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Abstract. We study a new inequality arising from the principle of inclusion and exclusion by
mixing the idea from Hlawka’s inequality and Tverberg’s combinatorial sum. We obtain sharp
lower bounds for the sum when the number of variables is small.

1. Introduction

A simple version of the triangle inequality can be stated as |x|+ |y| − |x + y| �
0 for every x,y ∈ R , and it can be generalized to a higher dimensional version as
‖x‖+ ‖y‖−‖x + y‖ � 0 for x,y ∈ V , where V is an inner product space. If V = R

n

and the norm in V is the �p -norm, then it is also called Minkowski’s inequality. In
addition, Hlawka’s inequality states that for any x,y,z in an inner product space, we
have

‖x‖+‖y‖+‖z‖− (‖x+ y‖+‖x+ z‖+‖y+ z‖)+‖x+ y+ z‖� 0. (1)

In the inclusion-exclusion principle and its dual, one has∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣= ∑
/0 �=J⊆{1,2,...,n}

(−1)|J|−1

∣∣∣∣∣
⋂
j∈J

A j

∣∣∣∣∣ , and

∣∣∣∣∣
n⋂

i=1

Ai

∣∣∣∣∣= ∑
/0 �=J⊆{1,2,...,n}

(−1)|J|−1

∣∣∣∣∣
⋃
j∈J

A j

∣∣∣∣∣ . (2)

If we formally replace the set Aj by vectors, the union
⋃

by the addition + , and
the cardinality by a norm, and let n = 3, the right-hand side of (2) is the same as the
left-hand side of (1).

For the purpose of this paper, we focus on real numbers, and thus it may be useful
to study the version of n real numbers as follows.

Mathematics subject classification (2020): Primary 26D15; Secondary 05A20, 26D07.
Keywords and phrases: Hlawka’s inequality, Popoviciu’s inequality, triangle inequality, inclusion-

exclusion principle.
∗ Corresponding author.

c© � � , Zagreb
Paper JMI-16-95

1455

http://dx.doi.org/10.7153/jmi-2022-16-95


1456 PHUNPHAYAP, KHEMARATCHATAKUMTHORN, SOTHANAPHAN ET. AL.

DEFINITION 1. For each n � 2 and x1,x2, . . . ,xn ∈ R , define

fn(x1,x2, . . . ,xn) = ∑
S⊆{1,2,...,n}

(−1)|S|−1

∣∣∣∣∣∑i∈S

xi

∣∣∣∣∣ ,
where the empty sum is defined to be zero. Equivalently,

fn(x1,x2, . . . ,xn) = ∑
1�i�n

|xi|− ∑
1�i1<i2�n

|xi1 + xi2 |+ ∑
1�i1<i2<i3�n

|xi1 + xi2 + xi3 |

− · · ·+(−1)n+1|x1 + x2 + x3 + · · ·+ xn|.
One of our motivations comes from arithmetic and combinatorial sums defined

by Jacobsthal [12], investigated more by Carlitz [4, 5] and Grimson [9], and recently
generalized and studied further by Tverberg [27], Onphaeng and Pongsriiam [19], and
Thanatipanonda and Wong [26], where the absolute value in Definition 1 is replaced by
the floor function–a function that is very useful in combinatorics and number theory.
For more information on the floor function, we refer the reader to the book by Graham,
Knuth, and Patashnik [8], and the recent articles by Aursukaree et.al. [3], Kawsumarng
et.al. [13], and Palatsang et.al. [20].

By the triangle inequality, we know that f2(x1,x2) � 0 for every x1,x2 ∈ R and
this is sharp since it becomes equality when x1x2 � 0. In addition, a sharp lower
bound for the case n = 3 is given as an exercise in the book by Manfrino, Ortega,
and Delgado [14], and its generalization in an inner product space (but only for n =
3) is called Hlawka’s inequality, which first appeared in a paper of Hornich [11] and
extended in various ways by many mathematicians; see for example in [1, 2, 6, 7, 10,
15, 16, 18, 21, 22, 23, 24, 25]. Those extensions are perhaps from an analytic point
of view while our sum in Definition 1 is motivated by Tverberg’s sum [27], and so
it is more combinatorial. Nevertheless, a generalization of Hlawka’s inequality in a
form similar to ours in the case n = 4 has recently been provided by Munteanu [17].
However, as far as we are aware, our results for the case n � 5 are new.

In this article, we give a sharp lower bound for the case n ∈ {4,5} and a lower
bound, which we think, is close to being sharp for the case n = 6. In addition, a sum
similar to fn but focusing on a single point y0 comes up often in our calculation. The
definition of that sum is as follows.

DEFINITION 2. For n � 2 and y0,x1,x2, . . . ,xn ∈ R , define

gn(y0,x1,x2, . . . ,xn) = ∑
S⊆{1,2,...,n}

(−1)|S|
∣∣∣∣∣y0 + ∑

i∈S

xi

∣∣∣∣∣ ,
or equivalently,

gn(y0,x1,x2, . . . ,xn) = |y0|− ∑
1�i�n

|y0 + xi|+ ∑
1�i1<i2�n

|y0 + xi1 + xi2 |

− ∑
1�i1<i2<i3�n

|y0 + xi1 + xi2 + xi3 |+ · · ·+(−1)n|y0 + x1 + x2 + · · ·+ xn|.
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We also give sharp lower bounds for gn when n = 4,5. Finally, we remark that our
results can be written in a notation similar to that in an inner product space as follows.
For xxx = (x1,x2, . . . ,xn) ∈ R

n , let ‖xxx‖∞ be defined by

‖xxx‖∞ = max{|xi| : i = 1,2,3, . . . ,n}.

Then the inequalities in Theorems 1, 5, and 8 may be rewritten as f4(xxx) � −‖xxx‖∞ for
all xxx ∈ R

4 , f5(xxx) � −2‖xxx‖∞ for all xxx ∈ R
5 , and f6(xxx) � −5‖xxx‖∞ for all xxx ∈ R

6 .
Furthermore, if we let

An
+ = {xxx = (x1,x2, . . . ,xn) ∈ R

n | xi > 0 for some i and ‖xxx‖∞ � 1},

then Theorems 3 and 6 may be written as g4(1,xxx) �−‖xxx‖∞ for all xxx∈ A4
+ and g5(1,xxx)

� −3‖xxx‖∞ for all xxx ∈ A5
+ . In general, it may be interesting to determine appropriate

constants cn,dn ∈ R , that depend at most on n and are best possible such that fn(xxx) �
cn‖xxx‖∞ for all xxx ∈ R

n and gn(1,xxx) � dn‖xxx‖∞ for all xxx ∈ An
+ (or for all xxx ∈ R

n ). The
calculation for sharp lower bounds of fn and gn when n is large seems much more
complicated, so we postpone it for future research.

