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Abstract. The present paper deals with “the perturbation of Legendre eigenvalue problem” with
limit-circle type non-oscillation endpoints. The dissipative operators in limit-circle case are
studied. Lower bounds on the real parts of all eigenvalues and the upper bounds on the imaginary
parts of the non-real eigenvalues for this eigenvalue problem associated to a special separated
boundary condition (see the below in (3.1b)) are obtained through a new method, partly inspired
by the estimates obtained in Sun and Qi (Proc. Roy. Soc. Edinburgh A, 150:2607-2619, 2020).

1. Introduction

In this paper we consider the boundary value problem associated to the complex
singular differential expression

− [(1− x2)y′]′ +qy = λwy in L2[0,1) (1.1)

with suitable boundary value condition (see the below in (2.3)), where q is complex
function called the potential function and w is real value function called the weight
function, 0 is the regular endpoint and 1 is the limit-circle type non-oscillation end-
points (see Lemma 2.1). Since (1.1) and the classical Legendre equation [37, Example
8.3.1, p157]

−[(1− x2)y′]′ = λy, x ∈ (−1,1)

have the same first coefficient term (1− x2) , so we call (1.1) as “the perturbation of
Legendre eigenvalue problem” with boundary value condition. Let L2

w := L2
w[0,1) be

the weighted Hilbert space of all Lebesgue measurable, complex-valued functions f on
[0,1) satisfying

∫ 1
0 w| f |2 < ∞ with the norm ‖ f‖w :=

∫ 1
0 w| f |2 and the inner product

( f ,g)w :=
∫ 1
0 wfg .

Singular Sturm-Liouville boundary value problem attracted a lot of attentions in
recent years since it is of great importance for quantum mechanics, diffusion processes
and dynamic systems et al. It is generally known that several factors would induce the
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non-self-adjoint singular spectral problems, such as the non-symmetry of the differ-
ential expressions and the non-self-adjoint boundary conditions. The spectral proper-
ties have been widely investigated for the self-adjoint case, including regular, singular,
definite and indefinite Sturm-Liouville problem. For the non-self-adjoint case, the au-
thors in [3, 14] studied the dissipative singular Sturm-Liouville problems including the
completeness of eigenvectors and associated vectors for the corresponding operators in
Weyl’s limit circle case using Livšic’s theorem with the separated boundary conditions.
And for other dissipative Sturm-Liouville problem, the authors have been studied fairly
enough in many literatures, such as the Weyl’s limit circle, transmission conditions and
time scales case (see [4, 5, 31, 33, 34]).

It is well known that equation (1.1) is formally self-adjoint if and only if the coeffi-
cients are real-valued functions. If the potential function q and w are complex valued,
the equation (1.1) is formally non-self-adjoint, and hence non-real eigenvalues may
exist. For example, if we set Imq > 0 in the equation (1.1) with Dirichlet boundary
conditions, then it can be transferred to a strictly dissipative operator, and therefore,
non-real eigenvalues exist.

In the case of complex Sturm-Liouville problems (i.e. Imq �= 0), the authors in
[32] have given sufficient conditions to guarantee the eigenvalues of the problem (1.1)
with different self-adjoint boundary conditions to be simple. Furthermore, the finiteness
on eigenvalue of (1.1) with boundary value conditions under complex potential on half-
line or whole line were investigated in [6, 21]. The classification results of non-self-
adjoint, complex coefficients and non-symmetric Sturm-Liouville problems have been
studied in [26, 29, 30, 35]. For other research topics of complex differential operators
such as essential spectra and expansion of eigenfunctions et al. we mention [1, 2, 12,
17, 22, 27] and references cited therein.

A priori bounds of non-real eigenvalues of Sturm-Liouville problems was raised
in [23] by Mingarelli and stressed by Kong, Möller, Wu and Zettl [20]. Determining
a priori bounds and the exact number of non-real eigenvalues are an interesting and
difficult problems in Sturm-Liouville theory. Recently, this open problems have been
solved by Qi et al., [7, 18, 25, 36] for the regular Sturm-Liouville problem and by
Behrndt et al., [8, 9, 10, 11, 28] for the singular case, respectively. The estimates on the
bounds of eigenvalues for the complex Sturm-Liouville problems have been studied by
the Rayleigh-Ritz method for w ≡ 1, q > 0 in [15] and for the general case in [16].

