
Journal of
Mathematical

Inequalities

Volume 16, Number 4 (2022), 1525–1539 doi:10.7153/jmi-2022-16-99

SOME DOMINATION INEQUALITIES FOR SPECTRAL

ZETA KERNELS ON CLOSED RIEMANNIAN MANIFOLDS

LOUIS OMENYI ∗ AND MCSYLVESTER OMABA
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Abstract. We first prove Kato’s inequalities for the Laplacian and a Schrödinger-type operator
on smooth functions on closed Riemannian manifolds. We then apply the result to establish
some new domination inequalities for spectral zeta functions and their related spectral zeta ker-
nels on n -dimensional unit spheres using Kato’s inequalities and majorisation techniques. Our
results are the generalisations of Kato’s comparison inequalities for Riemannian surfaces to n -
dimensional closed Riemannian manifolds.

1. Introduction and Preliminaries

Consider the Riemann zeta function ζR defined by ζR : {s ∈ C : ℜ(s) > 1}→ C

with

ζR(s) =
∞

∑
k=1

1
ks ; ℜ(s) > 1. (1)

From (1), we deduce that
∞

∑
k=1

∣∣ 1
ks

∣∣= ∞

∑
k=1

1

kℜ(s) .

Hence, the series on the right-hand-side converges absolutely if and only if ℜ(s) >
1. Consequently, the Riemann zeta function defined by (1) above is holomorphic in
the region ℜ(s) > 1. It, however, admits a meromorphic continuation to the whole s-
complex plane with only simple pole at s = 1 and has residue 1. For details, see [20].
A generalization of the Riemann zeta function is the Hurwitz zeta function, (see e.g.
[9]), defined by

ζH(s,a) =
∞

∑
k=0

1
(k+a)s ; s ∈ C, 0 < a � 1, ℜ(s) > 1.
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We denote the Laplace-Beltrami operator simply called the Laplacian in many
literature acting on smooth functions on n -dimensional Riemannian manifold (M,g)
by Δg where locally,

Δg = − div(grad) = − 1√|g| ∑i, j
∂

∂xi

(√
|g|gi j ∂

∂x j

)
(2)

with gi j being the components of the dual metric on the cotangent bundle T ∗
x M. The

operator Δg extends to a self-adjoint operator on L2(M) ⊃H2(M) → L2(M) with com-
pact resolvent. This implies that there exists an orthonormal basis ψk ∈ L2(M) consist-
ing of eigenfunctions such that

Δgψk = λkψk (3)

where the eigenvalues are listed with multiplicities; for details, one may see for exam-
ple [14, 17, 10, 7, 18] and [21] among many literature. Consequently, we define the
spectral zeta function which is another generalisation of the Riemann zeta function of
the Laplacian on smooth functions on closed Riemannian manifolds by

ζg(s) =
∞

∑
k=1

1
λ s

k
; ℜ(s) >

n
2
. (4)

Kato in [16] in effort to prove essential self-adjointness for Schrödinger operators
under very mild restrictions on the potential term introduced Kato’s inequality and the
Kato class of potentials. These were combined to give new insight in analysis and ge-
ometry of Riemannian manifolds. It computed explicit majorisation Kato’s inequalities
for the trace of the heat operator and the semigroup generated by Bochner Laplacian on
forms.

A characterisation of the generators of positive semigroups were done in [1]. It
showed that the semigroup consists of positive operators if and only if it satisfies the
abstract version of the kato’s inequality. It also characterised the domination of semi-
groups by an inequality for their generators. In continuation of the characterisation,
Hess, et al [12] constructed Kato’s inequalities for several Laplacians on tangent bun-
dles of some Riemannian manifolds and studied their semigroups dominations.

