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A NEW HILBERT-TYPE INTEGRAL INEQUALITY WITH THE
GENERAL NONHOMOGENEOUS KERNEL AND APPLICATIONS
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Abstract. In this paper, by the use of weight functions and the technique of real analysis, a new
Hilbert-type integral inequality with a general nonhomogeneous kernel as H(xv(y)) is given. A
few equivalent statements related to the best possible constant factor and parameters are consid-
ered. As applications, the equivalent forms, the operator expressions and some corollaries are
obtained.

1. Introduction

If 0 < [ f%(x)dx <o and 0 < [5°g*(y)dy < o, then we have the following
Hilbert’s integral inequality (cf. [9], Theorem 316):

/Om/ow%g)fy)dxdy<ﬂ(/omfz(x)dx/omg2(y)dy)%. 1)

where, the constant factor 7 is the best possible.
In 1934, Hardy et al proved a Hilbert-type integral inequality with the general
homogeneous kernel of degree —1 as & (x,y) (cf. [9], Theorem 319): If p > 1,

5—1 F(0).805) > 0. 0 < 57 (x)dx < o0 and 0 < g (3)dy < o, k(x.3) (> 16>
kp = [o k(u,1)u" I’duER+—( o), then

/0"" /Owk(xJ)f(x)g(y)dxdy
< kp (/wap(x)dx))’l’ (/O“’gq(y)dy> 0 | o

where the constant factor &, is the best possible. For p = ¢ =2, k(x,y) = )#y’ 2)
reduces to (1).
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Additionally, the following Hilbert-type integral inequality with nonhomogeneous
kernel was provided: assuming that H (1) is a nonnegative measurable function in Ry,
p>1, II—,—I—}I =1, y=01, 0 € R=(—00,00), such that

= / H(u)u" 'du e Ry,
0

then we have

//ny (v) dxdy
Qe o)l o

where the constant factor K (%) is the best possible (cf. [9], Theorem 350).
In 1998, by introducing a parameter A > 0, Yang [25] gave an extension of (1) as

follows:
/ / ) dxdy
+

<_ %) ( 1lfz(x)dx/omyl’lgz(y)a’y> %, )

where, the constant factor B( %, %) is the best possible, and

oo tu—l
B(u,v) ::/O Wdt (u,v>0)

is the beta function (cf. [20]). For A = 1, (4) also reduces to (1).

Inequalities (1)—(4) are important in analysis and its applications. We can find a
number of extensions and improvements in the past mathematics literature (cf. [5]-[2],
[6], [7], [21]-[23], [26], [27], [33]). In 2006, Yang [32] gave a discrete Hilbert-type

inequality with the kernel as m, the other similar results were provided by
(cf. [4], [16]). In 2013, Yang [28] studied the equivalence of inequalities (2) and (3),

by adding a condition that H (1) = kj (u,1). In 2017, Hong et. al [10] considered an
equivalent condition for (2) involving certain parameters. Some further related results
were obtained in (cf. [3], [8], [1 1]-[13], [17]-[19], [24], [29]-[31D).

In this paper, making use of the way of real analysis and the weight functions,
we study a new Hilbert-type integral inequality with the nonhomogeneous kernel as
H (xv(y)) and the best possible constant factor. A few equivalent statements related to
the best possible constant factor and parameters are provided. As applications, we also
consider the equivalent forms, the operator expressions and some corollaries.
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2. Some lemmas

In what follows, we assume that p > 1, 11—7—|—$ =1, v(x) >0, V(x) >0 (x€
n

R, = (0,)), with v(0T) =0, v(s) = oo, H(u) is a nonnegative measurable functions
inRy, 0, 0 ER=(—00,00),

K@= [ Hua'aueR. (r=0.0),

f(x) and g(y) are nonnegative measurable functions in R , satisfying:

o, 91

0< /Omxp[lf<5+7)]71fp (x)dx < oo, and

- q|1-( 2+ )| -1
o< | oyl (%)

CIOIE g1(y)dy <o (5)

