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Abstract. A remarkable result which led to Apéry’s proof of the irrationality of ζ (3) is given by
the rapidly convergent series

ζ (3) =
5
2

∞

∑
k=1

(−1)k−1

k3
(2k

k

) =
5
2

∞

∑
k=1

(−1)k−1(k!)2

k3(2k)!
.

Let

Rn = ζ (3)− 5
2

n

∑
k=1

(−1)k−1(k!)2

k3(2k)!

denote the remainder of the series. In this paper, we obtain an asymptotic expansion of (−1)nRn .
Based on the obtained result, we establish the upper and lower bounds of (−1)nRn . As an
application of the obtained bounds, we give an approximate value of ζ (3) .

1. Introduction

Euler’s gamma function:

Γ(z) =
∫ ∞

0
tz−1e−tdt, ℜ(z) > 0

is one of the most important functions in mathematical analysis and has applications in
many diverse areas. The Riemann zeta function ζ (s) is defined by

ζ (s) :=
∞

∑
n=1

1
ns , ℜ(s) > 1.

This function plays a central role in the applications of complex analysis to number
theory. The number-theoretic properties of ζ (s) are exhibited by the following result
known as Euler’s formula, which gives a relationship between the set of primes and the
set of positive integers:

ζ (s) = ∏
p

(
1− p−s)−1

, ℜ(s) > 1,
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where the product is taken over all primes. It is readily seen that ζ (s) �= 0 when ℜ(s) �
1, and the Riemann’s functional equation for ζ (s) :

ζ (s) = 2(2π)s−1 Γ(1− s) sin

(
1
2

πs

)
ζ (1− s) (1.1)

shows that ζ (s) �= 0 when ℜ(s) � 0 except for the trivial zeros in

ζ (−2n) = 0, n ∈ N := {1,2, . . .}.

Furthermore, in view of the following known relation:

ζ (s) =
1

1−21−s

∞

∑
n=1

(−1)n−1

ns , ℜ(s) > 0 and s �= 1,

we find that ζ (s) < 0 for 0 < s < 1,s ∈ R . The assertion that all the non-trivial zeros
of ζ (s) have real part 1

2 is popularly known as the Riemann hypothesis which was
conjectured (but not proven) in the memoir of Riemann [16]. This hypothesis is still
one of the most challengingmathematical problems today (see Edwards [9]), which was
unanimously chosen to be one of the seven greatest unsolved mathematical puzzles of
our time, so-called the millennium problems (see Devlin [8]).

Leonhard Euler (1707–1783), in 1735, considered the Basel problem:

1+
1
4

+
1
9

+
1
16

+
1
25

+ · · ·= ζ (2) =
π2

6
(1.2)

to 20 decimal places with only a few terms of his powerful summation formula dis-
covered in the early 1730s, now called the Euler-Maclaurin summation formula. This
probably convinced him that the sum in (1.2) equals π2/6, which he proved in the same
year 1735 (see [15]). Euler also proved

ζ (2n) = (−1)n+1 (2π)2n

2(2n)!
B2n, n ∈ N0 := N∪{0}, (1.3)

where Bn (n ∈ N0) are the Bernoulli numbers defined by the following generating
function:

z
ez−1

=
∞

∑
n=0

Bn
zn

n!
, |z| < 2π

(see [18, Section 1.6]; see also [19, Section 1.7]). Subsequently, many authors have
proved the Basel problem (1.2) and Equation (1.3) in various ways (see, e.g., [20]).

We get no information about ζ (2n+1) (n ∈ N) from Riemann’s functional equa-
tion, since both members of (1.1) vanish upon setting s = 2n+1 (n ∈ N) . In fact, until
now no simple formula analogous to (1.3) is known for ζ (2n+1) or even for any spe-
cial case such as ζ (3) . It is not even known whether ζ (2n+1) is rational or irrational,
except that the irrationality of ζ (3) was proved recently by Apéry [3]. But it is known
that there are infinitely many ζ (2n+ 1) which are irrational (see [17] and [21]). For



A DOUBLE INEQUALITY FOR THE APÉRY CONSTANT 13

various series representations for ζ (2n+ 1) , see [7] and also see [18, Chapter 4] and
[19, Chapter 4].