The present paper will focus on the perturbation of Legendre eigenvalue problem
with limit-circle type non-oscillation endpoints associated to the boundary condition.
The eigenvalues of dissipative operator with boundary value condition By = 0 (see the
below) are studied and the bounds of eigenvalues for this complex value perturbation
of Legendre eigenvalue problem with a special boundary condition are obtained.

This paper is organized as follows: Section 2 contains a basic discussion of the
perturbation of Legendre eigenvalue problem with limit-circle type non-oscillation end-
points under the boundary value condition (2.3) and the dissipative operator problem
(see Theorem 2.4 and 2.5). The estimate results (Theorem 3.4 and 3.5) on non-real
eigenvalues are given in Section 3 with a special boundary condition (see the below in
(3.1b)).
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2. Preliminary knowledge and results

In this section, we give some basic knowledge for the singular differential equation
(1.1) under the conditions that

q ∈ L2([0,1),C\R), w ∈ L2([0,1),R), q = q1 + iq2, i =
√−1, q1, q2 ∈ R. (2.1)

Throughout this section the functions q,w always satisfy (2.1). We first introduce some
concepts (cf. [19, 24, 37]). The endpoint 1 is oscillatory if every nontrivial real-valued
solution has an infinite number of zeros in (c,1) for any c ∈ (0,1) , and it is non-
oscillatory otherwise. For fixed λ ∈ R , a real solution u of (1.1) is called a principal
solution at 1 if there exists c ∈ [0,1) such that

u(x) �= 0, x ∈ (c,1),
∫ 1

c

1
(1− x2)u2 = ∞.

A real solution v of (1.1) is called a non-principal solution at 1 if there exists c ∈ [0,1)
such that

v(x) �= 0, x ∈ (c,1),
∫ 1

c

1
(1− x2)v2 < ∞.

If u and v are principal and non-principal solutions at 1 , respectively, then

u(x)
v(x)

→ 0 as x → 1.

We say that the endpoint 1 is a limit-circle type endpoint if all solutions of (1.1) are
in L2

w[c,1) for some c ∈ [0,1) . It is well known that the limit-circle type endpoint is
independent of λ ∈ R . The endpoint 1 is limit-circle type non-oscillation if it is both
limit-circle type and non-oscillation.

The main condition in this paper is

γ := sup
x∈[0,1)

∣∣∣∣ 1
1− t2

∫ x

t
q(s)ds

∣∣∣∣ ∈ L1[0,1),
∫ x

c

1
1− t2

dt ∈ L2
w[0,1) (2.2)

for some (and hence for all) c ∈ [0,1) . It follows from Schwarz inequality that∣∣∣∣∫ x

t
q(s)ds

∣∣∣∣� √
1± t

(∫ 1

0
|q|2
)1/2

:=
√

1± t‖q‖2,

where ‖ · ‖2 denote the norm of the space L2[0,1) and hence∣∣∣∣ 1
1− t2

∫ x

t
q(s)ds

∣∣∣∣� (√1± t
)−1 ‖q‖2 ∈ L1[0,1).

Clearly ∫ x

0

1
1− t2

dt =
1
2

ln
1+ x
1− x

∈ L2
w[0,1).

Therefore, the main condition (2.2) is well defined.
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LEMMA 2.1. (cf. [28, Lemma 2.1]) Assume that (2.2) holds. Then (1.1) is
limit-circle type non-oscillation at endpoints 1 .

Let v be the non-principal solutions of (1.1) at 1 for λ = 0, u be the corresponding
principal solutions, and satisfying [u,v](x) ≡ 1, where

[ f ,g] = f pg′ −gp f ′,

f ,g ∈ Dmax = { f ∈ L2
w
(0,1) : f , p f ′ ∈ ACloc[0,1),τ f/w ∈ L2

w[0,1)},
ACloc[0,1) denotes the set of all complex-valued functions which are absolutely con-
tinuous on all compact subintervals of [0,1) . Then from Lemma 2.1 we can definite
the boundary value condition at endpoints 1(cf. [19] and [37, p.191])

ξ cosβ [y,v](1)− sinβ [y,u](1) = 0, 0 < β � π/2, Imξ > 0.