LEMMA 1. We have the following Hilbert-type integral inequality with the non-
homogeneous kernel:

= [ [ v 0) 10 0)dxdy

0 Jo

CIOIE gly)dy o (6)

Proof. Since V' (y) > 0, with v(07) =0, v(y) is strictly increasing and then v(y) >
v(0T) =0 (y € Ry). We define the following weight functions:

0(0.3) =27 [ H ()7 ()Y ()dy (reRy),
@(01.) i= (V)™ [ H(w()x7dx (ERL), )
For fixed x > 0, setting u = xv(y), we obtain
o(0,x) :/:H(u)uc—ldu:K(a) €R.. ®)
In the same way, for fixed y > 0, setting u = xv (y), we obtain

@(013) = | Hwu""du=K(01) €R.. ©)
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By Holder’s inequality (cf. [15]), Fubini theorem (cf. [14]) and (7), we have

]—//Hxv x)g(y)dxdy
= /()N/;H(xv(y)) [ v(y))zi(:/(y));)f(ﬂ]

[/ / H v o)l)(yl)yl()y)f )y d"r

R A A
X{/O w(ﬁl»y)( (y))(v/(y))ql gq(y)dy} . (10)

If (10) keeps the form of equality, then, there exist constants A and B, such that
they are not both zero and (cf. [15]),

POV ) B!
e i T )
a.e. in (0,00) x (0,0).

et )

We assume that A # 0. For fixed a.e. y € (0,0), we have

— o B q( ) oo
L i = A(v(y))(f_l)yq(v’(y))qx |

Since [;°x% %~ !dx = oo, the above expression contradicts the fact that

a.e.in (0,00).

0< /wap[l(%o;})}lfp (x) dx < oo.

Therefore, by (8) and (9), we have (6).
The lemma is proved. [

REMARK 1. If 01 = o, then by (5) and (6), we have

00 q(l1-0)—1
0</0 xPU=0)=1 P () dx < oo, O</0 (vy)fgq(y)dy<oo
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and the following inequality:

I—/ / H (xv(y )g (y)dxdy < K (o)

"~ si-o)- Pl et )
x[/o W0 “ff’(x)dx} [/O O ] RO

LEMMA 2. The constant factor K (o) in (11) is the best possible.

Proof. For any € > 0, we set

[ 0, 0<x<I
. xU*%*l’XZI )

gly) = {(V(Y))HOTIV’ ), S;{gl '

If there exists a positive constant M (< K (o)), such that (11) is valid when we replace
K (o) by M, then in particular, we have

/ / H (xv( x)g(y)dxdy

<M [/wal’(lo)lfp(x)dx} % [/Ow 7(‘)())))“1;1187‘1(36)61)’] q

- M(/f’x“dx)% [/01<v<y>>81v’<y>azy]é — My,

In view of Fubini theorem (cf. [14]), we have

To= [ ([ o™ ) 0o) Y by

0
v(1) | vt ()
- [ [/ o) ’(y)dy]Hw)u" #du
0 0
Lo [T H@EE S au
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Hence, it follows that

M) o+£i-1 G—é—l
/ H(u)u du+ (v / H(u »du
0
—el<M(v(1))
For € — 0T, by Fatou lemma (cf. [14]), we have
v(1) o—£-1
K(o) :/ lim H(u)u du+/ lim (v(1))*H (u)u® » du
0 e—0T 1'-:—>0Jr
< lim [/ Hu)u i dut (v / H(u)u® 5 du
£—0t
<M.