A remarkable result which led to Apéry’s proof of the irrationality of ζ (3) is given
by the rapidly convergent series

ζ (3) =
5
2

∞

∑
k=1

(−1)k−1

k3
(2k

k

) =
5
2

∞

∑
k=1

(−1)k−1(k!)2

k3(2k)!
. (1.4)

Chen and Srivastava [6, pp. 180–181] pointed out that the series representation (1.4)
was proven independently by (among others) Hjörtnaes [12], Gosper [11, pp. 121–151],
and Apéry [3].

Consider the identity (1.4) and let

Sn =
5
2

n

∑
k=1

(−1)k−1(k!)2

k3(2k)!
, (1.5)

be the partial sums of the series (1.4). We now consider the remainder Rn defined as

Rn = ζ (3)−Sn =
5
2

∞

∑
k=n+1

(−1)k−1(k!)2

k3(2k)!
=

5
2

∞

∑
k=n+1

(−1)k−1(2k+1)(Γ(k+1))2

k3Γ(2(k+1))

=
5
2

∞

∑
k=n+1

(−1)k−1
√

π
22kk3

Γ(k+1)
Γ(k+ 1

2 )
, (1.6)

by using the recurrence formula

Γ(x+1) = xΓ(x) (1.7)

and duplication formula (see, [2, p. 256, Eq. (6.1.18)] and also [19, p. 6, Eq. (29)])

Γ(2x) = (2π)−
1
2 22x− 1

2 Γ(x)Γ
(

x+
1
2

)
. (1.8)

In this paper, we obtain the following asymptotic expansion:

(−1)nRn ∼ 1
22n+1n2

√
π
n

(
1− 15

8n
+

225
128n2 +

235
1024n3 −

130261
32768n4 + . . .

)
(1.9)

as n → ∞ . Moreover, we give a formula for determining the coefficients in expansion
(1.9) (Theorem 3.1). Then we establish the upper and lower bounds of (−1)nRn (The-
orem 3.2). As an application of the obtained bounds, we give an approximate value of
ζ (3) (Remark 3.3).

We end this section with the remark that all the numerical calculations presented
in this study are performed by using the Maple software for symbolic computations.
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2. Lemmas

LEMMA 2.1. (see [14, p. 141]) The following asymptotic expansion holds:

Γ(x+ t)
Γ(x+ s)

∼ xt−s
∞

∑
k=0

(
t− s

k

)
B(t−s+1)

k (t)x−k, x → ∞, (2.1)

where B(a)
k (x) (k ∈ N0) denote the generalized Bernoulli polynomials defined by

(
t

et −1

)a

ext =
∞

∑
k=0

B(a)
k (x)

tk

k!
, |t| < 2π . (2.2)

REMARK 2.1. The expansion (2.1) is analyzed in [1]. Burić and Elezović [4,
Theorem 6.1] gave a recursive relation for successively determining the coefficients in
expansion (2.1).

LEMMA 2.2. (see [5, Corollary 1]) Let m ∈ N0 . Then for x > 0 ,

√
xexp

(
2m

∑
j=1

(
1− 1

22 j

)
B2 j

j(2 j−1)x2 j−1

)
<

Γ(x+1)
Γ(x+ 1

2)

<
√

xexp

(
2m+1

∑
j=1

(
1− 1

22 j

)
B2 j

j(2 j−1)x2 j−1

)
, (2.3)

where Bn are the Bernoulli numbers.

The choice m = 2 on the left hand side of (2.3) and the choice m = 1 on the right
hand side of (2.3) then yields, for x > 0,

√
xexp

(
1
8x

− 1
192x3 +

1
640x5 −

17
14336x7

)

<
Γ(x+1)
Γ(x+ 1

2 )
<
√

xexp

(
1
8x

− 1
192x3 +

1
640x5

)
. (2.4)

LEMMA 2.3. The following double inequality holds:

√
x

(
1+

1
8x

+
1

128x2 −
5

1024x3 −
21

32768x4

)

<
Γ(x+1)
Γ(x+ 1

2)
<
√

x

(
1+

1
8x

+
1

128x2

)
. (2.5)