2. Preliminaries and lemmas

In this section, we give some auxiliary results which will be used in the proof of
main theorems. Throughout this article, n is a positive integer larger than 1.

LEMMA 1. If xi = 0 for some i ∈ {1,2, . . . ,n} , then fn(x1,x2, . . . ,xn) = 0 .

Proof. Observe that fn(x1,x2, . . . ,xn) = fn
(
xσ(1),xσ(2), . . . ,xσ(n)

)
for any permu-

tation σ of 1,2, . . . ,n . So for convenience, we can suppose xn = 0. For 1 < k < n , we
write

∑
1�i1<i2<···<ik�n

∣∣xi1 + xi2 + · · ·+ xik

∣∣
= ∑

1�i1<i2<···<ik−1<n

∣∣xi1 + xi2 + · · ·+ xik−1

∣∣+ ∑
1�i1<i2<···<ik<n

∣∣xi1 + xi2 + · · ·+ xik

∣∣ .
Then fn(x1,x2, . . . ,xn) is equal to(

∑
1�i<n

|xi|
)
−
(

∑
1�i<n

|xi|+ ∑
1�i1<i2<n

|xi1 + xi2 |
)

+

(
∑

1�i1<i2<n

|xi1 + xi2 |+ ∑
1�i1<i2<i3<n

|xi1 + xi2 + xi3 |
)
−·· ·

+(−1)n+1|x1 + x2 + · · ·+ xn|,

which is a telescopic sum. We see that fn(x1,x2, . . . ,xn) = 0, as required. �
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LEMMA 2. If xi � 0 for every i or xi � 0 for every i , then fn(x1,x2, . . . ,xn) = 0 .

Proof. Suppose xi � 0 for every i . Then fn(x1,x2, . . . ,xn) is equal to

n

∑
i=1

xi −
(

n−1
1

) n

∑
i=1

xi +
(

n−1
2

) n

∑
i=1

xi −
(

n−1
3

) n

∑
i=1

xi

+ · · ·+(−1)n−1
(

n−1
n−1

) n

∑
i=1

xi

=

(
n−1

∑
k=0

(−1)k
(

n−1
k

))( n

∑
i=1

xi

)
= 0.

Since fn(x1,x2, . . . ,xn) = fn(−x1,−x2, . . . ,−xn) , the result also holds if xi � 0 for all
i . �

We need to improve the triangle inequality f2(x1,x2) � 0 a bit further as follows.

LEMMA 3. For x,y ∈ R , we have

f2(x,y) =

{
0, if xy � 0;

2min{|x|, |y|}, if xy < 0.

Proof. If xy � 0, then |x+y|2 = x2 +2xy+y2 = |x|2 +2|x||y|+ |y|2 = (|x|+ |y|)2 ,
and so |x+ y| = |x|+ |y| , which implies f2(x,y) = 0. Suppose xy < 0. Without loss of
generality, we can assume that x > 0 and y < 0. If x+ y � 0, then |x| � |y| and

f2(x,y) = x− y− (x+ y)= −2y = 2|y|= 2min{|x|, |y|}.

If x+ y < 0, then |x| < |y| and

f2(x,y) = x− y+ x+ y = 2x = 2|x| = 2min{|x|, |y|}.

This completes the proof. �

Although Lemma 4 is easy, it is useful in our calculation related to f2 .

LEMMA 4. Let a,b,c ∈ R and a � b. Then

min{a,c}−min{b,c} � 0 (3)

Proof. If c � b , then the left-hand side of (3) is c− c = 0. If b < c < a , then it is
c−b > 0. If c � a , then it is a−b � 0. This completes the proof. �

The inequality f3(x1,x2,x3) � 0 is already given as an exercise [14] but we give a
proof for completeness as in Lemma 5.
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LEMMA 5. For every x1,x2,x3 ∈ R , f3(x1,x2,x3) � 0 . If xi = 0 for some i =
1,2,3 , then the inequality becomes equality.

Proof. If xi = 0 for some i = 1,2,3, then the result follows from Lemma 1. With-
out loss of generality, we can assume that |x1|� |x2|� |x3|> 0. Let b = x2

x1
and c = x3

x1
.

Then

1
|x1| f (x1,x2,x3) = 1+ |b|+ |c|− (|1+b|+ |1+ c|+ |b+ c|)+ |1+b+ c|. (4)

Since |b|, |c|� 1, we have 1+b � 0 and 1+c � 0, so |1+b|= 1+b , |1+c|= 1+c .
Therefore the right-hand side of (4) is equal to f2(b,c)+ |1+b+ c|− (1+b+ c)� 0,
which implies the desired result. �

The calculation for the inequality f4(x1,x2,x3,x4) � 0 can be reduced to the con-
sideration of the following sum.

LEMMA 6. Let b,c,d ∈ R and |b|, |c|, |d| � 1 . Let

A = |1+b+ c|+ |1+b+d|+ |1+ c+d|− |1+b+ c+d|− (2+b+ c+d).

If b � 0 , or c � 0 , or d � 0 , then A � 0 .

Proof. The permutation of b,c,d does not change A . So for convenience, we can
suppose that d � 0. Since |b|, |c| � 1, we have 1 + b + d � 0 and 1 + c + d � 0.
Therefore, A is equal to f2(1+b+ c,d) , which is nonnegative as desired. �

Sums similar to A in Lemma 6 arise often in our calculation. So we study the
function g as defined earlier in the introduction.

LEMMA 7. If xi = 0 for some i = 1,2, . . . ,n, then gn(1,x1,x2, . . . ,xn) = 0 .

Proof. Since gn(1,x1,x2, . . . ,xn) is invariant under the permutation of x1,x2, . . . ,xn ,
we can assume that xn = 0. Then, for 1 < k < n , we can write

∑
1�i1<i2<···<ik�n

|y0 + xi1 + xi2 + · · ·+ xik | = ∑
1�i1<i2<···<ik−1<n

|y0 + xi1 + xi2 + · · ·+ xik−1 |

+ ∑
1�i1<i2<···<ik<n

|y0 + xi1 + xi2 + · · ·+ xik |.