This together with the boundary value condition at regular endpoints 0

cosαy(0)− sinα py′(0) = 0, 0 � α < π/2

implies that the boundary conditions in the form{
cosαy(0)− sinα py′(0) = 0, 0 � α < π/2,

ξ cosβ [y,v](1)− sinβ [y,u](1) = 0, 0 < β � π/2, Imξ > 0.
(2.3)

Then the corresponding eigenvalue problem is⎧⎪⎪⎪⎨⎪⎪⎪⎩
τy := −[(1− x2)y′]′ +qy = λwy,

By = 0 :

{
cosαy(0)− sinα py′(0) = 0,

ξ cosβ [y,v](1)− sinβ [y,u](1) = 0.

(2.4)

In L2
w[0,1) , define the operator T with domain D(T ) = {y ∈ L2

w : y ∈ Dmax, By = 0}
and the rule Ty = τy/w . Now we rewrite the problem (2.4) in the operator form Ty =
λy , y ∈ D(T ) .

DEFINITION 2.2. (cf. [13, p. 175]) A linear operator T , acting in the Hilbert
space with domain D(T ) , is said to be dissipative if Im(T f , f ) � 0, for all f ∈ D(T ) .

LEMMA 2.3. For arbitrary f ,g,u,v ∈ Dmax , where Dmax is defined above, we
have ∣∣∣∣∣ [ f ,u](x) [ f ,v](x)

[g,u](x) [g,v](x)

∣∣∣∣∣= [ f ,g](x)[u,v](x), x ∈ [0,1).

Proof. By direct calculation we can get the above equality. �
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THEOREM 2.4. The operator T is dissipative, i.e., Im (T f , f ) � 0 , ∀ f ∈ D(T ) .

Proof. For each f ∈ D(T ) , integrating by parts implies

2i Im (T f , f ) = (T f , f )− ( f ,T f ) = [ f , f ](1)− [ f , f ](0). (2.5)

From the boundary condition at 0, we have

[ f , f ](0) = 0. (2.6)

It follows from the boundary condition at endpoint 1 and Lemma 2.3 that

[ f , f ](1) =
2i Imξ cosβ

sinβ
|[ f ,v](1)|2 . (2.7)

Now, substituting (2.6) and (2.7) into (2.5) implies that

Im (T f , f ) =
Imξ cosβ

sinβ
|[ f ,v](1)|2 . (2.8)

Since β ∈ (0, π
2 ] and Imξ > 0, Im (T f , f ) � 0. �

THEOREM 2.5. The operator T has no real eigenvalue, i.e., all its eigenvalues lie
in the upper half-plane.

Proof. If the statement in Theorem 2.5 was false, then there exists a real eigen-
value λ0 of T , and let ϕ := ϕ(x,λ0) be the corresponding eigenfunction. It follows
from Im (Tϕ ,ϕ) = Im (λ0‖ϕ‖2) = 0 and (2.8) that [ϕ ,v](1) = 0. Using the boundary
condition at 1 , i.e., icosβ [ϕ ,v](1)+ sinβ [ϕ ,u](1) = 0, one sees that [ϕ ,u](1) = 0.
Let ϕ and ψ be the solutions of{

− [(1− x2)ϕ ′]′ +qϕ = λwϕ ,

ϕ(0,λ ) = sinα, ϕ ′(0,λ ) = cosα,

{
− [(1− x2)ψ ′]′ +qψ = λwψ ,

ψ(0,λ ) = −cosα, ψ ′(0,λ ) = sinα,

respectively. Then from Lemma 2.3 that

1 = [ϕ ,ψ ] = [ϕ ,u][ψ ,v]− [ϕ ,v][ψ ,u] = 0,

and hence we get a contradiction. This completes the proof. �

3. Estimates on the lower and upper bounds of non-real eigenvalues

In this section, we give the bounds on the non-real eigenvalues of dissipative oper-
ator T for the special case β = π/2 in (2.3), i.e., [y,u](1) = 0, and the corresponding
eigenvalue problem is{