The left hand side of (2.5) holds for x � 2 , while the right hand side of (2.5) is valid
for x � 1 .
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Proof. By (2.4), it suffices to show that

f (x) > 0 for x � 2 and g(x) < 0 for x � 1,

where

f (x) =
1
8x

− 1
192x3 +

1
640x5 −

17
14336x7 − ln

(
1+

1
8x

+
1

128x2 −
5

1024x3 −
21

32768x4

)
,

g(x) =
1
8x

− 1
192x3 +

1
640x5 − ln

(
1+

1
8x

+
1

128x2

)
.

Differentiation yields

f ′(x) = − f1(x−2)
2048x8 f2(x−2)

,

where

f1(x) =25519973+85155168x+114532528x2+80050944x3

+30797472x4+6199296x5+510720x6

and

f2(x) = 557739+1098592x+811264x2+266240x3 +32768x4.

We then obtain f ′(x) < 0 for x � 2. Hence, f (x) is strictly decreasing for x � 2, and
we have

f (x) > lim
t→∞

f (t) = 0 for x � 2.

Differentiation yields

g′(x) =
129+788(x−1)+1410(x−1)2+992(x−1)3+240(x−1)4

128x6(128x2 +16x+1)
> 0.

We then obtain g′(x) > 0 for x � 1. Hence, g(x) is strictly increasing for x � 1, and
we have

g(x) < lim
t→∞

g(t) = 0 for x � 1.

The proof of Lemma 2.3 is complete. �
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3. Main results

THEOREM 3.1. Let Rn be defined by (1.6). As n → ∞ , we have

(−1)nRn ∼ 1
22n+1n2

√
π
n

(
∞

∑
k=0

rk

nk

)
, (3.1)

with the coefficients rk given by

rk =
5
4

∞

∑
j=1

Pk( j), k ∈ N0, (3.2)

where

Pk( j) =
(−1) j−1

22( j−1)

k

∑
�=0

(
1/2
�

)
B(3/2)

� ( j +1)
(− j)k−�(k− �+1)(k− �+2)

2
, k ∈ N0,

(3.3)

where B(a)
k (x) denote the generalized Bernoulli polynomials defined by (2.2).

Proof. It follows from (1.6) that

(−1)nRn =
5
2

∞

∑
j=1

(−1) j−1un+ j,

where

uk =
√

π
22kk3

Γ(k+1)
Γ(k+ 1

2)
.

The choice (t,s) = ( j +1, j + 1
2) in (2.1) yields

Γ(x+ j +1)√
xΓ(x+ j + 1

2 )
∼

∞

∑
k=0

(
1/2
k

)
B(3/2)

k ( j +1)x−k, x → ∞. (3.4)

By using (3.4), we find, as n → ∞ ,

22n+2n2

√
n
π

(−1) j−1un+ j =
(−1) j−1

22( j−1)

(
1+

j
n

)−3 Γ(n+ j +1)√
nΓ(n+ j + 1

2 )

∼ (−1) j−1

22( j−1)

∞

∑
k=0

(−1)k(k+1)(k+2)
2

(
j
n

)k ∞

∑
k=0

(
1/2
k

)
B(3/2)

k ( j +1)
1
nk

=
(−1) j−1

22( j−1)

∞

∑
k=0

(
k

∑
�=0

(
1/2
�

)
B(3/2)

� ( j +1)
(− j)k−�(k− �+1)(k− �+2)

2

)
1
nk

=
∞

∑
k=0

Pk( j)
nk , (3.5)
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where

Pk( j) =
(−1) j−1

22( j−1)

k

∑
�=0

(
1/2
�

)
B(3/2)

� ( j +1)
(− j)k−�(k− �+1)(k− �+2)

2
, k ∈ N0.

