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Abstract. Let G be a connected graph having vertex set {v1, . . . ,vn} and vertex-degree sequence
(d1, . . . ,dn) , where di represents the degree of the vertex vi . If the vertices vi and v j are adja-
cent in G , we write i ∼ j . The arithmetic–geometric index and the geometric–arithmetic index
of G are defined as AG(G) = ∑i∼ j [(di +dj)/(2

√
did j)] and GA(G) = ∑i∼ j[2

√
did j/(di +dj)] ,

respectively. Since AG(G) and GA(G) are closely related quantities, we derive bounds on their
addition as well as on their difference, namely on irrAG(G) = AG(G)−GA(G) and r(G) =
AG(G)+GA(G) . Some new bounds on AG(G) are also obtained.

1. Introduction

For the graph-theoretical concepts that we use in this paper without having defined
them here, we refer the readers to the books [4,5]. Throughout this section, it is assumed
that G is a connected graph having vertex set {v1, . . . ,vn} and vertex-degree sequence
(d1, . . . ,dn) , where di represents the degree of the vertex vi and n � 2. We write i ∼ j
whenever the vertices vi and v j are adjacent in G .

A graph invariant I is a mapping defined on the set of all graphs with the constraint
that the equation I(G1) = I(G2) holds whenever the graphs G1 and G2 are isomorphic.
The characteristic polynomial of a graph, the spectrum of a graph, the order of a graph,
and the sum of degrees of all vertices of a graph are some examples of graph invari-
ants. In chemical graph theory, the graph invariants that take only numerical values are
usually called topological indices [2].

One of the thoroughly studied vertex–degree–based topological indices is the first
Zagreb index M1 [28] introduced in [15]. This index is defined as

M1(G) =
n

∑
i=1

d2
i = ∑

i∼ j
(di +d j) .

The general zeroth–order Randić index 0Rα , a generalization of M1 , was proposed
in [16]. It is defined as

0Rα(G) =
n

∑
i=1

dα
i ,
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which can be written as
0Rα(G) = ∑

i∼ j
(dα−1

i +dα−1
j ) ,

where α can be any real number. The topological index 0Rα has appeared in the
literature with also some other names; for example, the first general Zagreb index [19]
and the variable first Zagreb index [20]. Special cases of 0Rα include:

• The inverse degree ( ID) index [9], which is obtained from 0Rα by taking α =
−1, that is

ID(G) = 0R−1(G) =
n

∑
i=1

1
di

= ∑
i∼ j

(
1

d2
i

+
1

d2
j

)
.

We remark here that ID(G) is also referred to as the modified total adjacency
index [28];

• The forgotten (F ) topological index [10], which is obtained from 0Rα by taking
α = 3, that is

F(G) =
n

∑
i=1

d3
i = ∑

i∼ j

(
d2

i +d2
j

)
.

For additional detail about 0Rα , we refer the readers to [1, 21].
The general Randić index, devised in [3], is defined as

Rα(G) = ∑
i∼ j

(did j)α ,

where α is an arbitrary real number. Many mathematical properties of this index can
be found in the survey [18]. The special cases of the general Randić index Rα include

• The second Zagreb index M2 [28, 14], which is obtained from Rα by taking
α = 1;

• The modified second Zagreb index M∗
2 [28], which is obtained from Rα by tak-

ing α = −1 (see also [7, 6]).

Another well-studied topological index to which we are concerned in this paper is the
harmonic index, first appeared in [9]. The harmonic index is defined as

H(G) = ∑
i∼ j

2
di +d j

.

A set of 148 novel topological indices was proposed and investigated in [40] (also,
see [38]) for chemical applicability. From the aforementioned set of 148 indices, a sub-
set consisting of 20 indices was found useful for predicting certain chemical properties.
Two of them are the inverse indeg index, denoted by ISI , and the symmetric division
deg index, denoted by SDD . The former index is defined as

ISI(G) = ∑
i∼ j

did j

di +d j
.
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The ISI(G) is a significant predictor of total surface area for octane isomers. The sym-
metric division deg index, a significant predictor of total surface area of polychloro-
biphenyls, is defined as

SDD(G) = ∑
i∼ j

d2
i +d2

j

did j
.

The geometric–arithmetic index, GA(G) , was conceived in [39] and it is defined
as

GA(G) = ∑
i∼ j

2
√

did j

di +d j
.