Similar to the proof of Lemma 1, gn(1,x1,x2, . . . ,xn) can be written as a telescopic sum
which is equal to zero, as desired. �

LEMMA 8. Let n � 3 , y0,x1,x2, . . . ,xn ∈ R , and y0 + xn � 0 . Then

gn(y0,x1,x2, . . . ,xn) = gn−1(y0,x1,x2, . . . ,xn−1)−gn−1(y0 + xn,x1,x2, . . . ,xn−1).
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Proof. For 1 < k < n , we write

∑
1�i1<i2<···<ik�n

|y0 + xi1 + xi2 + · · ·+ xik |

= ∑
1�i1<i2<···<ik<n

|y0 + xi1 + xi2 + · · ·+ xik |

+ ∑
1�i1<i2<···<ik−1<n

|y0 + xi1 + xi2 + · · ·+ xik−1 + xn|

= ∑
1�i1<i2<···<ik<n

|y0 + xi1 + xi2 + · · ·+ xik |

+ ∑
1�i1<i2<···<ik−1<n

|(y0 + xn)+ xi1 + xi2 + · · ·+ xik−1 |.

When k = 1, we write

∑
1�i�n

|y0 + xi| =
(

∑
1�i<n

|y0 + xi|
)

+ |y0 + xn|.

From this, it is not difficult to see that the result holds. �

3. Main results

We begin with a sharp lower bound for f4(x1,x2,x3,x4) .

THEOREM 1. For every x1,x2,x3,x4 ∈ R ,

f4(x1,x2,x3,x4) � −max{|x1|, |x2|, |x3|, |x4|} . (5)

Furthermore, the lower bound is sharp in the sense that there are infinitely many x1 , x2 ,
x3 , x4 such that the inequality becomes equality. In particular, if x1 ∈ R is arbitrary
and x2 = x3 = x4 = − x1

2 , then

f4(x1,x2,x3,x4) = −max{|x1|, |x2|, |x3|, |x4|} .

Proof. Let x1,x2,x3,x4 ∈R . Without loss of generality, we can assume that |x1|�
|x2| � |x3| � |x4| . If x4 = 0, then (5) follows immediately from Lemma 1. So assume
that |x4|> 0. Dividing both sides of (5) by |x1| and replacing x2

x1
by b , x3

x1
by c and x4

x1

by d , we see that it is enough to prove f4(1,b,c,d)�−1, where 1 � |b|� |c|� |d|> 0.
Since −1 � b,c,d � 1, we have 1+ b,1+ c,1+ d � 0, and so |1+ b| = 1+ b ,

|1+ c|= 1+ c , and |1+d|= 1+d . Therefore, f4(1,b,c,d) is equal to

1+ |b|+ |c|+ |d|− (|1+b|+ |1+ c|+ |1+d|+ |b+ c|+ |b+d|+ |c+d|)
+ |1+b+ c|+ |1+b+d|+ |1+ c+d|+ |b+ c+d|− |1+b+ c+d|

= f3(b,c,d)+A, (6)
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where A is the sum in Lemma 6. If b � 0, or c � 0, or d � 0, then (6), Lemma 5, and
Lemma 6 imply

f4(1,b,c,d) = f3(b,c,d)+A � 0.

So assume that b < 0, c < 0, and d < 0. Then by Lemma 2, f3(b,c,d) = 0, and
therefore f4(1,b,c,d) = A . If 1+b+c+d � 0, then 1+b+c , 1+b+d , 1+c+d � 0
and f4(1,b,c,d) = A = 0. So assume that 1+b+ c+d < 0. Then

f4(1,b,c,d) = |1+b+ c|+ |1+b+d|+ |1+ c+d|−1� −1,

as required. It is straightforward to verify that (5) becomes equality if x1 ∈R is arbitrary
and x2 = x3 = x4 = −x1/2. Hence the proof is complete. �

It is interesting to observe that the condition x2 = x3 = x4 =− x1
2 , where x1 ∈ R is

arbitrary, is also a necessary condition, under a natural restriction on permutations, for
(5) to becomes equality. More precisely, we have the following theorem.

THEOREM 2. Let x1,x2,x3,x4 ∈ R . Then

f4(x1,x2,x3,x4) = −max{|x1|, |x2|, |x3|, |x4|} (7)

if and only if (x1,x2,x3,x4) is a permutation of 4 -tuples of the form
(
y,− y

2 ,− y
2 ,− y

2

)
where y ∈ R is arbitrary.

Proof. We follow closely the proof of Theorem 1. Assume that (7) holds. If
xi = 0 for some i , then Lemma 1 and (7) imply that xi = 0 for all i , so we can choose
y = 0. Suppose that xi �= 0 for any i . Without loss of generality, we can assume that
|x1|� |x2| � |x3| � |x4| > 0. Dividing both sides of (7) by |x1| , letting b = x2

x1
, c = x3

x1
,

d = x4
x1

, and following the calculation in the proof of Theorem 1, we obtain

f3(b,c,d)+A = −1, (8)

where A is the sum in Lemma 6. Again by the proof of Theorem 1, we see that b < 0,
c < 0, and d < 0; otherwise the left-hand side of (8) is nonnegative, which is not the
case. By Lemma 2, we see that (8) reduces to A = −1. Again by the proof of Theorem
1, if 1 + b + c + d � 0, then A = 0, which is not the case. So 1 + b + c + d < 0.
Therefore

A = |1+b+ c|+ |1+b+d|+ |1+ c+d|−1.

Thus
|1+b+ c|+ |1+b+d|+ |1+ c+d|= 0

Therefore 1 + b + c = 1 + b + d = 1 + c + d = 0. Solving for b,c,d , we obtain b =
c = d = −1/2. So x2 = − x1

2 , x3 = − x1
2 , x4 = − x1

2 . Therefore (x1,x2,x3,x4) can be
written as

(
y,− y

2 ,− y
2 ,− y

2

)
where y = x1 . The converse is easy to check. So the proof

is complete. �
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REMARK 1. By considering the proof of Lemma 5 again, we notice that

f3(x1,x2,x3) = 0 if and only if

(x1,x2,x3) is a permutation of 3-tuples of the form (0,y,z) or (y,by,cy)

where y,z ∈ R are arbitrary and b,c ∈ R satisfy |b|, |c| � 1, bc � 0, and b+ c � −1.
The idea is to follow the proof of Lemma 5. Then at the end (or almost the end), we
have f2(b,c)+ |1+b+c|−(1+b+c) = 0, which implies f2(b,c) = 0 and |1+b+c|=
1+b+ c . This implies bc � 0 and 1+b+ c � 0, and the proof is complete.