Summing the expansion (3.5) side by side, we obtain

22n+2n2

√
n
π

∞

∑
j=1

(−1) j−1un+ j ∼
∞

∑
j=1

(
∞

∑
k=0

Pk( j)

)
1
nk =

∞

∑
k=0

(
∞

∑
j=1

Pk( j)

)
1
nk ,

which can be written as

(−1)nRn =
5
2

∞

∑
j=1

(−1) j−1un+ j ∼ 1
22n+1n2

√
π
n

∞

∑
k=0

(
∞

∑
j=1

5
4
Pk( j)

)
1
nk

=
1

22n+1n2

√
π
n

∞

∑
k=0

rk

nk .

The proof of Theorem 3.1 is completed. �
Here we give explicit numerical values of the first few terms of rk by using the

formula (3.2). This shows how easily we can determine the coefficients rk in (3.1).
Noting that (see [10] and [13, p. 19])

B(a)
0 (x) = 1,

B(a)
1 (x) = x− a

2
,

B(a)
2 (x) = x2−ax+

a(3a−1)
12

,

B(a)
3 (x) = x3− 3a

2
x2 +

a(3a−1)
4

x− a2(a−1)
8

,

B(a)
4 (x) = x4−2ax3 +

a(3a−1)
2

x2− a2(a−1)
2

x+
a(15a3−30a2 +5a+2)

240
,

B(a)
5 (x) = x5− 5a

2
x4 +

5a(3a−1)
6

x3 − 5a2(a−1)
4

x2

+
a(15a3−30a2 +5a+2

48
x− a2(a−1)(3a2−7a−2)

96
,

we obtain

B(3/2)
0 ( j +1) = 1,

B(3/2)
1 ( j +1) = j +

1
4
,

B(3/2)
2 ( j +1) = j2 +

1
2

j− 1
16

,

B(3/2)
3 ( j +1) = j3 +

3
4

j2 − 3
16

j− 5
64

,
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B(3/2)
4 ( j +1) = j4 + j3− 3

8
j2 − 5

16
j +

21
1280

,

B(3/2)
5 ( j +1) = j5 +

5
4

j4 − 5
8

j3 − 25
32

j2 +
21
256

j +
57

1024
.

Thus, we obtain from (3.3) that

P0( j) = (−1) j−1 1

22( j−1) ,

P1( j) = (−1) j 20 j−1
22 j+1 ,

P2( j) = (−1) j−1 560 j2−56 j +1
22 j+5 ,

P3( j) = (−1) j 6720 j3−1008 j2 +36 j +5
22 j+8 ,

P4( j) = (−1) j−1 295680 j4−59136 j3 +3168 j2 +880 j−21
22 j+13 ,

P5( j) = (−1) j 3075072 j5−768768 j4 +54912 j3 +22880 j2−1092 j−399
22 j+16 .

By using (3.2), we give the first few coefficients rk as follows:

r0 =
5
4

∞

∑
j=1

P0( j) =
5
4

∞

∑
j=1

(−1) j−1

22( j−1) = 1,

r1 =
5
4

∞

∑
j=1

P1( j) =
5
4

∞

∑
j=1

(−1) j 20 j−1
22 j+1 = −15

8
,

r2 =
5
4

∞

∑
j=1

P2( j) =
5
4

∞

∑
j=1

(−1) j−1 560 j2−56 j +1
22 j+5 =

225
128

,

r3 =
5
4

∞

∑
j=1

P3( j) =
5
4

∞

∑
j=1

(−1) j 6720 j3−1008 j2 +36 j +5
22 j+8 =

235
1024

,

r4 =
5
4

∞

∑
j=1

P4( j) =
5
4

∞

∑
j=1

(−1) j−1 295680 j4−59136 j3 +3168 j2 +880 j−21
22 j+13

= −130261
32768

,

r5 =
5
4

∞

∑
j=1

P5( j)

=
5
4

∞

∑
j=1

(−1) j 3075072 j5−768768 j4 +54912 j3 +22880 j2−1092 j−399
22 j+16

=
1439967
262144

.

We note that the values of rk (for k = 0,1,2,3,4) above are equal to the coefficients
appearing in (1.9).
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THEOREM 3.2. For n � 1 , we have

Ln < (−1)nRn <Un, (3.6)

where

Ln =
1

22n+1n2

√
π
n

(
1− 15

8n

)
and Un =

1
22n+1n2

√
π
n

. (3.7)

Proof. First of all, we prove the left hand side of (3.6). We consider two cases to
prove the left hand side of (3.6).