The arithmetic–geometric index (see, for example, [37]), AG(G) , is defined as

AG(G) = ∑
i∼ j

di +d j

2
√

did j
.

The following addition and difference of the indices AG and GA

irrAG(G) = AG(G)−GA(G) and r(G) = AG(G)+GA(G) ,

were considered and studied in [37, 13]. Inspired by the results obtained in [37, 13],
in this paper we derive several inequalities involving irrAG(G) and r(G) . Besides, we
obtain some new bounds for AG(G) .

2. Preliminaries

This section provides a couple of known inequalities that are frequently used in
the remaining sections of this paper.

LEMMA 2.1. (Jensen’s Inequality, see [17, 26, 24]) Let p = (p1, . . . , pn) be a se-
quence of non–negative real numbers and a = (a1, . . . ,an) be a sequence of positive
real numbers. For any real r satisfying r � 1 or r � 0 , the following inequality holds(

n

∑
i=1

pi

)r−1 n

∑
i=1

pia
r
i �
(

n

∑
i=1

piai

)r

. (2.1)

If 0 � r � 1 , the reverse inequality sign in (2.1) holds. Also, the equality sign in
(2.1) holds if and only if either r = 0 , or r = 1 , or a1 = a2 = · · · = an �= 0 , or p1 =
p2 = · · · = pt = 0 and at+1 = at+2 = · · · = an �= 0 , or pt = pt+1 = · · · = pn = 0 and
a1 = a2 = · · · = at �= 0 , for some t satisfying 1 � t � n−1 .

LEMMA 2.2. [29] Let x = (x1, . . . ,xn) be a sequence of non–negative real num-
bers and a = (a1, . . . ,an) be a sequence of positive real numbers. For any non–negative
real r , the following inequality holds

n

∑
i=1

xr+1
i

ar
i

� (∑n
i=1 xi)r+1

(∑n
i=1 ai)r . (2.2)

Equality in (2.2) holds if and only if r = 0 , or x1
a1

= x2
a2

= · · · = xn
an

.
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REMARK 2.1. The inequality (2.2) is known in the literature as Radon’s inequal-
ity. Let us note that inequality (2.2) is valid also for r � −1. When −1 � r � 0,
the opposite inequality sign in (2.2) is valid. When r � 0 then the sequence x = (xi) ,
i = 1,2, . . . ,n , should be positive real number sequence. Therefore, equality in (2.2) is
also attained for r = −1.

3. On relations between AG(G) and GA(G)

Throughout this section di denotes degree of the vertex vi of a graph G . The set
of all different elements of the degree sequence of a graph G is known as the degree
set of G . A graph whose degree set consists of only one element or two elements is
known as a regular graph or a bidegreed graph, respectively. In the first theorem of this
section, we determine an upper bound for the difference irrAG(G) = AG(G)−GA(G)
in terms of some other graph invariants and prove that only regular or bidegreed graphs
attain this bound.

THEOREM 3.1. Let G be a connected graph with n � 2 vertices. Then

irrAG(G) = AG(G)−GA(G) � 1
2

√
(n−2H(G))(M1(G)−4ISI(G)). (3.1)

Equality in (3.1) holds if and only if G is regular or bidegreed graph.

Proof. Let {v1,v2, . . . ,vn} and (d1,d2, . . . ,dn) be the vertex set and vertex-degree

sequence of G , where di is degree of the vertex vi . For r = 2, pi := (di−d j)2

di+d j
, ai :=

1√
did j

with summation performed over all edges of G , the inequality (2.1) becomes

∑
i∼ j

(di−d j)2

di +d j
∑
i∼ j

(di−d j)2

did j(di +d j)
�
(

∑
i∼ j

(di−d j)2√
did j(di +d j)

)2

. (3.2)

Since

irrAG(G) = AG(G)−GA(G) =
1
2 ∑

i∼ j

(di −d j)2√
did j(di +d j)

, (3.3)

∑
i∼ j

(di −d j)2

di +d j
= ∑

i∼ j

(di +d j)2 −4did j

di +d j
= M1(G)−4ISI(G) ,

∑
i∼ j

(di−d j)2

did j(di +d j)
= ∑

i∼ j

(di +d j)2−4did j

did j(di +d j)
= n−2H(G) ,

from the above identities and (3.2) we obtain

4irrAG(G)2 � (n−2H(G))(M1(G)−4ISI(G)) ,
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Since n−2H(G) � 0 (see [41]) and M1(G)−4ISI(G) � 0 (see [33]), from the above
inequality we obtain (3.1).