In order to obtain a sharp lower bound for f5 , we first give a sharp lower bound
for g4 as follows.

THEOREM 3. If |x1|, |x2|, |x3|, |x4| ∈ [0,1] and xi > 0 for some i = 1,2,3,4 , then

g4(1,x1,x2,x3,x4) � −1. (9)

In addition, if 1
2 � x4 � 1 is arbitrary and x1,x2,x3 = − 1

2 , then (9) becomes equality.

Proof. For convenience, we sometimes write g4 instead of g4(1,x1,x2,x3,x4) .
Since g4 is invariant under the permutation of x1 , x2 , x3 , x4 , we can suppose that
x4 > 0. Since |xi| � 1, we obtain 1+ xi � 0 for every i . In addition, 1+ xi + x4 � 0
for every i = 1,2,3. Therefore g4 is equal to

2x4 + ∑
1�i< j�3

|1+ xi + x j|− ∑
1�i< j<k�4

|1+ xi + x j + xk|+ |1+ x1 + x2 + x3 + x4|

= f2 (1+ x1 + x2,x4)+ f2(1+ x1 + x3,x4)
+ f2(1+ x2 + x3,x4)− f2(1+ x1 + x2 + x3,x4). (10)

By Lemma 3, if 1+ x1 + x2 + x3 � 0, then f2(1+ x1 + x2 + x3,x4) = 0, and so g4 � 0.
Therefore we assume throughout that 1+ x1 + x2 + x3 < 0. For convenience, let

A = {(i, j) | 1 � i < j � 3 and 1+ xi + x j < 0}
B = {(i, j) | 1 � i < j � 3 and 1+ xi + x j � 0}.

Case 1 A is empty, that is, 1 + xi + x j � 0 for every 1 � i < j � 3. Adding
1 + x1 + x2 , 1 + x1 + x3 , and 1 + x2 + x3 , we obtain 3 + 2(x1 + x2 + x3) � 0, and so
1+ x1 + x2 + x3 � − 1

2 . Therefore |1+ x1 + x2 + x3| � 1
2 . By Lemma 3,

g4 = − f2(1+ x1 + x2 + x3,x4) = −2min{|1+ x1 + x2 + x3|, |x4|} � −1,

as desired. From this point on, we apply Lemma 3 without reference.

Case 2 A is not empty, that is, there exists at least one pair (i, j) such that 1 �
i < j � 3 and 1+ xi + x j < 0. Then

g4(1,x1,x2,x3,x4) = ∑
(i, j)∈A

f2(1+ xi + x j,x4)− f2(1+ x1 + x2 + x3,x4)

= 2 ∑
(i, j)∈A

min{|1+ xi + x j|, |x4|}−2min{|1+ x1 + x2 + x3|, |x4|}.
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If |x4| � |1+ xi + x j| for some (i, j) ∈ A , then

g4(1,x1,x2,x3,x4) � 2|x4|−2min{|1+ x1 + x2 + x3|, |x4|} � 0.

So suppose that |x4| > |1+ xi + x j| for all (i, j) ∈ A . Then

g4(1,x1,x2,x3,x4) = 2 ∑
(i, j)∈A

|1+ xi + x j|−2min{|1+ x1 + x2 + x3|, |x4|}.

Observe that

∑
(i, j)∈A

(1+ xi + x j)+ ∑
(i, j)∈B

(1+ xi + x j) = ∑
1�i< j�3

(1+ xi + x j) = 1+2(1+ x1+ x2 + x3).

This observation is used in Case 2.1 and Case 2.2 as follows.

Case 2.1 |1+ x1 + x2 + x3| � |x4| . Then

g4 = 2 ∑
(i, j)∈A

|1+ xi + x j|−2|1+ x1+ x2 + x3|

= −2 ∑
(i, j)∈A

(1+ xi + x j)+2(1+ x1 + x2 + x3)

= ∑
(i, j)∈B

(1+ xi + x j)− ∑
(i, j)∈A

(1+ xi + x j)−1 � −1.

Case 2.2 |1+ x1 + x2 + x3| > |x4| . Then 1+ x1 + x2 + x3 + x4 < 0 and so g4 is

2 ∑
(i, j)∈A

|1+ xi + x j|−2|x4| = −2 ∑
(i, j)∈A

(1+ xi + x j)−2x4

= −2 ∑
(i, j)∈A

(1+ xi + x j)+2(1+ x1 + x2 + x3)−2(1+ x1+ x2 + x3 + x4)

= ∑
(i, j)∈B

(1+ xi + x j)− ∑
(i, j)∈A

(1+ xi + x j)−1−2(1+ x1+ x2 + x3 + x4),

which is larger than −1.
In any case, g4 � −1. The second part is straightforward. So the proof is com-

plete. �

THEOREM 4. If |x1|, |x2|, |x3|, |x4| ∈ [0,1],xi � 0 for every i = 1,2,3,4 and 1+
x1 + x2 + x3 + x4 < 0 , then

g4(1,x1,x2,x3,x4) � −2.

In addition, if x1 = x2 = x3 = x4 = − 1
2 , then g4(1,x1,x2,x3,x4) = −2
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Proof. Since 1+x1+x2+x3+x4 < 0 and 1+xi � 0 for every i , g4(1,x1,x2,x3,x4)
is equal to

−4+2 ∑
1�i�4

|xi|+ ∑
1�i< j�4

|1+ xi + x j|− ∑
1�i< j<k�4

|1+ xi + x j + xk|

= f2 (1+ x1 + x2,x3)+ f2(1+ x2 + x3,x4)+ f2(1+ x3 + x4,x1)
+ f2(1+ x1 + x4,x2)+A2,

where
A2 = |x1|+ |x2|+ |x3|+ |x4|+ |1+ x1 + x3|+ |1+ x2 + x4|−4.