Case 1. n = 2m , m ∈ N .
The left hand side of (3.6) becomes

L2m < R2m, m ∈ N. (3.8)

For m ∈ N , let

ξm = R2m −L2m.

We have

lim
m→∞

ξm = 0.

In order to prove (3.8), it suffices to show that the sequence {ξm} is strictly decreasing
for m � 1. Direct computation yields

ξm − ξm+1 =
5
2

(
((2m+1)!)2

(2m+1)3(4m+2)!
− ((2m+2)!)2

(2m+2)3(4m+4)!

)
−L2m +L2m+2

=
5
2

(
(Γ(2m+2))2

(2m+1)3Γ(4m+3)
− (Γ(2m+3))2

(2m+2)3Γ(4m+5)

)
−L2m +L2m+2

=
5
√

π
(4m+1)42m+1

(
1

(2m+1)2 −
2m+1

8(m+1)2(4m+3)

)
Γ(2m+1)
Γ(2m+ 1

2 )
−L2m +L2m+2

=
5
√

π
(4m+1)42m+1

24m3 +76m2 +74m+23
8(2m+1)2(m+1)2(4m+3)

Γ(2m+1)
Γ(2m+ 1

2 )
−L2m +L2m+2 (3.9)

by using (1.7) and (1.8).
By the left hand side of (2.5), we obtain, for m � 1,

ξm− ξm+1 >
5
√

π
(4m+1)42m+1

24m3 +76m2 +74m+23
8(2m+1)2(m+1)2(4m+3)

×
√

2m

(
1+

1
8(2m)

+
1

128(2m)2 −
5

1024(2m)3 −
21

32768(2m)4

)

− 1
2m242m+1

√
π
2m

(
1− 15

16m

)

+
1

2(m+1)242(m+1)+1

√
π

2(m+1)

(
1− 15

16(m+1)

)
,
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which can be written for m � 1 as

42m+1
√

2πm
(ξm − ξm+1) > P(m)+Q(m)

√
1

m(m+1)
, (3.10)

where

Q(m) =
1

64(m+1)2

(
1− 15

16(m+1)

)

and

P(m) =
5

(4m+1)
24m3 +76m2 +74m+23

8(2m+1)2(m+1)2(4m+3)

×
(

1+
1

8(2m)
+

1
128(2m)2 −

5
1024(2m)3 −

21
32768(2m)4

)

− 1
2m2

1
2m

(
1− 15

16m

)

= − V (m)
4194304(2m+1)2(m+1)4(4m+3)m4(4m+1)

,

with

V (m) = 2097152m8−23846912m7−173529600m6−448968488m5−593899172m4

−435712438m3−176191665m2−36126472m−2946705

= 1695547046633835+2376427301166092(m−18)

+750330166097163(m−18)2+112556116286954(m−18)3

+9658557388108(m−18)4+503468511448(m−18)5

+15847122432(m−18)6+278142976(m−18)7+2097152(m−18)8.

Then, (3.10) can be written for m � 1 as

42m+1
√

2πm
(ξm − ξm+1) > Q(m)

√
1

m(m+1)

− V (m)
4194304(2m+1)2(m+1)4(4m+3)m4(4m+1)

. (3.11)

We find, for m � 18,(
Q(m)

√
1

m(m+1)

)2

−
(

V (m)
4194304(2m+1)2(m+1)4(4m+3)m4(4m+1)

)2

=
P18(m−18)

17592186044416(2m+1)4(m+1)8(4m+3)2m8(4m+1)2 ,



A DOUBLE INEQUALITY FOR THE APÉRY CONSTANT 21

where

P18(x) = 17592186044416x18+5790028231868416x17

+ · · ·+915694272840257992103082188746472775

is a polynomial of the 18th degree, having all coefficients positive. We then obtain from
(3.11) that

ξm > ξm+1 for m � 18.