Due to Lemma 2.1, equality in (3.2) holds if and only if the product did j is con-
stant for every pair of adjacent vertices vi , v j of G or did j is constant for some pairs
of adjacent vertices vi , v j and di = d j for all the remaining adjacent vertices. Let v j

and vk be adjacent to vertex vi , and di �= dk . Since did j = didk , it follows that d j = dk ,
meaning that G is bidegreed graph. Hence we conclude that equality in (3.1) holds if
and only if G is regular or bidegreed graph. �

REMARK 3.1. Equality in (3.1) is attained for a large number of connected graphs.
Figure 1 illustrates some of them for the case n = 5.

Figure 1: Some graphs for which the equality in (3.1) holds for the case n = 5 .

For a graph G , a graph invariant I(G) is said to be a graph irregularity measure
if I(G) is non–negative and the equation I(G) = 0 holds if and only if G is a regular
graph. Detail about some vertex–degree-based irregularity measures can be found in
[12, 23, 31, 11, 30].

REMARK 3.2. As mentioned in the proof of Theorem 3.1, the following inequal-
ities are valid

irr1(G) = n−2H(G) � 0 and irr2(G) = M1(G)−4ISI(G) � 0 ,

with equalities if and only if G is regular. Having this in mind, the inequality (3.1)
can be considered as relationship between irregularity measures irrAG(G) , irr1(G) and
irr2(G) , that is the following holds

4irrAG(G)2 � irr1(G)irr2(G) ,

with equality if and only if G is a regular or bidegreed graph.

A non-regular graph G is said to be semiregular bipartite if it is bipartite and all
the vertices of every partite set of G have the same degree.
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THEOREM 3.2. Let G be a connected graph with m � 1 edges. Then

irrAG(G) = AG(G)−GA(G) � 1
2

√
(SDD(G)−2m)

(
m− H(G)2

R−1(G)

)
. (3.4)

Equality holds if and only if G is regular or semiregular bipartite graph.

Proof. Let vi and v j be two arbitrary adjacent vertices of G . For r = 2, pi :=
(di−d j)2

did j
, ai :=

√
did j

di+d j
with summation performed over all edges of G , the inequality

(2.1) becomes

∑
i∼ j

(di−d j)2

did j
∑
i∼ j

(di−d j)2

(di +d j)2 �
(

∑
i∼ j

(di−d j)2√
did j(di +d j)

)2

. (3.5)

Since

∑
i∼ j

(di −d j)2

did j
= ∑

i∼ j

d2
i +d2

j −2did j

did j
= SDD(G)−2m ,

∑
i∼ j

(di −d j)2

(di +d j)2 = ∑
i∼ j

(di +d j)2−4did j

(di +d j)2 = m−∑
i∼ j

4did j

(di +d j)2 ,

from the above identities, identity (3.3) and inequality (3.5) we obtain

4irrAG(G)2 � (SDD(G)−2m)

(
m−∑

i∼ j

4did j

(di +d j)2

)
. (3.6)

On the other hand, for r = 1, xi := 1
di+d j

, ai := 1
did j

, with summation performed over
all edges of G , the inequality (2.2) becomes

∑
i∼ j

did j

(di +d j)2 = ∑
i∼ j

(
1

di+d j

)2

1
did j

�

(
∑i∼ j

1
di+d j

)2

∑i∼ j
1

did j

=
H(G)2

4R−1(G)
. (3.7)

Now, from the above and (3.6) we obtain

4irrAG(G)2 � (SDD(G)−2m)
(

m− H(G)2

R−1(G)

)
.

Since SDD(G)−2m � 0 (see [36]), and m− H(G)2

R−1(G) � 0, from the above inequality we
arrive at (3.4).

Equality in (3.7) holds if and only if 1
di

+ 1
d j

is constant for every pair of adjacent

vertices vi and v j of G . Suppose vertices v j and vk are adjacent to vi . In that case
1
di

+ 1
d j

= 1
di

+ 1
dk

, that is d j = dk . This means that equality in (3.7) holds if and only
if G is regular or semiregular bipartite graph. The equality in (3.5) is attained for the
same cases, which implies that equality in (3.4) holds if and only if G is regular or
semiregular bipartite graph. �
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THEOREM 3.3. Let G be a connected graph with m � 1 edges. Then

irrAG(G) = AG(G)−GA(G) � 1
4
(SDD(G)−2m) . (3.8)

Equality holds if and only if G is a regular graph.