Hence, M = K(0) is the best possible constant factor in (11).
The lemma is proved. [J

REMARK 2. Setting 0 := % + %, we can rewrite (6) as follows:

/ N / " H (v () £(x)g () dxdy
0 JO

< K? (6)K (01) [ /O " ap(1-9)-1 fp(x)dx} :

oo (1 (1-0)— q
x[/o %g%y)dy] . (12)

By Holder’s inequality with weight (cf. [15]), we obtain the following inequality:

0<K(8):K<G Gl) /H ! du
:/OMH(u) (u7) (ﬂl)du
([ a) (o)
— kP (0)Ki (01) <o (13)

1
LEMMA 3. Ifthe constant factor K? (0)K4 (o) in (12) (or (6)) is the best pos-
sible, then we have ¢ = 0.

Proof. 1f the constant factor K 7 (0)K g (o1) in (12) is the best possible, then in
view of (11) (for 0 = &), we have the following inequality:

K? (6)Ki (01) <K(6) (€R,),
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namely, (13) keeps the form of equality.
We observe that (13) keeps the form of equality if and only if there exist constants
A and B, such that they are not both zero and (cf. [15])

Au ' =Bu®! ae.in R, .
: -1_8B
Assuming that A # 0, we have u® =" = 7
namely, 0] = 0©.
The lemma is proved. [J

a.e. in Ry, which follows that 0 — 07 =0,

3. Main results

THEOREM 1. Inequality (12) (or (6)) is equivalent to the following inequality:

J = {/Ow(v( Po—1y/( (/ H (v ( x)dx)pdy}%

1

< K*(0)K4 (1) [/:xpu—a)—lfp(x)dx] ’ "

1
The constant factor K P (0)K1 (o) in (14) is the best possible if and only if the same
constant factor in (12) is the best possible. In particular, for 6y = G, we have the fol-
lowing inequality equivalent to (11) with the same best possible constant factor K(0) :

[ [ ) o)

< K (o) Uomx ~1pp(x) x} . (15)

Proof. 1f (14) is valid, then by Holder’s inequality, we have

1= [T oonT 0 o0t [ H o) sas]

x [0 ONTO 0 ) e )] dy
g]l/omMg(y)dyr. (16)

By (14), we have (12).
On the other hand, assuming that (12) is valid, we set

¢ ) = (v ()P (/H )dx>,71dy (v>0).
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Then it follows that

i q(1-6)—1
=) %g%m =1 i

If J =0, then (14) is naturally valid; if J = o, then it is impossible to make (14)
valid, namely, J < e. Suppose that 0 < J < e. By (12), we have

= (y (1-6)—1
0<JP :/0 %gq(y)dy =1

1
< K* (6)K7 (1) [ / K(1-9)-1 fp(x)dx} TP <,
0

_ [ wup-or
7= |4

qu(y)dy]

1 1

< K* (6)K7 (1) [/wap(lﬁ)lfp(x)dx} ’

namely, (14) follows, which is equivalent to (12).

If the constant factor in (12) is the best possible, then the same constant factor
in (14) is also the best possible. Otherwise, by (16) (for o1 = ¢), we would reach a
contradiction that the same constant factor in (11) is the best possible. If the constant
factor in (14) is not the best possible, then by (17), we would reach a contradiction that
the same constant factor in (12) is not the best possible.

The Theorem is proved. [

THEOREM 2. The following statements (i), (i), (iii) and (iv) are equivalent:
1
(i) Both K? (0)K4(01) and K (% + %) are independent of p,q;
(if) Kh (0)K¥ (01) <K (2+2);
(iii) o1 =03
1
(iv) The constant factor K? (0)K4 (01) in (12) (resp. (14)) is the best possible.

Proof. (i) = (ii). we have

~l—

K* (6)Ki (o) = lim lim K? (0)K¥ (01) = K (0).

p*)1+ g—o°

By Fatou lemma, we find

K(g—kﬂ) = lim limK<g+ﬂ)
P q p—1tg—ee p q
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(i) = (i) If K? (G)Ké (o) <K (% + %) , then (13) keeps the form of equal-
ity. In view of the proof in Lemma 4, we have 0] = ©.
(iif) = (iv) By Lemma 3 (resp. Theorem 1), the constant factor
K? (o)K7 (01) (=K (0))
is the best possible in (12) (resp. (14)).
(iv) = (i) By Lemma 4, we have 0; = ¢ and then both K7 (G)K% (01) and
K (% + %) equal to K (o), which are independent of p,q.