τy := −[(1− x2)y′]′ +qy = λwy, (3.1a)

B0y = 0 : cosαy(0)− sinα py′(0) = 0, [y,u](1) = 0, (3.1b)

where q satisfied (2.1). In the following we will give the estimates on the bounds of
non-real eigenvalues for the singular eigenvalue problem (3.1a) and (3.1b). Firstly, we
prepare some lemmas in the following.
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LEMMA 3.1. (cf. [28, Lemma 2.3]) Assume that (2.2) holds, u is a principal
solution of (3.1a) at 1 for λ = 0 . Let y be an eigenfunction of (3.1a) and (3.1b)
corresponding to the eigenvalue λ , then y is bounded and

[y,u](1) = 0 ⇔ ((1− x2)y′)(x)y(x) → 0 as x → 1.

The following lemma is the estimates of ‖√1− x2φ ′‖2 , where φ is an eigenfunc-
tion of (3.1a) and (3.1b) corresponding to a non-real eigenvalue λ . That is B0φ = 0
and

− [(1− x2)φ ′]′ +qφ = λwφ . (3.2)

Since the problem (3.1a) and (3.1b) is a linear system and φ is continuous, we can
choose φ satisfies

∫ 1
0 |φ(x)|2dx = 1 in the following discussion. To simplify the state-

ments, let

Γ2
α ,q−1

= 2
(|cotα|+‖q−1 ‖2 +2‖q−1 ‖2

2

)
, q−k = −min{qk,0},

q+
k = max{qk,0}, q1 = Req, q2 = Imq.

(3.3)

Since w(x) > 0 a.e. on [0,1) , we can choose ε1 > 0 such that

Ω(ε1) = {x ∈ [0,1) : w(x) < ε1}, m(ε1) = mes Ω(ε1). (3.4)

And w2(x) > 0 a.e. on [0,1) , we can choose ε2 > 0 such that

Ω(ε2) = {x ∈ [0,1) : w2(x) < ε2}, m(ε2) = mes Ω(ε2). (3.5)

Then m(ε1) → 0 and m(ε2) → 0 as ε → 0.

LEMMA 3.2. Let λ and φ be defined as above with Reλ � 0 , then∫ 1

0
(1− x2)|φ ′|2 � Γ2

α ,q−1
,

∫ 1

0
q±1 |φ |2 � ‖q±1 ‖2

(
1+2Γα ,q−1

)
.

Proof. Let λ be a non-real eigenvalue of (3.1a) and (3.1b) and φ the correspond-
ing eigenfunction with ‖φ‖2 = 1. It follows from Lemma 3.1 that φ is bounded and
satisfies

(1− x2)φ ′(x)φ(x) → 0 as x → 1. (3.6)

Multiplying both sides of (3.2) by φ and integrating by parts over the interval [0,1] ,
then from B0φ = 0 we have

cotα|φ(0)|2 +
∫ 1

0
(1− x2)|φ ′|2 +

∫ 1

0
q|φ |2 = λ

∫ 1

0
w|φ |2. (3.7)

Here (3.6) is used. Separating the real parts of (3.7) yields

Reλ
∫ 1

0
w|φ |2 = cotα|φ(0)|2 +

∫ 1

0
(1− x2)|φ ′|2 +

∫ 1

0
q1|φ |2. (3.8)
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From Reλ � 0 and w(x) > 0 a.e. on [0,1) one sees that

cotα|φ(0)|2 +
∫ 1

0
(1− x2)|φ ′|2 +

∫ 1

0
q1|φ |2 � 0. (3.9)

Set q−1 = −min{q1,0} and

Q(x) =
∫ x

0
q−1 (t)dt− x

∫ 1

0
q−1 (t)dt, x ∈ [0,1]. (3.10)

Then one can verify that

Q(0) = 0 = Q(1), Q′(x) = q−1 (x)−
∫ 1

0
q−1 (t)dt a.e. x ∈ [0,1], (3.11)

and the condition q−1 ∈ L2[0,1) implies that max |Q(x)| � √
1− x2‖q−1 ‖2. Then∫ 1

0
q−1 |φ |2 =

∫ 1

0

(
Q′ +

∫ 1

0
q−1 (t)dt

)
|φ |2

� ‖q−1 ‖2−2Re

(∫ 1

0
Qφ ′φ

)
� ‖q−1 ‖2 +2‖q−1 ‖2

(∫ 1

0
(1− x2)|φ ′|2

)1/2(∫ 1

0
|φ |2

)1/2

� ‖q−1 ‖2 +
1
2

∫ 1

0
(1− x2)|φ ′|2 +2‖q−1 ‖2

2.