Proof. For every pair of vertices vi and v j of G , the following inequality holds
because of the arithmetic mean–geometric mean (AM–GM) inequality (see e.g. [25]):

di +d j � 2
√

did j . (3.9)

From the above inequality and identity (3.3) we obtain that

irrAG(G) = AG(G)−GA(G) � ∑
i∼ j

(di −d j)2

4did j
=

1
4 ∑

i∼ j

(
d2

i +d2
j

did j
−2

)

=
1
4
(SDD(G)−2m) ,

which is the required inequality.
Equality in (3.9) holds if and only if di = d j , which implies that in the above

inequality equality sign holds if and only if di = d j for every pair of adjacent vertices
vi and v j . Thus, since G is connected, equality in (3.8) holds if and only if G is a
regular graph. �

REMARK 3.3. As we have mentioned, in [36] it was proven that SDD(G) � 2m
with equality holding if and only if G is regular. Therefore the topological index
irr3(G) = SDD(G)− 2m can be considered as an irregularity measure. Thus, from
(3.8) we have that

irrAG(G) � 1
4
irr3(G) .

It is not difficult to observe that

1
4
irr3(G)− irrAG(G) ,

is also an irregularity measure.

COROLLARY 3.1. Let G be a connected graph of order n � 2 , size m, and max-
imum degree Δ . Then

irrAG(G) = AG(G)−GA(G) � 1
4
(nΔ−2m) .

The equality sign in the above inequality holds if and only if G is regular.
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Proof. In [36] it was proven that

SDD(G) � nΔ ,

with equality holding if and only if G is regular. From the above and inequality (3.8)
we obtain the required result. �

The next result follows from Corollary 3.1

COROLLARY 3.2. Let G be a connected graph with n � 2 vertices and m edges.
Then

irrAG(G) � 1
4
(n(n−1)−2m) .

Equality holds if and only if G ∼= Kn .

A unicyclic graph is a connected graph with the same order and size. The next
result follows from Corollary 3.1.

COROLLARY 3.3. Let U be a unicyclic graph of order n � 3 and maximum de-
gree Δ . Then

irrAG(U) = AG(U)−GA(U) � n(Δ−2)
4

.

Equality holds if and only if U ∼= Cn .

In the next theorem we determine an upper bound on the index r(G) = AG(G)+
GA(G) .

THEOREM 3.4. Let G be a connected graph. Then

r(G) � 1
2

√
2R−1(G)(F(G)+6M2(G)) . (3.10)

Equality holds if and only if G is regular.

Proof. Let vi and v j be two arbitrary adjacent vertices of G . For r = 2, pi :=
(di +d j)2 +4did j , ai := 1√

did j(di+d j)
, with summation performed over all edges of G ,

the inequality (2.1) becomes

∑
i∼ j

((di +d j)2 +4did j)∑
i∼ j

(di +d j)2 +4did j

did j(di +d j)2 �
(

∑
i∼ j

(di +d j)2 +4did j√
did j(di +d j)

)2

. (3.11)

Since

2r(G) = 2(AG(G)+GA(G)) =∑
i∼ j

di +d j√
did j

+ ∑
i∼ j

4
√

did j

di +d j
=

=∑
i∼ j

(di +d j)2 +4did j√
did j(di +d j)

,

(3.12)
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and

∑
i∼ j

((di +d j)2 +4did j) = ∑
i∼ j

(d2
i +d2

j +6did j) = F(G)+6M2(G) ,

from the above identities and inequality (3.11) we obtain

4r(G)2 � (F(G)+6M2(G))∑
i∼ j

(di +d j)2 +4did j

did j(di +d j)2 . (3.13)

On the other hand, from (3.9) we obtain

∑
i∼ j

(di +d j)2 +4did j

did j(di +d j)2 � ∑
i∼ j

(di +d j)2 +(di +d j)2

did j(di +d j)2 = ∑
i∼ j

2
did j

= 2R−1(G) .

From the above inequality and (3.13) we arrive at (3.10).
Since equality in (3.9) holds if and only if di = d j , and since G is connected, it

implies that equality in (3.10) holds if and only if G is regular. �
Since F(G) � 2M2(G) with equality if and only if G is regular, Theorem 3.4

implies the next result.