Direct computation yields

ξ1 ≈ 3.528×10−3, ξ2 ≈ 1.117×10−5, ξ3 ≈ 1.166×10−7,

ξ4 ≈ 2.025×10−9, ξ5 ≈ 4.668×10−11, ξ6 ≈ 1.288×10−12,

ξ7 ≈ 4.033×10−14, ξ8 ≈ 1.383×10−15, ξ9 ≈ 5.094×10−17,

ξ10 ≈ 1.982×10−18, ξ11 ≈ 8.071×10−20, ξ12 ≈ 3.411×10−21,

ξ13 ≈ 1.487×10−22, ξ14 ≈ 6.659×10−24, ξ15 ≈ 3.051×10−25,

ξ16 ≈ 1.426×10−26, ξ17 ≈ 6.786×10−28, ξ18 ≈ 3.279×10−29.

Hence, we have

ξm > ξm+1 for all m � 1.

Case 2. n = 2m−1, m ∈ N .
The left hand side of (3.6) becomes

L2m−1 < −R2m−1, m ∈ N. (3.12)

For m ∈ N , let

ηm = −R2m−1−L2m−1.

We have

lim
m→∞

ηm = 0.

In order to prove (3.12), it suffices to show that the sequence {ηm} is strictly decreasing
for m � 1. Direct computation yields

ηm −ηm+1 =
5
√

π
24m+2

(
1

4m3 −
1

(2m+1)2(4m+1)

)
Γ(2m+1)
Γ(2m+ 1

2)
+L2m+1−L2m−1,

(3.13)

by using (1.7) and (1.8).
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By the left hand side of (2.5), we obtain, for m � 1,

ηm −ηm+1 >
5
√

π
24m+2

(
1

4m3 −
1

(2m+1)2(4m+1)

)

×
√

2m

(
1+

1
8(2m)

+
1

128(2m)2 −
5

1024(2m)3 −
21

32768(2m)4

)

+
1

24m+3(2m+1)2

√
π

2m+1

(
1− 15

8(2m+1)

)

− 1
24m−1(2m−1)2

√
π

2m−1

(
1− 15

8(2m−1)

)
,

which can be written for m � 1 as

24m−1
√

2πm
(ηm −ηm+1) > A(m)+B(m)−C(m), (3.14)

where

A(m) =
5
8

(
1

4m3 −
1

(2m+1)2(4m+1)

)

×
(

1+
1

8(2m)
+

1
128(2m)2 −

5
1024(2m)3 −

21
32768(2m)4

)

=
5(12m3 +20m2 +8m+1)(524288m4+32768m3 +1024m2−320m−21)

16777216m7(2m+1)2(4m+1)
,

B(m) =
1

16(2m+1)2

√
1

2m(2m+1)

(
1− 15

8(2m+1)

)

=
16m−7

128(2m+1)3

√
1

2m(2m+1)
,

C(m) =
1

(2m−1)2

√
1

2m(2m−1)

(
1− 15

8(2m−1)

)
=

16m−23
8(2m−1)3

√
1

2m(2m−1)
.

For m � 1, we have

A(m)+B(m) >
1

8m3 +
5

128m4 −
1105

65536m5 . (3.15)

The proof of (3.15) is given in Appendix. We then obtain from (3.14) that for m � 1,

24m−1
√

2πm
(ηm −ηm+1) >

1
8m3 +

5
128m4 −

1105
65536m5 −C(m). (3.16)
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Direct computation yields

(
1

8m3 +
5

128m4 −
1105

65536m5

)2

− (C(m)
)2 =

P8(m−2)
4294967296m10(2m−1)7 ,

where

P8(m) =1567417733739+8282623009950m+19002234923324m2

+24956756713368m3+20739238319376m4+11330108144544m5

+4073998388544m6+930332004480m7+122457292800m8

+7077888000m9.

We then obtain from (3.16)

ηm > ηm+1 for m � 2.

Direct computation yields

η1 = 0.24180523 . . ., η2 = 0.00015627 . . ..

Hence, we have

ηm > ηm+1 for all m � 1.

Now, we prove the right hand side of (3.6). We consider two cases to prove the
right hand side of (3.6).

Case 1. n = 2m , m ∈ N .
The right hand side of (3.6) becomes

R2m < U2m, m ∈ N. (3.17)

For m ∈ N , let

xm = R2m−U2m.