(3.12)

This together with (3.9) and |φ(x)| � 1, x ∈ [0,1] implies that∫ 1

0
(1− x2)|φ ′|2 � Γ2

α ,q−1
, (3.13)

where Γ2
α ,q−1

is defined in (3.3). It follows from the penultimate inequality of (3.12)

and (3.13) that ∫ 1

0
q−1 |φ |2 � ‖q−1 ‖2 +2Γα ,q−1

‖q−1 ‖2.

Setting q+
1 = max{q1,0} , similar to (3.10), (3.11) and (3.12), we can prove that

∫ 1

0
q+

1 |φ |2 � ‖q+
1 ‖2 +2‖q+

1 ‖2

(∫ 1

0
(1− x2)|φ ′|2

)1/2

,

which, together with (3.13), gives that∫ 1

0
q+

1 |φ |2 � ‖q+
1 ‖2 +2Γα ,q−1

‖q+
1 ‖2.

This completes the proof of Lemma 3.2. �
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LEMMA 3.3. Let λ and φ be defined as above and (2.2) holds.
Then

∫
Ω(ε) |φ(x)|2dx < 1/2 for any ε > 0 .

Proof. Since
∫ 1
0 |φ(x)|dx = 1, there must exist c∈ [0,1) such that |φ(c)|� 1, and

hence it follows from Lemma 3.2 that

|φ(x)| � |φ(c)|+
∣∣∣∣∫ x

c
φ ′
∣∣∣∣� 1+

∣∣∣∣∫ x

c

1
1− t2

∣∣∣∣ 1
2
∣∣∣∣∫ x

c
(1− t2)|φ ′|2

∣∣∣∣ 1
2

� 1+ Γα ,q−1

∣∣∣∣∫ x

c

1
1− t2

∣∣∣∣ 1
2

,

which implies that

|φ(x)|2 � 2+2Γ2
α ,q−1

∣∣∣∣∫ x

c

1
1− t2

∣∣∣∣ .
As a result ∫

Ω(ε)
|φ(x)|2dx � 2m(ε)+2Γ2

α ,q−1

∫
Ω(ε)

∣∣∣∣∫ x

c

1
1− t2

∣∣∣∣dx.

From the main condition (2.2) and m(ε)→ 0 as ε → 0 one sees that the last term of the

above inequality tends to 0 as ε → 0 by the continuity of the integral
∫

Ω(ε)

∣∣∣∫ x
c

1
1−t2

∣∣∣dx .

The proof is finished. �

THEOREM 3.4. Assume that (2.1), (2.2) and (3.4) hold. If λ is a eigenvalue of
(3.1a) and (3.1b) with Reλ � 0 , then

Reλ � − 2
ε1

(
|cotα|+‖q+

1 ‖2 + Γα ,q−1
(Γα ,q−1

+2‖q+
1 ‖2)

)
,

| Imλ | � 2
ε1
‖q+

2 ‖2

(
1+4Γα ,q−1

)
.

(3.14)

If λ is a eigenvalue of (3.1a) and (3.1b) with Reλ > 0 , then

| Imλ | � 2
ε1
‖q+

2 ‖2

(
1+2NΓ,Reλ̃

)
, (3.15)

where N2
Γ,Re λ̃

= 2(Γ2
α ,q−1

+Re λ̃‖w‖2 +4|Re λ̃ |2‖w‖2
2).

Proof. It follows from
∫ 1
0 |φ |2 = 1, (3.4) and Lemma 3.3 that∫ 1

0
w|φ |2 � ε1

(∫ 1

0
|φ |2 −

∫
Ω(ε1)

|φ |2
)

� ε1 (1−1/2) � ε1/2. (3.16)

Since
∫ 1
0 |φ |2 = 1, there must satisfied |φ(x)|2 � 1 for x ∈ [0,1). Using (3.8) and

Lemma 3.2, we can get

|Reλ |
∫ 1

0
w|φ |2 � |cotα|+ Γ2

α ,q−1
+
∫ 1

0
q+

1 |φ |2

� |cotα|+‖q+
1 ‖2 + Γα ,q−1

(
Γα ,q−1

+2‖q+
1 ‖2

)
.