Hence, the statements (i), (ii), (iii) and (iv) are equivalent.
The Theorem is proved. [

If &y (x,y) (= 0) is a homogeneous function of degree —A in R, satisfying
Ky, (wx,uy) =u Ky (x,y) (,x,y €R4).

then setting H (u) = K, (1,u), replacing x by %, and x*2f (%) by f(x) in Lemma 2,
Theorem 1 and Theorem 2, for 6 = A — U,

K ()= [ K (Lu)u® ldue Ry (= 0.4~ ),
0
we have

COROLLARY 1. For f(x),g(y) >0,
A

—0

O</wap[1_( P +%)]_1fp(x)dx<oo, and

o A=0C
- iyl (F+45%)]
o< [T U
0 (v (v))?
we have the following equivalent Hilbert-type integral inequalities with the homoge-
neous kernel:

gl(y)dy < e,

| [ K0 505 ) dxdy

< K7 (0)K! (A—p) {/Omxf’{l(p#ﬂlfp(x)dx}

g'dy (18)
1

<&} @l - { [ ) (19
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For W+ o = A, we have the following equivalent inequalities with the best possible
constant factor.

/ w / Ky (v (1) f()g (v) dxdy
0 Jo

<Ky (o) | [Tx 0 ]

UOM(V ))PoLy ( (/ Ky (x,v(y )dx)pdy];
<K (o >U0w S } 1)

COROLLARY 2. For p > 1, the following statements (i), (ii), (iii) and (iv) are
equivalent:

(i) Both K? (G)K% (A —u) and K, (% + A%“) are independent of p,q;
1 A—
(i1) K (0)KT (A~ 1) <K (S +2554);
(iiil) u+0=2;
(iv) The constant factor K? (o )Ké (A — ) in (18) (resp. (19)) is the best possi-

ble.
4. Operator expressions
(a) We set the following functions
: ()
()] L) A
Q(x) =x poa ) yy) = = )
) AN O
wherefrom,

w00 = 0T ey eRy).

Define some real normed linear spaces as follows:

Lyo(®.) = {f=f() £l pi= ([ ol ar)’ <oo},
Loy(Ry) = {g £0): el = ([ v0leO >‘fdy)l<oo},
Lyyis (Ry) = {h=h<> il = (v |de)1<oo}.
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For f €L, (Ry), setting

:/:H(xv(y))f(x)dx (vER,).

by (14), we have
1 1
Il y1n < K (0) KT (01) 1f1], < o 22)

R+).

pwl=r

namely, h € mel,p (

DEFINITION 1. Define a Hilbert-type integral operator 7 : Ly, o (R+) = L,, ,1-» (R+)
with the nonhomogeneous kernel as follows: For any f € L, ,(Ry), there exists a
unique representation &1 =T f € L, ,1-» (Ry.), satisfying for any y € Ry, Tf(y) =
h(y).

Definition the formal inner product of Tf and g € L,y (R;) and the normed of

T as follows:
(Tf,g) .—/ (/ H (xv(y )dx) (y)dy=1,

(vl
IT|| = sup W
r#0eLo®e) IS,

pyl—p

In view of (22), it follows that

1

1 1
1T N pyr-r = 1Bl y1-p < K7 (0) K3 (1) |10

1

1
and then the operator T is bounded satisfying ||T|| < K7 (0)K4 (01).
By Theorem 1 and Theorem 2, we have

THEOREM 3. If f(=20) €L, o (Ry), g(=0) € Lye(Ry),
then we have the following equivalent inequalities:

(Tf.8) < KP (6)K7 (61) |£1].- (23)
ITfllpyor < KF (0) K (1) 1] 24)

1
Moreover, 61 = & if and only if the constant factor K? (o)Ka (07) in (23) (resp. (24))
is the best possible, namely, |T|| =K (o).