We have

lim
m→∞

xm = 0.

In order to prove (3.17), it suffices to show that the sequence {xm} is strictly increasing
for m � 1. In view of (3.9), we have

xm − xm+1 =
5
√

π
(4m+1)42m+1

24m3 +76m2 +74m+23
8(2m+1)2(m+1)2(4m+3)

Γ(2m+1)
Γ(2m+ 1

2 )
−U2m +U2m+2.
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By the right hand side of (2.5), we obtain, for m � 1,

xm− xm+1 <
5
√

π
(4m+1)42m+1

24m3 +76m2 +74m+23
8(2m+1)2(m+1)2(4m+3)

×
√

2m

(
1+

1
8(2m)

+
1

128(2m)2

)

− 1
2m242m+1

√
π
2m

+
1

2(m+1)242(m+1)+1

√
π

2(m+1)
,

which can be written as

42m+1
√

2πm
(xm − xm+1) <

5
(4m+1)

24m3 +76m2 +74m+23
8(2m+1)2(m+1)2(4m+3)

×
(

1+
1

8(2m)
+

1
128(2m)2

)

− 1
4m3 +

1
64(m+1)2

√
1

m(m+1)

= −I(m)+ J(m) = −(I(m)− J(m)),

where

I(m) =
4096m6 +63744m5 +220168m4+277060m3 +150574m2+34701m+3072

4096m3(4m+1)(4m+3)(m+1)2(2m+1)2 ,

J(m) =
1

64(m+1)2

√
1

m(m+1)
.

We find that

I2(m)− J2(m) =
P12(m)

16777216m6(m+1)5(4m+1)2(2m+1)4(4m+3)2 ,

where

P12(m) =471859200m12+6273761280m11+36094218240m10

+115302127680m9+226485168256m8+288989191984m7

+246621642800m6+142361530476m5+55406153176m4

+14281679445m3+2342489001m2+222640128m+9437184.

Hence, we have, for m � 1,

I2(m) > J2(m) =⇒ I(m) > J(m) =⇒ xm < xm+1.
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Case 2. n = 2m−1, m ∈ N .
The right hand side of (3.6) becomes

−R2m−1 < U2m−1, m ∈ N. (3.18)

For m ∈ N , let

ym = −R2m−1−U2m−1.

We have

lim
m→∞

ym = 0.

In order to prove (3.18), it suffices to show that the sequence {ym} is strictly increasing
for m � 1. In view of (3.13), we have

ym − ym+1 =
5
√

π
24m+2

(
1

4m3 −
1

(2m+1)2(4m+1)

)
Γ(2m+1)
Γ(2m+ 1

2 )
+U2m+1−U2m−1.

By the right hand side of (2.5), we obtain, for m � 1,

ym − ym+1 <
5
√

π
24m+2

(
1

4m3 −
1

(2m+1)2(4m+1)

)√
2m

(
1+

1
8(2m)

+
1

128(2m)2

)

+
1

24m+3(2m+1)2

√
π

2m+1
− 1

24m−1(2m−1)2

√
π

2m−1
,

which can be written for m � 1 as

24m−1
√

2πm
(ym+1 − ym) >− 5

8

(
1

4m3 −
1

(2m+1)2(4m+1)

)(
1+

1
8(2m)

+
1

128(2m)2

)

− 1
16(2m+1)2

1√
2m(2m+1)

+
1

(2m−1)2

1√
2m(2m−1)

.

It is easy to show that, for m � 1,

1√
2m(2m+1)

<
1

2m
− 1

8m2 +
3

64m3 ,

1√
2m(2m−1)

>
1

2m
+

1
8m2 +

3
64m3 .

We then obtain

24m−1
√

2πm
(ym+1− ym) > −5

8

(
1

4m3 −
1

(2m+1)2(4m+1)

)(
1+

1
8(2m)

+
1

128(2m)2

)

− 1
16(2m+1)2

(
1

2m
− 1

8m2 +
3

64m3

)
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+
1

(2m−1)2

(
1

2m
+

1
8m2 +

3
64m3

)

=
P6(m−1)

16384m5(2m+1)2(4m+1)
,

where

P6(m) =72595+500796m+1310056m2+1721668m3

+1218688m4+444416m5+65536m6.