(3.17)
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Separating the imaginary parts of (3.7) yields that

Imλ
∫ 1

0
w|φ |2 =

∫ 1

0
q2|φ |2. (3.18)

Let Q2(x) =
∫ x
0 q2(t)dt− x

∫ 1
0 q2(t)dt . Then similar to (3.12) we have∫ 1

0
q2|φ |2 � ‖q+

2 ‖2 +2‖q+
2 ‖2

(∫ 1

0
(1− x2)|φ ′|2

)1/2

, (3.19)

and hence from Lemma 3.2 we have∫ 1

0
q2|φ |2 � ‖q+

2 ‖2 +2‖q+
2 ‖2Γα ,q−1

, (3.20)

which, together with (3.18) yields that

| Imλ |
∫ 1

0
w|φ |2 � ‖q+

2 ‖2 +2‖q+
2 ‖2Γα ,q−1

. (3.21)

So the inequalities in (3.14) follows (3.16), (3.17) and (3.21) immediately.
Now, if λ̃ is an eigenvalue of (3.1a) and (3.1b) with Re λ̃ > 0, then we consider

the eigenvalue problem

− [(1− x2)φ ′]′ +(q−Re λ̃w)φ = λwφ , B0φ = 0. (3.22)

It can be easily verify that λ̃ −Re λ̃ is also an eigenvalue of (3.22).

Note that Re
(

λ̃ −Re λ̃
)

= 0, and hence

0 = Re
(

λ̃ −Re λ̃
)∫ 1

0
w|φ |2 = cotα|φ(0)|2 +

∫ 1

0
(1− x2)|φ ′|2 +

∫ 1

0
(q1−Re λ̃w)|φ |2.

(3.23)
Set Q̃(x) =

∫ x
0 (q−1 +Re λ̃w)− x

∫ 1
0 (q−1 +Re λ̃w) , similar to (3.11) and (3.12) we have∫ 1

0
(q−1 +Re λ̃w)|φ |2 � 4‖q−1 ‖2

2 +4|Re λ̃ |2‖w‖2
2 +‖q−1 ‖2

+Re λ̃‖w‖2 +
1
2

∫ 1

0
(1− x2)|φ ′|2,

which together with (3.23) implies that∫ 1

0
(1− x2)|φ ′|2 � N2

Γ,Re λ̃
, (3.24)

where N2
Γ,Re λ̃

:= 2
(

Γ2
α ,q−1

+Re λ̃‖w‖2 +4|Re λ̃ |2‖w‖2
2

)
. It follows from (3.19) and

(3.24) that

| Im λ̃ |
∫ 1

0
w|φ |2 = | Im(λ̃ −Re λ̃ )|

∫ 1

0
w|φ |2 =

∫ 1

0
q2|φ |2

� ‖q+
2 ‖2

(
1+2

(∫ 1

0
(1− x2)|φ ′|2

)1/2
)

� ‖q+
2 ‖2

(
1+2NΓ,Reλ̃

)
.
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So the inequality in (3.15) holds. The proof of Theorem 3.4 is complete. �
Suppose that w ∈ AC(a,b) and w′ ∈ L2

p(a,b) , we have the following result.

THEOREM 3.5. Assume that (2.1), (2.2) and (3.5) hold. Let w ∈ AC[0,1) and
w′ ∈ L2

p[0,1) , if λ is a eigenvalue of (3.1a) and (3.1b) with Reλ � 0 , then

Reλ � − 2
ε2

(
‖w‖c

[
|cotα|+‖q+

1 ‖2 + Γα ,q−1
(Γα ,q−1

+2‖q+
1 ‖2)

]
+ ŵΓα ,q−1

)
,

| Imλ | � 2
ε2

(
‖w‖c‖q+

2 ‖2(1+2Γα ,q−1
)+ ŵΓα ,q−1

)
.