(b) We set @ (x) ::xp[F(%(w%ﬂfl, Y(y):=

, wherefrom,

W () = ) T ) ey e Ry).
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Define some real normed linear spaces as follows:

Lpo(Ry) = {f=f(X) Al = (/:‘D(X) If(X)I”dX> g w},
Lyw (Ry) = {g=g(y) lgllgw = (/OW‘P(y) g(y)l”dy>q < w},

Lywis (Ry) i= {h =0 Wlrer = ([P OOIPar)” < w}.

For f €L, (R, ), setting

HO)i= [ K (v 0) £ (0)dx (ERy).

We may rewrite (20) as follows:

1 1
[H |, p1-p < K7 (0) KT (A=) || f]] 0 < oo (25)
namely, H € L, y1-» (Ry).

DEFINITION 2. Define a Hilbert-type integral operator 7i : Ly o (R+) — L, g1 (Ry)
with the homogeneous kernel as follows: For any f € L, o (R ), there exists a unique

representation H =T1f € L, g1, (R+), satisfying forany y € R.., Ti f (y) = H (y)

Define the formal inner product of 71 f and g € L,y (R ) and the normed of 7;
as follows:

1T =

LY
sup

el o®y)  1fllpo
In view of (25), it follows that

1 1
1T f 1l r-r = 1H | r-» < K7 (0) K (A=) 1]l 0-

1
and then the operator T; is bounded satisfying |71 < K} (0) K, (A —u).
By Corollary 1 and Corollary 2, we have

0,

COROLLARY 3. For p>1,if f(20)€L,o(Ry), g(>0)€L,w(Ry), [|f]| >
gl| > 0, then we have the following equivalent inequalities:

(Tif.8) < K (0) K} (A=) I fllp.00 8]l 0

(26)
1 1
1T fllppr-» < K (0) K (A=) f1] .-

27)
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1 1
Moreover, |+ 6 = A if and only if the constant factor K}’ (6)K} (A —p) in (26)
(resp. (27)) is the best possible, namely, ||Ti|| = K), (o).

EXAMPLE 1. (i) We set H(u) = Kj (1,u) = —— (u>0; A > 0). Then

(1+u)*
1
H(XV()’)) = m,
Ky (xv(y)) = ﬁ (x,y > 0).

For y=o0, o1,u € (0,1),

oo uy—l
Km:sz/o( du=B(y,A—7) ER..

1+u)*
In view of Theorem 3, ¢ = oy if and only if ||T|| = B(o,A — o). In view of
Corollary 3, u+ o = A ifand only if ||T3|| = B(u, o).
(i) We set H(u) = K (1,u) = ulxnfl (u>0;A >0). Then

Hio) = i
lnv(x—v)
Kilov0) = Z—r @0 >0
For y=o0, o1,u € (0,1),
 y —1 nu
K0 =K = [

1 =M1y n 2
__/0 - dv_[?tsin(n:y/?t)} cR..

2
In view of Theorem 3, ¢ = o0 if and only if ||T|| = {W} . In view of

2
T
lsin(n’y/l)} :
u>0; A >0). Then

Corollary 3, u+ o = A4 if and only if ||T}|| = [

(iii) We set H(u) = K (1,u) = m (

1
(max{1,xv(y)})*"
1

K (x,v(y)) = (max (v OV (x,y>0).

H(xv(y)) =

For y=o0, o1, € (0,1),

oo u?1
KW = K0 = | ERK

1 00 )/—1 A’
= [ urla / M= ER,.
/o . “t 1 ut ! Y(A—7) -
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In view of Theorem 3, o = oy if and only if ||T|| = ﬁ In view of Corollary

3, u+0o=A7 ifand only if ||T1|| = “A_a.

5. Conclusions

In this paper, making use of the technique of real analysis and the weight func-
tions, we build some useful lemmas and study a new Hilbert-type integral inequality
with the nonhomogeneous kernel as H (xv(y)) as well as the equivalent forms in The-
orem 1. A few equivalent statements related to the best possible constant factor and
parameters are provided in Theorem 2. As applications, we also consider the operator
expressions in Theorem 3 and several particular kernels in Example 1. Some corollaries
are also obtained. The lemmas and theorems provide an extensive account of this type
of inequalities.
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