In a similar study, Bär [5] used Kato’s comparison principle for heat semi-groups
to derive estimates for trace of the heat operator on surfaces with variable curvature.
These estimates are from above for positively curved surfaces of genus 0 and from
below for genus greater or equal to 2. It was shown that the estimates are asymptot-
ically sharp for small time and for large time in the case of positive curvature. As a
consequence, it estimated the corresponding spectral zeta function by the Riemann zeta
function for the surfaces. Specifically, Bär [5] derived bounds of the Laplace spec-
trum on closed oriented surfaces. This line of research has continued to develop, for
instance, [6] had demonstrated Kato’s inequality on different Riemannian geometries.
Most recently, [2] discussed some interesting consequences of Kato’s inequality on
some differential operators.

In this paper, we extend these results by constructing Kato’s bounds for the spec-
tral zeta kernel of a perturbed Laplacian of the Schrödinger-type in comparison with
spectral zeta kernel of the Laplacian on (M,g). We have the following results.
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THEOREM 1. Let ψ ∈ L1
loc(M) and suppose that the distributional Laplacian

Δgψ ∈ L1
loc(M). Then

Δg|ψ | � ℜ
(
sgn(ψ)Δgψ

)
(5)

in the sense of distribution.

THEOREM 2. The semigroup T satisfies Kato’s inequality, that is,

〈sgn(ψ)Aψ ,φ〉 � 〈|ψ |,A∗φ〉

for ψ ∈ domain(A), φ ∈ domain(A∗) where T ∗ is the adjoint of A.

THEOREM 3. For all ψ ∈C∞(M), H|ψ | � ℜ
(
sgn(ψ)Vψ

)
.

THEOREM 4. Let ZSn(s,ρn) be the spectral zeta kernel of the Schrödinger-type
operator, H = Δ+ c, on smooth functions of the n-dimensional unit sphere, Sn, where

c is the potential operator that multiplies by ρn =
n−1

2
. Then

ZSn(s,x,y) ≺ ζSn(s,x,y). (6)

Our results show that the trace, Tr(exp(−tH)), of the operator exp(−tH) where
H = Δg +V for smooth potential V is majorised by Tr(exp(−tΔg)) on (M,g). We used
Kato’s inequality to prove that the spectral zeta kernel of H is majorised by that of Δg

on the n -dimensional unit sphere. The domination of the traces of the semi-group e−tH

by e−tΔg is shown to be
Tre−tH � nTre−tΔ, t > 0. (7)

This result is in tandem with those of [11] and references therein. This leads to the
comparison of the spectra of the generators H and Δg on M. The inequality (7) of
course yields inequalities for the associated Riemann zeta as well as the spectral zeta
functions and the associated spectral zeta kernel on manifolds of certain dimensions.

2. Majorisation and the Kato’s inequalities

Majorisation techniques in conjunction with Kato’s inequalities are used to com-
pare heat operators, the spectral zeta functions and the zeta kernels. Majorisation is a
pre-order of sequences of real numbers. We make the following formal definitions on
majorisation and specify its connotation as it is used here.

DEFINITION 1. Let x,y ∈ Rn and let x↓ and y↓ be vectors with the same com-
ponents as x and y respectively. We say that x weakly majorises y and write this as
x 
w y if and only if

k

∑
j=1

x↓ �
k

∑
j=1

y↓ for k = 1,2, · · · ,n−1. (8)
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That is, if x = (x1,x2, · · · ,xn) and y = (y1,y2, · · · ,yn) ∈ Rn then x 
w y if and only if

x1 � y1,

x1 + x2 � y1 + y2,

...

x1 + x2 + · · ·+ xk � y1 + y2 + · · ·+ yk.

Equivalently, if y weakly majorises x we write x ≺w y or y 
w x.

If in addition to (8), we get that
n

∑
j=1

x =
n

∑
j=1

y then we say that x majorises y and

write this as x � y.

DEFINITION 2. Let Ω ⊂ Rn and let ψ : Ω → R. We call the function ψ : Ω → R

Schur convex if x � y implies that ψ(x) � ψ(y) ∀x ∈ Ω; see e.g. [26, 24, 25].

DEFINITION 3. We say x dominates y and write x 
 y whenever (8) is satisfied
and call ψ : Ω → R Schur convex if ψ ′′(x) > 0 ∀x ∈ Ω ⊂ Rn and ψ(x) � ψ(y).