By the triangle inequality, g4(1,x1,x2,x3,x4) � A2 and

A2 � |x1 + x2 + x3 + x4|+ |1+ x1 + x3 +1+ x2 + x4|−4 = |A|+ |A+2|−4, (11)

where A = x1 + x2 + x3 + x4 . Recall that the sum of the form

|b− y1|+ |b− y2|+ · · ·+ |b− yn|
is minimal if b is the median of y1,y2, . . . ,yn . (If n is even, we can take b to be any
number lying between the two middle points.) In our case, |A|+ |A + 2| is minimal
when A ∈ [−2,0] , and the minimum value is 2 which occurs, for example, when x1 =
x2 = x3 = x4 = − 1

2 . Hence, we obtain from (11) that A2 � −2, and so

g4(1,x1,x2,x3,x4) � −2

as desired. �
We now give a sharp lower bound for f5 as follows.

THEOREM 5. For every x1,x2,x3,x4,x5 ∈ R ,

f5(x1,x2,x3,x4,x5) � −2max{|xi| : i = 1,2, . . . ,5}.
In particular, if x1 ∈ R is arbitrary and x2 = x3 = x4 = x5 = − x1

2 , then

f5(x1,x2,x3,x4,x5) = −2max{|xi| : i = 1,2, . . . ,5}.

Proof. It is straightforward to verify that if x2 = x3 = x4 = x5 = − x1
2 , then the

above equality holds. So it remains to prove the inequality. Similar to the proof of
Theorem 1, we can assume that |x1| � |x2| � · · · � |x5| > 0, and after dividing by |x1|
and changing variables, it is enough to show that

f5(1,x1,x2,x3,x4) � −2,

where 1 � |x1|� |x2| � |x3| � |x4| > 0. In addition, we can write f5(1,x1,x2,x3,x4) as

f5(1,x1,x2,x3,x4) = f4(x1,x2,x3,x4)+g4(1,x1,x2,x3,x4). (12)
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Case 1 xi > 0 for some i = 1,2,3,4. Then by Theorem 3, g4(1,x1,x2,x3,x4) �
−1. In addition, f4(x1,x2,x3,x4) � −1 by Theorem 1. Therefore, (12) implies

f5(x1,x2,x3,x4,x5) � −2. (13)

Case 2 xi < 0 for every i = 1,2,3,4. By Lemma 2, f4(x1,x2,x3,x4) = 0, and so

f5(x1,x2,x3,x4,x5) = g4(1,x1,x2,x3,x4). (14)

If 1+ x1 + x2 + x3 + x4 � 0, then every term in the absolute value in the sum defining
g4(1,x1,x2,x3,x4) is nonnegative, which leads to g4(1,x1,x2,x3,x4) = 0, and we are
done. So suppose that 1+ x1 + x2 + x3 + x4 < 0, then we apply Theorem 4 to obtain

f5(x1,x2,x3,x4,x5) = g4(1,x1,x2,x3,x4) � −2.

This completes the proof. �

We now have sharp lower bounds for f4 and f5 . Next, we give a lower bound for
g5 and use it to obtain a lower bound for f6

THEOREM 6. If |x1|, |x2|, |x3|, |x4|, |x5| ∈ [0,1] and xi > 0 for some i = 1,2,3,4,5 ,
then

g5(1,x1,x2,x3,x4,x5) � −3.

In addition, if x1 = x2 = x3 = x4 = − 1
2 and x5 = 1

2 , then the above inequality becomes
equality.

Proof. For convenience, we write g5 instead of g5(1,x1,x2,x3,x4,x5) . Similar to
the proof of Theorem 3, we can suppose that x5 > 0, obtain 1+ xi � 0 for every i � 5
and 1+ xi + x5 � 0 for every i � 4. Therefore

g5 = 3x5 + ∑
1�i1<i2�4

|1+ xi1 + xi2 |− ∑
1�i1<i2<i3�5

|1+ xi1 + xi2 + xi3 |

+ ∑
1�i1<i2<i3<i4�5

|1+ xi1 + xi2 + xi3 + xi4 |− |1+ x1+ x2 + x3 + x4 + x5|

= x− y+ z, where

x = ∑
1�i< j�4

f2(1+ xi + x j,x5), y = ∑
1�i< j<k�4

f2(1+ xi + x j + xk,x5),

and
z = f2(1+ x1 + x2 + x3 + x4,x5).

For convenience, let

A =
{
(i, j,k) | 1 � i < j < k � 4 and 1+ xi + x j + xk < 0

}
.
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Similar to Theorem 3, we use Lemma 3 throughout the proof without reference. If
A = ∅ , then y = 0 and so g5 = x+ z � 0. If |A| = 1, say (i, j,k) ∈ A , then

g5 � −y = −2min{|1+ xi + x j + xk|, |x5|} � −2|x5| � −2.

So it remains to consider the case 2 � |A| � 4.

Case 1 |A| = 2. Let (i, j,k) and (i2, j2,k2) be the two elements of A . Then

y � f2(1+ xi + x j + xk,x5)+2|x5| � f2(1+ xi + x j + xk,x5)+2.

In addition, we observe that g4(1,xi,x j,xk,x5) is equal to

f2(1+ xi + x j,x5)+ f2(1+ xi + xk,x5)+ f2(1+ x j + xk,x5)− f2(1+ xi + x j + xk,x5).
(15)

Therefore

g5 = x− y+ z � x− y � g4(1,xi,x j,xk,x5)−2 � −3.

Case 2 |A| = 3. Without loss of generality, we can assume that (1,2,3) /∈ A .
Then 1 + x1 + x2 + x3 � 0, f2(1 + x1 + x2 + x3,x5) = 0, and 1 + xi + x j + xk < 0 for
(i, j,k) �= (1,2,3) .

Case 2.1 x1 � 0. Then 1+ x2 + x4 � 1+ x1 + x2 + x4 < 0, and so |1+ x2 + x4| �
|1+ x1 + x2 + x4| . By Lemma 4, we obtain

f2(1+ x2 + x4,x5)− f2(1+ x1 + x2 + x4,x5) � 0.

Similarly, since 1+ x3 + x4 � 1+ x1 + x3 + x4 < 0, we obtain

f2(1+ x3 + x4,x5)− f2(1+ x1 + x3 + x4,x5) � 0.

Therefore

g5 � − f2(1+ x2 + x3 + x4,x5) � −2|x5| � −2.

Case 2.2 x1 < 0. Then 1+ x1 + x2 + x3 + x4 < 1+ x2 + x3 + x4 < 0 and so

|1+ x1 + x2 + x3 + x4| > |1+ x2 + x3 + x4|.