COROLLARY 3.4. Let G be a connected graph. Then

r(G) = AG(G)+GA(G) �
√

2R−1(G)F(G) .

Equality holds if and only if G is regular.

THEOREM 3.5. Let G be a connected graph with n � 2 vertices. Then

r(G) = AG(G)+GA(G) � 2
√

(n−H(G))(M1(G)−2ISI(G)). (3.14)

Equality holds if and only if G is regular.

Proof. For any two vertices vi and v j of G , based on the AM–GM inequality, we
have that

2did j � d2
i +d2

j . (3.15)

From the above inequality and identity (3.12) we have that

r(G) = AG(G)+GA(G) = ∑
i∼ j

d2
i +d2

j +6did j

2
√

did j(di +d j)
� 2∑

i∼ j

d2
i +d2

j√
did j(di +d j)

. (3.16)

On the other hand, for r = 1
2 , pi :=

d2
i +d2

j
di+d j

, ai := 1
did j

, with summation performed over
all edges of G , the inequality (2.1) transforms into

(
∑
i∼ j

d2
i +d2

j

di +d j

)−1/2

∑
i∼ j

d2
i +d2

j√
did j(di +d j)

�
(

∑
i∼ j

d2
i +d2

j

did j(di +d j)

)1/2

. (3.17)
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Since

∑
i∼ j

d2
i +d2

j

di +d j
= ∑

i∼ j

(di +d j)2 −2did j

di +d j
= M1(G)−2ISI(G) ,

∑
i∼ j

d2
i +d2

j

did j(di +d j)
= ∑

i∼ j

(di +d j)2−2did j

did j(di +d j)
= n−H(G) ,

from the above identities and inequality (3.17) we obtain

∑
i∼ j

d2
i +d2

j√
did j(di +d j)

�
√

(n−H(G))(M1(G)−2ISI(G)).

From the above and (3.16) we obtain (3.14).
Equality in (3.15), and consequently in (3.14), holds if and only if G is a regular

graph. �
The proofs of the next two theorems are analogous to that of Theorem 3.5, hence

omitted.

THEOREM 3.6. Let G be a connected graph. Then

r(G) = AG(G)+GA(G) �
√

F(G)ID(G) .

Equality holds if and only if G is regular.

THEOREM 3.7. Let G be a connected graph with m � 1 edges. Then

r(G) = AG(G)+GA(G) � 1
4
(SDD(G)+6m) . (3.18)

Equality holds if and only if G is regular.

From Theorem 3.7 and the first sentence of Remark 3.3, the next result follows.

COROLLARY 3.5. Let G be a connected graph. Then

r(G) = AG(G)+GA(G) � SDD(G) .

Equality holds if and only if G is regular.

Note that 2m � nΔ � n(n−1) for every graph of order n , size m and maximum
degree Δ . Hence, from Theorem 3.7 and the first sentence of the proof of Corollary
3.1, the next result follows.

COROLLARY 3.6. Let G be a connected graph of order n � 2 , size m, and max-
imum degree Δ . Then

r(G) = AG(G)+GA(G) � 1
4
(nΔ +6m) � nΔ � n(n−1) .

Equalities in the first two inequalities are attained if and only if G is regular, whereas
the equality in the third one holds if and only if G ∼= Kn .
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Keeping in mind Theorems 3.3 and 3.7, the first sentence of Remark 3.3 and the
first sentence of the proof of Corollary 3.1, we have the next result.

COROLLARY 3.7. Let G be a connected graph with n � 2 vertices, m edges and
maximum degree Δ . Then

AG(G) � 1
4
(SDD(G)+2m) (3.19)

AG(G) � 1
2
SDD(G) (3.20)

AG(G) � nΔ
2

(3.21)

AG(G) � n(n−1)
2

. (3.22)

The equality in any of (3.19), (3.20), and (3.21) holds if and only if G is regular.
Whereas, the equality in (3.22) holds if and only if G ∼= Kn .

The inequality (3.19) was proven in [27]. The inequality (3.20) was proven in [8],
whereas the inequalities (3.21) and (3.22) were proven in [37].

4. On relations between AG(G) and other topological indices

The next theorem reveals a connection between AG(G) and M2(G) , F(G) and
R−1(G) .