We will also use the fact that if x 
 y then x−1 ≺ y−1. We make the next definitions
following [13] and [1].

DEFINITION 4. Let ψ ∈C∞(M) be any function. Define the sign function sgn(ψ)
by

sgn(ψ)(x) =
{

ψ |ψ |−1 ; if ψ(x) �= 0,
0 ; if ψ(x) = 0.

(9)

For any ψ ,φ ∈C∞(M), the following properties are satisfied:

sgn(ψ)ψ =
ψψ(x)
|ψ | = |ψ |.

sgn(ψ)φ = 0, if ψ ⊥ φ .

sgn(ψ)φ =
ψψ
|φ | if ψ �⊥ φ .

|sgn(ψ)φ | � |φ |.
〈sgn(ψ)Tψ ,φ〉 � 〈|ψ |,T ∗φ〉

where T a generator of a strongly continuous semigroup such as the heat operator on
the manifold and T ∗ is the adjoint of T ; see e.g [1].

For any ε > 0, we also define a regularised absolute value of ψ by

ψε(x) :=
√
|ψ(x)|2 + ε2. (10)
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So, lim
ε→0

ψε(x) = |ψ(x)| point-wise. Thus, the regularised sign function is

sgnε ψ :=
{

ψ |ψ |−1 ; on supp(ψ),
ε ; otherwise .

(11)

for ψ ∈C∞(TxM).
We now give the Kato’s inequality for the case of the Laplacian.

LEMMA 1. Let Δg be the Laplacian defined by (2) and let ψ ∈C∞(M). Then,

Δg|ψ | � ℜ
(
sgn(ψ)Δgψ

)
(12)

except where |ψ | is not differentiable.

Proof of Lemma 1. Observe from (10) that ψε � |ψ |. Differentiating

ψ2
ε = |ψ |2 + ε2 gives

ψε ∇gψε = ℜ(ψ∇gψ). (13)

Squaring (13) and using that ψε � |ψ | gives

|∇gψε | � ψ−1
ε |ψ ||∇gψ | � |∇gψ |. (14)

Now take the divergence of (13) to obtain

|∇gψε |2 + ψεΔgψε = |∇gψ |2 + ℜ(ψΔψ).

By (14), this is equivalent to

ψε Δgψε � ℜ(ψΔψ). (15)

So, using that sgnε ψ = ψ |ψε |−1 by (11), equation (15) becomes

Δgψε � ℜ
(
sgnε(ψ)Δgψ

)
. (16)

Now, since Δgψε → Δg|ψ | point-wise and sgnε(ψ)→ sgn(ψ) point-wise, take limit in
(16) as ε → 0 to conclude that

Δg|ψ | � ℜ
(
sgn(ψ)Δgψ

)
.

except where |ψ | is not differentiable. �

Our goal is to extend the Kato’s inequality (12) to a more general class of func-
tions which would prove our first main result given as Theorem 1. We make one more
definition.
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DEFINITION 5. (Approximate identity) Let ω ∈C∞(Rn) ω � 0, and
∫

ω(x)dx = 1.

For ε > 0, we define

ωε(x) :=
ω( x

ε )
εn .

Then, ∫
ωε(x)dx = 1.

We define a map Iε by
Iε ψ := ωε ∗ψ (17)

whenever the right-hand-side of (17) exists and where

( f ∗ g)(x) :=
∫

f (x− y)g(y)dy

is the convolution of f and g . The map Iε is called an approximation of the identity,
or simply, an approximate identity.

The approximate identity Iε has the following properties.

(1.) If ψ ∈ L1
loc(R

n) then Iεψ ∈C∞(Rn).

(2.) If ψ is differentiable then
∂

∂xi
(Iε ψ) = Iε

∂ψ
∂xi

; that is, the approximate identity

Iε commutes with the differentiation operator
∂

∂xi
.