Lemma 4 implies that

f2(1+ x1 + x2 + x3 + x4,x5)− f2(1+ x2 + x3 + x4,x5) � 0. (16)

In addition,

− f2(1+ x1 + x3 + x4,x5) � −2 (17)
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Furthermore, by a similar calculation as in (15), we have⎛
⎜⎜⎝ ∑

i, j∈{1,2,4}
i< j

f2(1+ xi + x j,x5)

⎞
⎟⎟⎠− f2(1+ x1 + x2 + x4,x5) = g4(1,x1,x2,x4,x5) � −1

(18)

Adding (16), (17), and (18), we see that x− y+ z � −3, and thus g5 � −3.

Case 3 |A|= 4. We first suppose that xi � 0 for some i � 4. Then the calculation
is similar to Case 2.1. If x1 � 0, then 1 + xi + x j � 1 + x1 + xi + x j < 0 for each
2 � i < j � 4, which implies f2(1+ xi + x j,x5)− f2(1+ x1 + xi + x j,x5) � 0 for such
i, j , and therefore

g5 � − f2(1+ x2 + x3 + x4,x5) � −2|x5| � −2.

Similarly, if x j � 0 for some j ∈ {2,3,4} , then

g5 � − f2(1+ x1 + x2 + x3 + x4− x j,x5) � −2|x5| � −2.

So we assume throughout that xi < 0 for all i � 4. Recall that g5 � x− y + z and
since g5,x,y,z are invariant under the permutation of x1,x2,x3,x4 , we can assume that
x1 � x2 � x3 � x4 < 0. Then 1+x1 +x2+x3 +x4 � 1+x1 +x2+x3 � 1+x1+x2 +x4 �
1+ x1 + x3 + x4 � 1+ x2 + x3 + x4 < 0, where the last inequality is obtained from the
fact that (2,3,4) ∈ A . Therefore

|1+ x1 + x2 + x3 + x4| � |1+ x1 + x2 + x3| � |1+ x1 + x2 + x4|
� |1+ x1 + x3 + x4| � |1+ x2 + x3 + x4|.

(19)

Then

f2(1+ x1 + x2 + x3 + x4,x5)− f2(1+ x1 + x2 + x3,x5) � 0. (20)

If x1 � − 1
2 , then |1+ xi + x j + xk| � 1

2 for every 1 � i < j < k � 4, and thus

g5 � −2 ∑
1�i< j<k�4

(i, j,k) �=(1,2,3)

min{|1+ xi + x j + xk|, |x5|} � −3.

Therefore we assume that x1 <− 1
2 . Let C = {(i, j) | 1 � i < j � 4 and 1+xi+x j < 0} .

Case 3.1 C = ∅ . Since x1 < − 1
2 and 1 + x1 + x2 � 0, we obtain x2 > − 1

2 .
Therefore x3,x4 > − 1

2 and so |1+ x2 + x3 + x4| < 1
2 . Therefore

− f2(1+ x2 + x3 + x4,x5) � −1 (21)
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By a similar calculation as in (15), we have⎛
⎜⎜⎝ ∑

i, j∈{1,2,4}
i< j

f2(1+ xi + x j,x5)

⎞
⎟⎟⎠− f2(1+ x1 + x2 + x4,x5) � −1 (22)

⎛
⎜⎜⎝ ∑

i, j∈{1,3,4}
i< j

f2(1+ xi + x j,x5)

⎞
⎟⎟⎠− f2(1+ x1 + x3 + x4,x5) � −1 (23)

Since C = ∅ , we see that 1+ x2 + x3 and 1+ x1 + x4 are nonnegative, and so

f2(1+ x2 + x3,x5) = f2(1+ x1 + x4,x5) = 0.

So we can replace f2(1+ x1 + x4,x5) by f2(1+ x2 + x3,x5) in the sum on the left-hand
side of (23). After that adding (20), (21), (22), (23) leads to x− y+ z � −3. Therefore,
g5 � −3. Before proceeding to the next case, we first observe that

1+ x1 + x2 < 1+ x1 + x3 < min{1+ x1 + x4,1+ x2 + x3} < 1+ x2 + x4 < 1+ x3 + x4

(24)

Case 3.2 |C| � 2. By (24), we know that 1+ x1 + x2 < 1+ x1 + x3 < 0, and so

|1+ x1 + x3| < |1+ x1 + x2|.

Case 3.2.1 x5 � |1+ x1 + x3| . Then f2(1+ x1 + x3,x5) = 2x5 � f2(1+ x1 + x3 +
x4,x5) . Therefore

f2(1+ x1 + x3,x5)− f2(1+ x1 + x3 + x4,x5) � 0. (25)

Similarly,

f2(1+ x1 + x2,x5)− f2(1+ x1 + x2 + x4,x5) � 0. (26)

Adding (20), (25), (26), we see that

g5 � − f2(1+ x2 + x3 + x4,x5) � −2x5 � −2.

Case 3.2.2 |1+ x1 + x3| < x5 < |1+ x1 + x2| . Then (26) still holds. In addition,
by a similar calculation as in (15), we have⎛

⎜⎜⎝ ∑
i, j∈{1,3,4}

i< j

f2(1+ xi + x j,x5)

⎞
⎟⎟⎠− f2(1+ x1 + x3 + x4,x5) � −1. (27)
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Furthermore

− f2(1+ x2 + x3 + x4,x5) � −2. (28)

Adding (20), (26), (27), (28), we obtain g5 � −3.