(3.25)

If λ is a eigenvalue of (3.1a) and (3.1b) with Reλ > 0 , then

| Imλ | � 2
ε2

(
‖w‖c‖q+

2 ‖2(1+2NΓ,Reλ̃ )+ ŵNΓ,Re λ̃

)
. (3.26)

where N2
Γ,Re λ̃

= 2(Γ2
α ,q−1

+Re λ̃‖w‖2 +4|Re λ̃ |2‖w‖2
2).

Proof. Let λ be an eigenvalue of (3.1a) and (3.1b) and φ the corresponding eigen-
function defined as above, that is B0y = 0 and

− [(1− x2)φ ′]′ +qφ = λwφ . (3.27)

Multiplying both sides of (3.27) by wφ and integrating by parts over the interval [0,1) ,
then from (1− x2)φ ′(x)φ(x) → 0 as x → 1 in Lemma 3.1 one sees that

w(0)cotα|φ(0)|2 +
∫ 1

0
w(1−x2)|φ ′|2 +

∫ 1

0
wq|φ |2 +

∫ 1

0
w′(1−x2)φ ′φ = λ

∫ 1

0
w2|φ |2.

Separating the real and imaginary parts yields that

Reλ
∫ 1

0
w2|φ |2 =w(0)cotα|φ(0)|2 +

∫ 1

0
w(1− x2)|φ ′|2 +

∫ 1

0
wq1|φ |2

+Re

(∫ 1

0
w′(1− x2)φ ′φ

)
,

(3.28)

Imλ
∫ 1

0
w2|φ |2 = Im

(∫ 1

0
w′(1− x2)φ ′φ

)
+
∫ 1

0
wq2|φ |2. (3.29)

It follows from |φ(x)| � 1 and Lemma 3.2 yields that∣∣∣∣w(0)cotα|φ(0)|2 +
∫ 1

0
w(1− x2)|φ ′|2 +

∫ 1

0
wq1|φ |2

∣∣∣∣
� ‖w‖c

(
|cotα|+ Γ2

α ,q−1
+‖q+

1 ‖2 +2‖q+
1 ‖2Γα ,q−1

)
,

(3.30)

and from (3.20) one sees that∫ 1

0
wq2|φ |2 � ‖w‖c‖q+

2 ‖2

(
1+2Γα ,q−1

)
, (3.31)
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where ‖ · ‖c denote the maximum norm of C(0,1) . From w′ ∈ L2
p(0,1) , ŵ = (

∫ 1
0 (1−

x2)|w′|2)1/2 , Lemma 3.2 and Cauchy-Schwarz inequality, one sees that∣∣∣∣∫ 1

0
w′(1− x2)φ ′φ

∣∣∣∣� (∫ 1

0
(1− x2)|φ ′|2

)1/2(∫ 1

0
(1− x2)|w′|2

)1/2

� ŵΓα ,q−1
.

(3.32)
In view of Lemma 3.3, one sees that∫ 1

0
w2|φ |2 � ε2

∫
[0,1)\Ω(ε2)

|φ |2 = ε2

(∫ 1

0
|φ |2 −

∫
Ω(ε2)

|φ |2
)

� ε2

2
. (3.33)

It follows from (3.28), (3.30), (3.32) and (3.33) that

|Reλ | � 2
ε2

(
‖w‖c

[
|cotα|+‖q+

1 ‖2 + Γα ,q−1
(Γα ,q−1

+2‖q+
1 ‖2)

]
+ ŵΓα ,q−1

)
. (3.34)

From (3.29), (3.31), (3.32) and (3.33), one can verify that

| Imλ | � 2
ε2

(
‖w‖c‖q+

2 ‖2(1+2Γα ,q−1
)+ ŵΓα ,q−1

)
. (3.35)

So the inequalities in (3.25) hold follows from (3.34) and (3.35) immediately.
Furthermore, if λ̂ is an eigenvalue of (3.1a) and (3.1b) with Re λ̂ > 0, then (3.22)

holds. Using (3.19), (3.24), (3.29), (3.32), (3.33), we obtain (3.26) with a similar argu-
ment in the proof of Theorem 3.4. This completes the proof. �
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