(3.) The map Iε : Lp(Rn) → Lp(Rn) is bounded; and ||Iε || � 1.

(4.) For any ψ ∈ Lp(Rn) , lim
δ→0

||Iε ψ −ψ ||p = 0.

(5.) For any ψ ∈ L1(Rn) , Iεψ → ψ as ε → 0 in the sense of distribution;

see e.g. [10], [13] and [15] for details.

Proof of Theorem 1. Let ψ ∈ L1
loc(M). From the properties of Iε we see that Iε ψ

is smooth for any ε > 0. So, inserting Iεψ in the theorem in place of ψ , we obtain for
any ε > 0 that

Δg(Iε ψ)ε � ℜ
(
sgnε(Iε ψ)Δg(Iε ψ)

)
. (18)

To remove the approximate identity in equation (18), we use the fact that since
sgnε(Iε ψ)Δg(Iε ψ) is a sequence in L1

loc(M) , there exists a subsequence of
sgnε(Iε ψ)Δg(Iε ψ) which converges to sgnε(ψ)Δg(ψ) except possibly on a set of mea-
sure zero (almost everywhere).

Besides, since Δgψ ∈ L1
loc(M), it follows from the properties of Iε that the limit

of Δg(Iε ψ) as ε → 0+ is Δgψ ∈ L1
loc(M). Also by the boundedness of sgnε(Iε ψ) we

have that
lim

ε→0+
sgnε(Iε ψ)

(
Δg(Iε ψ)−Δgψ

)
= 0
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in the sense of distribution.
It is now left to prove that there is a subsequence such that sgnε(Iε ψ)Δg(Iε ψ)

converges to sgnε(ψΔgψ). But Lebesgue dominated convergence theorem ensures this.
Hence, taking this subsequential limit in (18) gives

Δg|ψ |ε � ℜ
(
(sgnε ψ)Δgψ

)
.

Therefore, lim
ε→0

(
Δg|ψ |ε � ℜ

(
(sgnε ψ)Δgψ

))
gives Δg|ψ | � ℜ

(
sgn(ψ)Δgψ

)
in the

sense of distribution as required. �

COROLLARY 1. Suppose ψ and Δψ ∈ L2(M). Then,

Δ|ψ | � ℜ
(

ψψ−1Δψ
)
.

Proof of Corollary 1. Since ψ and Δψ ∈ L2(M) then there exists a sequence
{ψ j} ∈ D which converges in D such that in L2 -norm ∇ψ j → ∇ψ and Δψ j → Δψ .
Moreover,

||∇ψ ||2 = 〈∇ψ ,∇ψ〉g = −〈ψ ,Δψ〉g � ||ψ ||2||Δψ ||2.
By the continuity of these estimates, it follows that Δ|ψ | � ℜ

(
sgn(ψ)Δψ

)
∀ψ ∈L2(M).

�

We can extend this concept to semigroups. Let T be a strongly continuous semi-
group with differential operator generator A defined by

Ax = lim
t↓0

1
t

(
T (t)− id

)
x

for x ∈ M. That is T satisfies

1. T (0) = id that is an identity operator on M.

2. For all 0 � t,s ∈ M, T (t + s) = T (t)T (s).

3. For all x0 ∈M, ||T (t)x0−x0|| → 0 as t ↓ 0. That is the strong operator topology.
See e.g. [10] and [22].

Proof of Theorem 2. Let ψ ∈ domain(A) and φ ∈ domain(A∗) then

〈sgn(ψ)Aψ ,φ〉 = lim
t↓0

1
t
〈sgn(ψ)(T (t)ψ −ψ),φ〉

= lim
t↓0

1
t
〈sgn(ψ)T (t)ψ −|ψ |,φ〉

� lim
t↓0

1
t
〈|T (t)ψ |− |ψ |,φ〉

� lim
t↓0

1
t
〈|ψ |,(T ∗(t)φ −φ)〉 = 〈|ψ |,T ∗φ〉. �
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Of course, in the case that A is self-adjoint, the the Kato’s inequality for the semi-
group is