Case 3.2.3 |x5| � |1+ x1 + x3| . Then f2(1+ x1 + x2,x5) = 2|1+ x1 + x2| and

f2(1+ x1 + x3,x5) = 2|1+ x1 + x3|.
Suppose first that x4 � − 1

2 . Then the left-hand side of (25) is larger than or equal to

2|1+ x1 + x3|−2|1+ x1+ x3 + x4| = −2(1+ x1 + x3)+2(1+ x1 + x3 + x4)
= 2x4 � −1 (29)

Similarly, the left-hand side of (26) is larger than or equal to

2|1+ x1 + x2|−2|1+ x1 + x2 + x4| = 2x4 � −1 (30)

In addition, by a calculation similar to (15), we have⎛
⎜⎜⎝ ∑

i, j∈{2,3,4}
i< j

f2(1+ xi + x j,x5)

⎞
⎟⎟⎠− f2(1+ x2 + x3 + x4,x5) � −1. (31)

Adding (20), (29), (30), and (31), we obtain g5 � −3.
Hence it only remains to consider the case that x4 < − 1

2 . Since x1 < x2 < x3 <

x4 <− 1
2 , we see that 1+xi+x j < 0 for each 1 � i < j � 4. By (24) and the assumption

|x5| � |1+ x1 + x2| , we see that

x = 2 ∑
1�i< j�4

|1+ xi + x j| = −12−6 ∑
1�i�4

xi (32)

Case 3.2.3.1 x5 � |1+ xi + x j + xk| for each 1 � i < j < k � 4. Then

y = 2 ∑
1�i< j<k�4

|1+ xi + x j + xk| = −8−6 ∑
1�i�4

xi (33)

By (32) and (33), we obtain x− y+ z = z−4. Since xi < − 1
2 for every i , we have

x5 � |1+ x1 + x2 + x3| � 1
2

and |1+ x1 + x2 + x3 + x4| � 1.

Therefore z = 2min{|1+x1+x2+x3+x4|,x5}� 1. Hence g5 = x−y+z= z−4 �−3.

Case 3.2.3.2 x5 < |1+ xi + x j + xk| for some 1 � i < j < k � 4. Let

D = {(i, j,k) | 1 � i < j < k � 4 and x5 < |1+ xi + x j + xk|}.
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Then 1+ xi + x j + xk + x5 < 0 for all (i, j,k) ∈ D . We have

y = 2 ∑
1�i< j<k�4

|1+ xi + x j + xk|−2 ∑
(i, j,k)∈D

|1+ xi + x j + xk|+2 ∑
(i, j,k)∈D

x5

= −2

(
4+3 ∑

1�i�4

xi

)
+2 ∑

(i, j,k)∈D

(1+ xi + x j + xk + x5) (34)

� −8−6 ∑
1�i�4

xi (35)

Therefore, if x5 � 1
2 , then we obtain from (35) that x− y+ z � z−4 = 2x5 −4 � −3.

So assume that x5 < 1
2 . This implies that D contains all (i, j,k) such that 1 � i < j <

k � 4. Then we apply (34) to obtain

x− y+ z = −4−2 ∑
(i, j,k)∈D

(i, j,k) �=(1,2,3)

(1+ xi + x j + xk + x5)−2(1+ x1 + x2 + x3)

� −4−2(1+ x1+ x2 + x3) � −3.

Case 3.3 |C| = 1. That is, 1+ x1 + x2 < 0 and 1+ xi + x j � 0 for 1 � i < j � 4
with (i, j) �= (1,2) . If x5 < |1+ x1 + x2| , then by a similar reason as in Case 3.2, we
see that (26), (27) and (28) still hold. Adding (20), (26), (27) and (28), we obtain
g5 � −3. So assume that x5 � |1+x1 +x2| . If x4 <− 1

2 , then xi < − 1
2 for all i , and so

1+ xi + x j < 0 for each 1 � i < j � 4, which contradicts the assumption that |C| = 1.
Hence x4 � − 1

2 . Then 1+ x1 + x3 + x4 � x4 � − 1
2 and so the left-hand side of (25) is

− f2(1+ x1 + x3 + x4,x5) � −2|1+ x1 + x3 + x4| � −1. (36)

As in (30), the left-hand side of (26) is

� 2|1+ x1 + x2|−2|1+ x1 + x2 + x4| = 2x4 � −1. (37)

Similarly,

− f2(1+ x2 + x3 + x4,x5) � −2|1+ x2 + x3 + x4| � −1. (38)

Adding (20), (36), (37), and (38), we obtain g5 � −3. This completes the proof. �

THEOREM 7. If 0 � y � 2 , |x1|, |x2|, |x3|, |x4| ∈ (0,1] and xi > 0 for some i =
1,2,3,4 , then

g4(y,x1,x2,x3,x4) � 4.

Proof. For convenience, we write g4 instead of g4(y,x1,x2,x3,x4) . Since g4 is
invariant under the permutation of x1,x2,x3,x4 , we can suppose that x4 > 0. Then
x4 + y � 0. After a straightforward manipulation, we obtain that

g4 = f2 (y+ x1 + x2,x4)+ f2 (y+ x1 + x3,x4)+ f2 (y+ x2 + x3,x4)
− f2 (y+ x1 + x2 + x3,x4)− f2 (y+ x1,x4)− f2 (y+ x2,x4)− f2 (y+ x3,x4)

� f2 (y+ x1 + x2,x4)+ f2 (y+ x1 + x3,x4)+ f2 (y+ x2 + x3,x4)
− f2 (y+ x1 + x2 + x3,x4) .
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For convenience, let

A =
{
(i, j) | 1 � i < j � 3 and y+ xi + x j < 0

}
B =

{
(i, j) | 1 � i < j � 3 and y+ xi + x j � 0

}
.

Observe that if y+x1 +x2 < 0, y+x1 +x3 < 0, and y+x2 +x3 < 0, then combining all
of them, we have y+ x1 + x2 + x3 < −y/2 � 0. Suppose first that y+ x1 + x2 + x3 � 0.
Then one of y+ x1 + x2 , y+ x1 + x3 , and y+ x2 + x3 is nonnegative. Then |A| � 2. By
Lemma 3, we obtain f2(y+ x1 + x2 + x3,x4) = 0, f2(y+ xi + x j,x4) = 0 for (i, j) ∈ B ,
and therefore

g4 � ∑
(i, j)∈A

f2 (y+ xi + x j,x4)

= 2 ∑
(i, j)∈A

min
{∣∣y+ xi + x j

∣∣ , |x4|
}

� 4 |x4| � 4.

From this point on, we apply Lemma 3 without reference. Next, we assume throughout
that y+ x1 + x2 + x3 < 0. If B is not empty, then |A| � 2 and so

g4 � ∑
(i, j)∈A

f2 (y+ xi + x j,x4)

= 2 ∑
(i, j)∈A

min
{∣∣y+ xi + x j

∣∣ , |x4|
}

� 4.