THEOREM 4.1. Let G be a connected graph. Then

AG(G) � 1
2

√
R−1(G)(F(G)+2M2(G)) . (4.1)

Equality holds if and only if G is a regular or semiregular bipartite graph.

Proof. The following identity is valid

F(G)+2M2(G) = ∑
i∼ j

(di +d j)2 = ∑
i∼ j

(
di+d j

2
√

did j

)2

1
4did j

. (4.2)

On the other hand, for r = 1, xi := di+d j

2
√

did j
, ai := 1

4did j
, with summation performed

over all edges of G , the inequality (2.2) becomes

∑
i∼ j

(
di+d j

2
√

did j

)2

1
4did j

�

(
∑i∼ j

di+d j

2
√

did j

)2

∑i∼ j
1

4did j

=
4AG(G)2

R−1(G)
. (4.3)
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From the above inequality and identity (4.2) we obtain (4.1).
Equality in (4.3) holds if and only if (di +d j)

√
did j is constant for every pair of

adjacent vertices vi and v j in G . Suppose vertices v j and vk are adjacent to vertex vi .
Then

(di +d j)
√

did j = (di +dk)
√

didk ,

that is (√
d j −

√
dk

)(
di +d j +dk +

√
d jdk

)
= 0 ,

which implies that d j = dk . Since graph G is connected, it means that it is regular or
semiregular bipartite. This implies that equality in (4.1) holds if and only if G is regular
of semiregular bipartite graph. �

Since

R−1(G) = ∑
i∼ j

1
did j

� m
δ 2 ,

we have the following corollary of Theorem 4.1.

COROLLARY 4.1. Let G be a connected graph of size m � 1 and minimum de-
gree δ . Then

AG(G) � 1
2δ
√

m(F(G)+2M2(G)) . (4.4)

Equality holds if and only if G is regular.

The inequality (4.4) was proven in [8].
Since

F(G)+2M2(G) = ∑
i∼ j

(di +d j)2 � 2ΔM1(G) ,

the following result is valid:

COROLLARY 4.2. Let G be a connected graph of size m � 1 , minimum degree
δ , and maximum degree Δ . Then

AG(G) � 1
2δ
√

2mΔM1(G) .

Equality holds if and only if G is regular.

Since
M1(G) = ∑

i∼ j

(di +d j) � 2mΔ ,

we have the following result:

COROLLARY 4.3. Let G be a connected graph of size m � 1 , minimum degree
δ , and maximum degree Δ . Then

AG(G) � mΔ
δ

.

Equality holds if and only if G is regular.
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In the next theorem we determine a relationship between AG(G) and M2(G) ,
ID(G) and R−1(G) .

THEOREM 4.2. Let G be a connected graph. Then

AG(G) � 1
2

√
M2(G)(ID(G)+2R−1(G)) . (4.5)

Equality holds if and only if G is regular or semiregular bipartite graph.

Proof. The following identity is valid

ID(G)+2R−1(G) = ∑
i∼ j

d2
i +d2

j

(did j)2 + ∑
i∼ j

2
did j

= ∑
i∼ j

(di +d j)2

(did j)2 . (4.6)

On the other hand, for r = 1, xi :=
di+d j

2
√

did j
, ai := did j , with summation performed over

all edges of G , the inequality (2.2) becomes

∑
i∼ j

(di +d j)2

4(did j)2 �

(
∑i∼ j

di+d j

2
√

did j

)2

∑i∼ j did j
,

that is

∑
i∼ j

(di +d j)2

(did j)2 � 4AG(G)2

M2(G)
. (4.7)

From the above inequality and identity (4.6) we arrive at (4.5).

Equality in (4.7) holds if and only if
di+d j

(did j)3/2 is constant for every pair of adjacent

vertices vi and v j in G . Now, by a similar arguments as in the case of the proof of
Theorem 4.1 we conclude that equality in (4.5) holds if and only if G is regular or
semiregular bipartite graph. �

Since

ID(G)+2R−1(G) = ∑
i∼ j

(
1
di

+
1
d j

)2

� 2
δ ∑

i∼ j

(
1
di

+
1
d j

)
=

2n
δ

,

we have the following corollary of Theorem 4.2.

COROLLARY 4.4. Let G be a connected graph of order n � 2 and minimum
degree δ . Then

AG(G) �
√

nM2(G)
2δ

,

with equality if and only if G is regular.
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