〈sgn(ψ)Aψ ,φ〉 � 〈|ψ |,Aφ〉.
Now consider a Schrödinger type operator H = Δ +V on C∞(M) where V is a

nonnegative multiplication potential. We now prove the result tagged Theorem (3):

Proof of Theorem 3. By definition of Iε we have

HIε |ψ | = ΔIε |ψ |+VIε |ψ | = Iε(Δ|ψ |+V |ψ |) � 0 (19)

since Δ|ψ |+V |ψ | � 0. But,

〈ΔIε |ψ |, Iε |ψ |〉g = −||∇(Iε |ψ |)||22 � 0. (20)

Since by (19)) the left side of (20) is nonnegative then ∇(Iε |ψ |) = 0 in L2 -sense.
Therefore Iε |ψ | = V |ψ | = c � 0 with c a constant. Since |ψ ∈ L2(M)| and |Iε |ψ | →
|ψ | in the L2 -sense, we conclude that c = 0 and so Iε |ψ | = 0, |ψ | = 0 and so ψ = 0.

Hence, H|ψ | � Δ|ψ | � ℜ
(
sgn(ψ)Δψ

)
� ℜ

(
sgn(ψ)Vψ

)
. �

We obtain corollaries of this result by considering more general operators on a
Hilbert space. Let X and Y be operators on Hilbert space of functions H . We as-
sume that X and Y are well defined generators of the heat semigroups e−tX and e−tY

satisfying ( ∂
∂ t +X

)
e−tX f = 0

lim
t→0

e−tX f = f

}
(21)

and similarly ( ∂
∂ t +Y

)
e−tY f = 0

lim
t→0

e−tY f = f

}
(22)

for some f ∈ H . In the lemma that follows, we denote e−tX f just by e−tX .
From here on, we suppress the subscript g in ζg(s) and Δg. We simply write ζ (s)

and Δ for ζg(s) and Δg respectively, unless for purpose of emphasis.

LEMMA 2. The Laplacian Δ in (2) satisfies Δe−tΔ = e−tΔΔ.

Proof of Lemma 2. A direct computation shows this. That is,

Δe−tΔ f (x) = Δx

(∫
M

K(t,x,y) f (y)dV (y)
)

=
∫

M
ΔxK(t,x,y) f (y)dV (y)

= −∂t

∫
M

K(t,x,y) f (y)dV (y)
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and by symmetry of K(t,x,y) in x and y we have

e−tΔΔ f (x) =
∫

M
K(t,x,y)Δy f (y)dV (y)

=
∫

M
ΔyK(t,x,y) f (y)dV (y)

= −∂t

∫
M

K(t,x,y) f (y)dV (y)

which proves the lemma. �

We note that the heat semigroup e−t(X+Y ) satisfies the Duhamel’s formula

e−t(X+Y ) = e−tX −
∫ t

0
e−(t−s)(X+Y )Ye−sXds (23)

where X and Y are Laplacian-like operators. This is proved as a Theorem in [23] and
[8].

We now highlight the generalisation of the Riemann zeta function, namely, the
spectral zeta function, which is the function of interest in this paper. The spectral zeta
function is explicitly defined through the operator Δ−s

g and its integral kernel ζg(s,x,y) ,
also called the zeta kernel. The operator Δ−s

g is uniquely defined by the following
properties (see e.g [20]):

(1.) it is linear on L2(M) with 1-dimensional null space consisting of constant func-
tions. This ensures that the smallest eigenvalue of Δ−s

g is 0 of multiplicity 1 with
corresponding eigenfunction 1√

V
where V is the volume of M;

(2.) the image of Δ−s
g is contained in the orthogonal complement of constant func-

tions in L2(M) i.e.∫
M

Δ−s
g ψdVg = 0 ∀ ψ ∈ L2(M) constant; and

(3.) Δ−s
g ψk(x) = λ−s

k ψk(x) for all ψk; k > 0 an orthonormal basis of eigenfunction
of Δg.