We then obtain

ym+1 > ym for m � 1.

The proof of Theorem 3.2 is complete. �

REMARK 3.1. Some computer experiments indicate that the following inequality
holds:

(−1)nRn <
1

22n+1n2

√
π
n

(
1− 15

8n
+

225
128n2 +

235
1024n3

)
for n � 1.

REMARK 3.2. Write (1.6) as

(−1)nRn =
(

5
2

((n+1)!)2

(n+1)3(2(n+1))!
− 5

2
((n+2)!)2

(n+2)3(2(n+2))!

)

+
(

5
2

((n+3)!)2

(n+3)3(2(n+3))!
− 5

2
((n+4)!)2

(n+4)3(2(n+4))!

)
+ . . .

and

(−1)nRn =
5
2

((n+1)!)2

(n+1)3(2(n+1))!
−
(

5
2

((n+2)!)2

(n+2)3(2(n+2))!
− 5

2
((n+3)!)2

(n+3)3(2(n+3))!

)

−
(

5
2

((n+4)!)2

(n+4)3(2(n+4))!
− 5

2
((n+5)!)2

(n+5)3(2(n+5))!

)
− . . . ,

respectively. Noting that the sequence{
((n+1)!)2

(n+1)3(2(n+1))!

}∞

n=1

is strictly decreasing, we obtain, for n � 1,

5
2

(
((n+1)!)2

(n+1)3(2(n+1))!
− ((n+2)!)2

(n+2)3(2(n+2))!

)
< (−1)nRn <

5
2

((n+1)!)2

(n+1)3(2(n+1))!
.

(3.19)

The lower bound in (3.6) is for n � 8 sharper than the lower bound in (3.19), the
upper bound in (3.6) is for n � 11 sharper than the upper bound in (3.19) and, moreover,
(3.6) has a simple form.



A DOUBLE INEQUALITY FOR THE APÉRY CONSTANT 27

REMARK 3.3. We now apply (3.6) to give an approximate value of ζ (3) . Write
(3.6) as

(−1)nSn +Ln < (−1)nζ (3) < (−1)nSn +Un, (3.20)

where Sn are given in (1.5), and Ln and Un are given in (3.7). The choice n = 2m in
(3.20) yields

pm < ζ (3) < qm, (3.21)

where

pn = S2m +L2m and qn = S2m +U2m.

For m = 10 in (3.21), we have

p10 = 1.2020569031595942 . . .,

q10 = 1.2020569031595943 . . .,

We then get an approximate value of ζ (3) ,

ζ (3) ≈ 1.202056903159594.

The choice m = 100 in (3.21) gives

ζ (3) ≈1.20205690315959428539973816151144999076498629234049

88817922715553418382057863130901864558736093352581

4619915779526071941849199.

Appendix: Proof of (3.15)

Direct computation yields

A(1)+B(1) =
2540811
16777216

+
√

6
2304

= 0.1525 . . . ,[
1

8m3 +
5

128m4 −
1105

65536m5

]
m=1

=
9647
65536

= 0.1472 . . . .

Hence, (3.15) is valid for m = 1.
We now prove that (3.15) holds for m � 2. It suffices to show that

B(m) >
1

8m3 +
5

128m4 −
1105

65536m5 −A(m) (A.1)

for m � 2. We find

1
8m3 +

5
128m4 −

1105
65536m5 −A(m) =

P7(m−2)
16777216m7(2m+1)2(4m+1)

,
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(
B(m)

)2−( 1
8m3 +

5
128m4 −

1105
65536m5 −A(m)

)2

=
P14(m−2)

281474976710656m14(2m+1)7(4m+1)2 ,

where

P7(m) =123512745+548828520m+954374332m2+881332716m3

+477390592m4+153616384m5+27394048m6+2097152m7

and

P14(x) =58626303590400x14+1745037830389760x13

+ · · ·+1655492901814861875

is a polynomial of the 14th degree, having all coefficients positive. We see that (A.1)
holds for m � 2. Hence, (3.15) holds for all m � 1. �
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