So suppose that B is empty. Then y+ xi + x j < 0 for every 1 � i < j � 3.
If |y+ x1 + x2 + x3| � |x4| , then g4 � 6|x4| − 2|x4| = 4|x4| � 4. So assume that

|y+ x1 + x2 + x3| < |x4| . Adding y+ x1 + x2 , y+ x1 + x3 , and y+ x2 + x3 , we obtain
y+ x1 + x2 + x3 < −y/2 � 0. Since y � 0 and y+ xi + x j < 0 for every 1 � i � j � 3,
there exists i ∈ {1,2,3} such that xi < 0. Without loss of generality, we can assume
that x3 < 0. Then y + x1 + x2 + x3 � y + x1 + x2 < 0. This leads to |y + x1 + x2| �
|y+ x1 + x2 + x3| < |x4| . Therefore

g4 � 4|x4|+2|y+ x1 + x2|−2|y+ x1 + x2 + x3| � 4|x4| � 4.

This completes the proof. �

Finally, we calculate a lower bound, which we think is close to being sharp for f6
as follows.

THEOREM 8. For every x1,x2,x3,x4,x5,x6 ∈ R ,

f6(x1,x2,x3,x4,x5,x6) � −5max{|xi| : i = 1,2, . . . ,6}.

Proof. Similarly to the proof of Theorems 1 and 5, it is enough to show that

f6(1,x1,x2,x3,x4,x5) � −5,
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where 1 � |x1|� |x2|� |x3|� |x4|� |x5|> 0. Then we write f6 = f6(1,x1,x2,x3,x4,x5)
as

f6(1,x1,x2,x3,x4,x5) = f5(x1,x2,x3,x4,x5)+g5(1,x1,x2,x3,x4,x5).

If xi > 0 for some i = 1,2,3,4,5, we apply Theorems 5 and 6, to obtain

f6(1,x1,x2,x3,x4,x5) � −5.

So assume that xi < 0 for every i = 1,2,3,4,5. By Lemma 2, f5(x1,x2,x3,x4,x5) = 0.
So f6 = g5(1,x1,x2,x3,x4,x5) . If 1+ x1 + x2 + x3 + x4 + x5 � 0, then every term in the
absolute value in the sum defining g5(1,x1,x2,x3,x4,x5) is nonnegative, which leads to
g5(1,x1,x2,x3,x4,x5) = 0. So we suppose that 1+ x1 + x2 + x3 + x4 + x5 < 0. Then
g5(1,x1,x2,x3,x4,x5) is equal to

−3+ ∑
1�i< j�5

|1+ xi + x j|− ∑
1�i< j<k�5

|1+ xi + x j + xk|

+ ∑
1�i< j<k<��5

|1+ xi + x j + xk + x�|

= f2(1+ x1 + x2,x4)+ f2(1+ x1 + x3,x5)+ f2(1+ x1 + x4,x3)+ f2(1+ x1 + x5,x2)
+ f2(1+ x2 + x3,x1)+ f2(1+ x2 + x4,x5)+ f2(1+ x2 + x5,x3)+ f2(1+ x3 + x4,x2)
+ f2(1+ x3 + x5,x4)+ f2(1+ x4 + x5,x1)+A1, (39)

where

A1 = −3−2 ∑
1�i�5

|xi|+ ∑
1�i< j<k<��5

|1+ xi + x j + xk + x�|.

Let A = x1 + x2 + x3 + x4 + x5 . By the triangle inequality, we have

A1 = −3+2 ∑
1�i�5

xi + ∑
1�i< j<k<��5

|1+ xi + x j + xk + x�| � −3+2A+ |5+4A|. (40)

Let h : R → R be defined by

h(x) = −3+2x+ |5+4x|=
{

6x+2, if x � − 5
4 ;

−2x−8, if x < − 5
4 .

Next we divide the consideration into two cases. From this point on, we write g5 instead
of g5(1,x1,x2,x3,x4,x5) .

Case 1 1+ xi + x j � 0 for all 1 � i < j � 5. Summing all of them, we obtain

10+4x1 +4x2 +4x3 +4x4 +4x5 � 0,

which implies A � − 5
2 . Since h is decreasing on (−∞,− 5

4 ] and A � − 5
2 < − 5

4 , we
obtain by the triangle inequality, (39), and (40) that

g5 � A1 � h(A) � h

(
−5

2

)
= −2

(
−5

2

)
−8 = −3.
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Case 2 there exist integers 1� i < j � 5 such that 1+xi+x j > 0. Since 1 � |x1|�
|x2|� |x3|� |x4|� |x5|> 0 and xi < for every i = 1,2,3,4,5, we have 1+x4 +x5 > 0.
Then f2(1 + x4 + x5,x1) = 2min{1 + x4 + x5, |x1|} . We divide the consideration into
three cases depending on 1+ x4 + x5 and |x1| .

Case 2.1 1+x4 +x5 � 1
4 and |x1|� 1

4 . Then f2(1+x4 +x5,x1) � 1
2 . We see that

h has the minimum value at − 5
4 . So we obtain by the triangle inequality, (39), and (40)

that

g5 � f2(1+ x4 + x5,x1)+A1

� f2(1+ x4 + x5,x1)+h(A) � 1
2

+h

(
−5

4

)
= −5.

Case 2.2 |x1| < 1
4 . Then xi > − 1

4 for every i = 1,2,3,4,5. Therefore A � 5x1 >

− 5
4 , 1+ x4 + x5 > 1

2 , and f2(1+ x4 + x5,x1) = 2|x1| = −2x1 . Since h is increasing on
[− 5

4 ,∞) , we obtain by the triangle inequality, (39), and (40) that

g5 � f2(1+ x4 + x5,x1)+A1

� −2x1 +h(A) � −2x1 +6(5x1)+2 = 28x1 +2 > −5.

Case 2.3 1+x4 +x5 < 1
4 . Then 2x4 � x4 +x5 <− 3

4 . This implies x1 � x2 � x3 �
x4 < − 3

8 and |x1| > 3
8 > 1

4 . So A < 4x4 + x5 < − 3
2 < − 5

4 and f2(1 + x4 + x5,x1) =
2+2x4 +2x5 . Since h is decreasing on (−∞,− 5

4 ] , we obtain by the triangle inequality,
(39), and (40) that

g5 � 2+2x4 +2x5−2(4x4 + x5)−8

= −6x4−6 > −15
4

> −5.

In any case, we have g5 � −5. Therefore f6(1,x1,x2,x3,x4,x5) � −5, as de-
sired. �
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[7] Z. D. DJOKOVIĆ, Generalizations of Hlawka’s inequality, Glasnik Mat.-Fiz. Astromon. Ser. II.
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