So, for ℜ(s) > n
2 , we see by property (3.) that Δ−s

g is trace class, with trace given by
the spectral zeta function, namely

ζg(s) =
∞

∑
k=1

1
λ s

k
= Tr(Δ−s

g ) =
∫

M
ζg(s,x,x)dV ; ℜ(s) >

n
2
. (24)

Let {ψk}∞
k=1 be an orthonormal eigenbasis for Δg corresponding to the eigen-

values {λk}∞
k=1 listed with multiplicities. It is proved in [20] that the zeta kernel,

ζg(s,x,y) , equals

ζg(s,x,y) =
∞

∑
k=1

ψk(x)ψk(y)
λ s

k
; ℜ(s) >

n
2
. (25)
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A relationship between the zeta kernel and the heat kernel enables one to define
the spectral zeta kernel explicitly. The heat kernel, K(t,x,y) : (0,∞)×M×M → R, is a
continuous function on (0,∞)×M×M. It is the so-called fundamental solution to the
heat equation, i.e, it is the unique solution to the following system of equations:( ∂

∂ t + Δx
)
K(t,x,y) = 0

lim
t→0

∫
M

K(t,x,y)ψ(y)dVy = ψ(x)

⎫⎬
⎭ (26)

for t > 0; x,y ∈ M and Δx is the Laplacian acting on any ψ ∈ L2(M), where the limit
in the second equation of (26) is uniform for every ψ ∈C∞(M).

The heat operator e−tΔ : L2(M) → L2(M) is the operator defined by the integral
kernel K(t,x,y) as

(e−tΔψ)(y) :=
∫

M
K(t,x,y)ψ(x)dVx

for ψ ∈ L2(M) . The heat kernel is symmetric in the space variables, that is K(t,x,y) =
K(t,y,x) ∀ x,y ∈ M. Thus the heat operator is self-adjoint, that is, for ψ1,ψ2 ∈ L2(M)
we have

〈e−tΔψ1,ψ2〉L2(M) =
∫

M

{∫
M

K(t,x,y)ψ1(y)dVy
}

ψ2(x)dVx

=
∫

M

{∫
M

K(t,y,x)ψ2(x)dVx
}

ψ1(y)dVy = 〈ψ1,e
−tΔψ2〉L2(M).

Now returning to the heat kernel, let {ψk}∞
k=0 with

∫
M

ψk(x)ψ l(x)dVg(x) = δkl be

orthonormal basis of eigenfunctions of Δ with corresponding eigenvalues {λk} listed
with multiplicities. Then {ψk}∞

k=0 are also eigenfunctions of the heat operator with
corresponding eigenvalues {e−λkt}. In terms of these eigenfunctions, Mercer’s theo-
rem, (see e.g. [7]), implies that e−tΔ is trace-class for all t > 0. Thus, one can write the
heat kernel as

K(t,x,y) =
∞

∑
k=0

e−λktψk(x)ψk(y).

The convergence for all t > 0 is uniform on M×M. In particular, the trace of the heat
operator

Tr(e−Δgt) =
∞

∑
k=0

e−λkt |ψk(x)|2 =
∞

∑
k=0

e−λkt =
∫

M
K(t,x,x)dVg(x) < ∞. (27)

The zeta kernel and the heat kernel are related by

ζg(s,x,y) =
1

Γ(s)

∫ ∞

0
ts−1(K(t,x,y)− 1

V
)dt; ℜ(s) >

n
2
.

To see this, we observe that for any x > 0 and ℜ(s) > 0,

x−s =
1

Γ(s)

∫ ∞

0
e−xt ts−1dt
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since a change of variable from, say, xt to τ gives x−s and since Γ(s) is holomorphic
for ℜ(s) > 0. Consequently,

λ−s
k =

1
Γ(s)

∫ ∞

0
e−λkt ts−1dt.

Thus,

ζg(s,x,y) =
∞

∑
k=1

[
ψk(x)ψk(y)

1
Γ(s)

∫ ∞

0
ts−1e−λktdt

]
; ℜ(s) >

n
2
.

