 , we have

∣∣∣∫ +∞

−∞

∫ +∞

−∞
f (x)g(y)h(x,y)dxdy−

∫ +∞

−∞
f (x)exp

{
− (x− μ1)2

2σ2
1

}
dx

×
∫ +∞

−∞
g(y)exp

{
− (x− μ2)2

2σ2
2

}
dy

∣∣∣
� 4π || f ′||∞||g′||∞σ2

1 σ2
2
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in which

h(x,y)=
1√

1−ρ2
exp

{
− 1

2(1−ρ2)

[
(x− μ1)2

σ2
1

− 2ρ(x− μ1)(y− μ2)
σ1σ2

+
(y− μ2)2

σ2
2

]}
.

Proof of Theorem 3.3. Let (X ,Y ) be 2-dimensional Normal distribution N(μ1,μ2,
σ2

1 ,σ2
2 ,ρ) , i.e., the probability distribution function

p(x,y) =
1

2πσ1σ2

√
1−ρ2

×exp

{
− 1

2(1−ρ2)

[
(x− μ1)2

σ2
1

− 2ρ(x− μ1)(y− μ2)
σ1σ2

+
(y− μ2)2

σ2
2

]}
.

From the properties of the normal distribution, the marginal distribution of (X ,Y ) is
also Normal distribution N(μ1,σ2

1 ) and N(μ2,σ2
2 ) with probability distribution func-

tion

p(x) =
1√

2πσ1
exp

{
− (x− μ1)2

2σ2
1

}

and

p(y) =
1√

2πσ2
exp

{
− (y− μ2)2

2σ2
2

}

respectively.
Then we have

|Cov( f (X),g(Y ))|
= |E( f (X)g(Y ))−E( f (X))E(g(Y ))|

=
∣∣∣∣
∫ +∞

−∞

∫ +∞

−∞
f (x)g(x)p(x,y)dxdy−

∫ +∞

−∞
f (x)p(x)dx

∫ +∞

−∞
g(y)p(y)dy

∣∣∣∣
� 2|| f ′||∞||g′||∞σ1σ2.

(3.1)

Substituting the corresponding items and rearrange them, we complete the proof. �

3.2. More examples

In the last part of our paper, we will give several examples in which our result can
find powerful applications.

3.2.1. Applications in computation

We always consider independent random variables in statistical theory. However,
the random variables always depend on each other in some case. To simplified the
model, weak dependency is acceptable for random variables. Our result can give esti-
mation for the covariance without complicated computations.
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EXAMPLE 3.4. Let X ∼U(0,1) and

X1 =

{
1
2 , X � 1

16

0, else
, X2 =

{
1
2 , X � 15

16

0, else
.

One can get Cov(X1,X2) = 1
322 by spending much time to calculate. With our result,

we can get

Cov(X1,X2) � 2σX1σX2 =
30
322 .

The estimation is not so tight though, it is enough to consider these two random vari-
ables as “weakly” dependent ones.

3.2.2. Applications in sampling

Constructing a bivariate distribution with specific marginals and correlation has
been an extremely difficult problems in 1930s. Besides specifying the univariate margi-
nals, it is additionally required to appropriately define the dependence structure among
the random variables involved. The Copulas, which are distribution functions on [0,1]d

with uniform univariate marginals, are introduced as a technique to solve this issue,
see [7, 6] for more information. Our results can provide some approximate algorithm
for sampling from some complicated structures.

Let ξ and η be two random variables with copula C such that ξ ∼ F, η ∼ G,
i.e., H(x,y) = P(ξ � x,η � y) = C(F(x),G(y)) , where C(u,v), (u,v) ∈ [0,1]2 is the
connecting copula. The main challenging task here is to sample from (ξ ,η) .

EXAMPLE 3.5. Let μ =
(

0
0

)
and R =

[
1 0.65

0.65 1

]
. We want to draw a sample

from (sin X
10000 ,Y ) with Gaussian copula

C(x,y) = ΦR(Φ−1(x),Φ−1(y)), (x,y) ∈ [0,1]2

where Φ−1 is the inverse cumulative distribution function of standard normal, ΦR is
the joint distribution function of the two-dimensional normal distribution N(μ ,R) , X ∼
U(0,1) and Y ∼ Gamma(5,6) .

We can easily check that

∣∣∣Cov
(

sin
( X

10000

)
,Y

)∣∣∣ � 2 · 1
10000

·
√

1
12

·
√

2
81

∼ 0.

which means, the two variables are “approximate” independent, although are connected
by Gaussian copula. In one word, we can just sample two random independently from
the marginal distributions accordingly.
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3.2.3. Applications in identifying singular distribution

It is always difficult to estimate the covariance matrix for high dimensional random
variable(data). Actually, the covariance matrix is singular or approximately singular in
many cases. Our results above will provide a useful tool to the pre-process of the data
via dimension reduction of the rank of the covariance matrix.

We will give one example about singular distributions used in many areas, see
[8, 13, 1]. A singular distribution is a distribution in p -space that is concentrated on a
lower dimensional set; that is, the probability associated with any set not intersecting
the given set is 0. Our inequality can give upper bound for the covariance and give a
quick answer to identify the singular distribution.

EXAMPLE 3.6. Let ξ =
(
U1,sin

U2
10000 ,exp U3

10000

)
, η =

(
U4,cos U5

10000 ,U10
6

)
, in

which Ui ∼U(0,1), i = 1,2, · · · ,6 and are connected with complicated copulas. Instead
of complicated calculation of the covariances, we can get

∣∣∣Cov

(
sin

U2

10000
,cos

U5

10000

)∣∣∣ � 2 · 1
10000

· 1
10000

· 1
100002 ·

1
12

∼ 0.

In other words, the covariance matrix is approximately singular, leading to an approxi-
mately singular distribution.
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