Therefore,

ζg(s,x,y) =
1

Γ(s)

∫ ∞

0

(
∞

∑
k=1

e−λktψk(x)ψk(y)

)
ts−1dt.

Thus,

ζg(s,x,y) =
1

Γ(s)

∫ ∞

0
ts−1(K(t,x,y)− 1

V
)dt, ℜ(s) >

n
2
.

We have another result as the corollary that follows.

COROLLARY 2. The Schrödinger-like operator H = Δ +V, where V ∈ L2
loc and

V � 0, is essentially self-adjoint on C∞
0 (M) .

Proof of Corollary 2. Since the domain D(H∗) ⊂ L2(M), it suffices to show that
ker(H∗ +1) = {0}. This implies that if

(Δ +V +1)ψ = 0, for ψ ∈ L2(M) (28)

then ψ = 0. We prove (28) by Kato’s inequality. Since ψ ∈ L2(M) and V ∈ L2
loc(M)

it follows by Cauchy-Schwarz inequality that Vψ ∈ L1
loc(M) following the inclusion

L2 ⊂ L2
loc ⊂ L1

loc from the estimate

∫
M

1 · |ψ(x)|dVg � Vg

√∫
M
·|ψ(x)|2dVg

where Vg is the volume of M . This implies that ψ ∈ L1
loc(M).

Using the Kato’s inequality, we have

Δ|ψ | � ℜ
(
(sgnψ)Δψ

)
� ℜ

(
(sgnψ)(V +1)ψ

)
= |ψ |(V +1) � 0.

Hence, the function Δ|ψ | � 0 and so,

ΔIε |ψ | = IεΔ|ψ | � 0. (29)

On the other hand, Iε |ψ | ∈ D(Δ) and therefore

〈Δ(Iε |ψ |),(Iε |ψ |)〉 = −||∇(Iε |ψ |)||2 � 0. (30)

But by equation (29) the left side of (30) is nonnegative and so ∇(Iε |ψ |) = 0 in the
L2 -sense and therefore Iε |ψ | = c � 0. But |ψ | ∈ L2 and Iε |ψ | → |ψ | in L2 -sense; and
so c = 0. Hence Iε |ψ | = 0 ⇒ |ψ | = 0 and ψ = 0. �
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3. Bounds for spectral kernels on the n -sphere

Finally, we are set to prove another main result, namely Theorem (4), of this work.
Consider the Laplacian on the unit n -dimensional sphere Sn = {x ∈ R

n+1 : ‖x‖ = 1}
defined in polar coordinates as

Δn =
1

sinn−1 θ
∂

∂θ

{
sinn−1 θ

∂
∂θ

}
+

1

sin2 θ
Δn−1 (31)

where Δn−1 is the Laplacian on Sn−1.
The harmonic homogeneous polynomials restricted to the n -sphere are the eigen-

functions of the Laplacian on Sn. A detailed treatment of these functions can be found
in [19, 4] and [3]. The restriction of the harmonic polynomials to Sn are called spherical
harmonic polynomials of degree k. Let Hk denote the space of the spherical harmonic
polynomials on Sn. They are the eigenfunctions of Δn with eigenvalues k(k+n−1).

The dimension dk(n) of the space of harmonic polynomial Hk is given by the
formula

dk(n) =
(

k+n
n

)
−
(

k+n−2
n

)
=

(2k+n−1)(k+n−2)!
k!(n−1)!

(32)

where k ∈ N0 and n � 1 is the dimension of the manifold Sn. For proof, one may see
[19, 20] and [18].

We now consider the Schrödinger operator Δg + c where c = n−1
2 and n is the

dimension of the unit sphere Sn. One expresses the associated spectral zeta function in
terms of the Hurwitz zeta function. Denote by {μk} the spectrum of Δg + c on Sn :

μk = k(k+n−1)+ c (33)

with the same eigenfunctions and multiplicities, dk(n) as for Δg .
We define the regularized zeta function as

ZSn(s) =
∞

∑
k=1

dk(n)
μ s

k
=

∞

∑
k=1

dk(n)
(k+ n−1

2 )2s
; ℜ(s) >

n
2
. (34)

The regularized zeta function (34) of the operator Δg +c on Sn can then be expressed in
terms of the Riemann zeta function see e.g. Elizalde, et al [9]. We prove that ZSn(s,c)≺
ζSn(s) which is Theorem 4 of this work.

Proof of Theorem 4. Let {ψk, j : 1 � j � dk(n)} be an orthonormal basis of the
space of n -dimensional spherical harmonics Hk(Sn). By Kato’s inequality of Theorem
(2) it suffices to use

〈sgn(ψk, j)Hψk, j,ψk,l〉 � 〈|ψk, j|,Δψk,l〉.
So,

〈sgn(ψk, j)Hψk, j,ψk,l〉 = 〈sgn(ψk, j)(Δx + c)ψk, j,ψk,l〉
= 〈sgn(ψk, j)Δxψk, j,ψk,l〉+ 〈sgn(ψk, j)cψk, j,ψk,l〉
= λk〈sgn(ψk, j)ψk, j,ψk,l〉+ ρn〈sgn(ψk, j)ψk, j,ψk,l〉
= (λk + ρn)〈sgn(ψk, j)ψk, j,ψk,l〉.
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Hence,∫
Sn

Δ−s〈sgn(ψk, j)Hψk, j,ψk,l〉dVy =
∫

Sn
Δ−s(λk + ρn)〈sgn(ψk, j)ψk, j,ψk,l〉dVy.

Since Δ−s is trace class with trace given by (24) we have
∫

Sn
Δ−s〈sgn(ψk, j)Hψk, j,ψk,l〉dVy =

∞

∑
k=1

1
(λk + ρn)s

∫
Sn
〈sgn(ψk, j)ψk, j,ψk,l〉dVy

�
∞

∑
k=1

1
(λk + ρn)s

∫
Sn

ψk, jψk,ldVy

=
∞

∑
k=1

1
(λk + ρn)s .

However, for |z| < 1 the following binomial expansion holds

(1− z)−2s =
∞

∑
m=0

Γ(2s+m)
m!Γ(2s)

zm.

So for ℜ(2s) > 1, we have

ζH(2s,ρn) =
1

ρ2s
n

+
∞

∑
k=1

1
k2s

1

(1+ ρn
k )2s

=
1

ρ2s
n

+
∞

∑
k=1

1
k2s

∞

∑
m=0

(−1)m Γ(2s+m)
m!Γ(2s)

(ρn

k

)m

=
1

ρ2s
n

+
∞

∑
m=0

(−1)m Γ(2s+m)
m!Γ(2s)

(ρn)m
∞

∑
k=1

1
k2s+m

which gives the expansion

ZSn(s,ρn) =
1

ρ2s
n

+
∞

∑
m=0

(−1)m Γ(2s+m)
m!Γ(2s)

ρm
n ζR(2s+m)

provided 0 < ρn � 1 and where ζR is the Riemann zeta function.
Thus, since

dk(n) ↓
μ s

k
� dk(n) ↓

λ s
k

and summation operator is Schur convex (see e.g. [26]), it follows that

ZSn(s,x,y) � ζg(s,x,y).

Therefore,

∞

∑
k=1

dk(n)
(k+ n−1

2 )2s
�

∞

∑
k=1

dk(n)
(k(k+n−1))s for ℜ(s) >

n
2
. �
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4. Conclusion

We have constructed Kato’s bounds for the spectral zeta kernel of a Schrödinger-
type operator in terms of the spectral zeta kernel of the Laplacian and Riemann zeta
function on closed Riemannian manifolds. We proved that Trexp(−tH)� Trexp(−tΔ)
for H = Δg +V on smooth functions on (M,g). Several illustrations were done on the
n -dimensional unit sphere. A similar study can be done on other Riemannian manifolds
of higher genus and with boundary.
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