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Abstract. Graphs possessing minimal dominating sets have potential applicability in computer
science & engineering. In a graph G , a dominating set L meeting N(x)∩L �= N(y)∩L for any
x,y ∈ V\L is known as a binary locating-dominating set. Minimizing the cardinality of such a
set in G would be called the binary location-domination number γl−d(G) of G . This paper con-
siders regular and strongly-regular graphs to study their binary location-domination and global
binary location-domination numbers. Being an NP-complete problem, it is natural to study this
parameter for special families of graphs having combinatorial and geometrical importance. Exact
values of γl−d(G) have been evaluated for complete graphs, cycles, complete bipartite graphs
and the generalized Petersen graphs P(n,2) , n � 4 and P(n,4),

(
5 � n ≡ 0 (mod 3)

)
. Cer-

tain tight upper and lower bounds are shown for the path graphs, generalized Petersen graph
P(n,4),

(
5 � n ≡ 1,2 (mod 3)

)
, prism graphs and two infinite families of strongly regular

graphs known as the triangular graphs and the square grid graphs. Moreover, an integer linear
programming (ILP) model has been employed via CPLEX solver to show tightness in the upper
bounds. By studying the binary locating-dominating sets in the complements of some of the
above families, we also study their global location-domination number. Some open problems
which naturally arise from the study have been proposed at the end.

1. Introduction

We refer the interested readers to the book by Henning et al. [8] which provides,
till 1980, a brief overview of the results regarding domination in graphs. Haynes et al.
[9] considered trees for their total domination & the binary location-domination num-
bers. Minimum � -locating-dominating as well as � -identifying sets/codes in chains &
cyclic graphs have been constructed by Charon et al. [5]. Sharp upper & lower bounds
on the minimality of � -locating-dominating sets for general graph were also found.
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Further reading on these contemporary domination related parameters can be studied in
[14, 15].

Salter [22] & Seo et al. [18, 19] introduced the concepts of the open-neighborhood
location-domination number and the fault-tolerant location-domination number respec-
tively and derived results on these parameters for trees. Location-domination number
for certain classes of convex polytopes was investigated recently by Raza et al. [17] &
Simić et al. [20]. They found its exact values for some families of convex polytopes
and tight upper bounds were found for other families. The reader is suggested to read
[12, 15, 21, 23] for more details on these domination related graph-theoretic param-
eters. Generalized Petersen graphs are of prime importance in graph theory and they
provide counter examples to many graph-theoretic conjectures. They were considered
by a number of researchers in [6, 25, 26, 29, 30, 31] for their parameters related to
domination in graphs.

Decision problems for the complexities of binary locating-dominating sets as well
as identifying codes have been shown [3, 4] to be NP-hard. On the other hand, Charon
et al. [3] showed that the existence of � -locating-dominating as well as � -identifying
sets/codes for an arbitrary graph is an NP-complete problem. A comprehensive list of
articles on the binary locating-dominating/identifying sets/codes have been maintained
by Lobstein [16]. A related problem of finding minimum locating sets in metacyclic &
Cayley graphs have been investigated by Abas & Vetrik [1].

This paper considers regular graphs to study their minimal binary locating-domi-
nating and global binary locating-dominating sets. In Section 2, we define some nec-
essary terminologies and deliver preliminary results which are to be used in the sub-
sequent sections. A modified ILP model for evaluating the binary location-domination
number of an arbitrary graph is delivered in Section 3. The binary location-domination
number and its version for classical families of complete multipartite graphs, paths,
cycles has been studied in Section 4. Section 5 considers P(n,k) , where k = 1,2,4
i.e. the generalized Petersen graphs, to study their binary location-domination & global
binary location-domination numbers. The same problems for two infinite families of
strongly regular graphs have been studied in Section 6. Two constructions are presented
to find upper bounds on binary location-domination number and their tightness of the
triangular and square grid graphs. We finish the paper by raising certain open problems
which naturally arise from our research.

2. Preliminaries

Let G be a graph, with vertex set V (G) and edge set E(G) having no isolated
vertex. Denoted by x ∼ y (resp. x � y) for x,y ∈ V (G) , the vertices x and y are said
be adjacent (resp. non-adjacent). The open neighborhood of a vertex x ∈ V is N(x) =
{y∈V |(x,y) ∈ E} and the close neighborhood is N[x] = {y∈V |(x,y) ∈ E}∪{x} . The
degree of x is d(x) = |N(x)| . If the graph G is clear from the context, we simply write
V and E rather than V (G) and E(G) . A set L of vertices in a graph G is called a
dominating set of a graph G if every vertex in V\L is adjacent to some vertex in L .
The domination number, γ(G) , of G is the minimum cardinality of dominating set in
G . A dominating set of cardinality γ(G) is called a dominating code. A dominating
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set is called global if it is a dominating set of both G and its complement graph, G .
The minimum cardinality of a global dominating set of G is the global domination
number of G , denoted with γg(G) [13]. If T is a subset of V and x ∈V , we say that x
dominates T if T ⊆ N(x) .

An alternative way of investigating a dominating set is by allocating 1 (resp. 0) to
x ∈ L (resp. x ∈ V \L ). In this case, L is said to be a dominating set of G if for every
x ∈ V the sum of weights for closed neighborhoods is at least 1, i.e. |N[x]∩L| � 1.
A binary locating-dominating (BLD) set in a graph G is a dominating set L of G
such that for every two different vertices x,y ∈ V\L , we have N(x)∩L �= N(y)∩ L .
The minimum cardinality of an BLD set of G is called the binary location-domination
(BLD) number denoted by γl−d(G) . An LD set of cardinality γl−d(G) is called a binary
location-domination code. Note that we have γ(G) � γl−d(G) . The concept of the
binary location-domination number is also known as simply the LD number in graphs.
Location-domination number has been extensively studied among the currently existing
list of domination variants.

For a k -regular graph G , Slater [23] derived the following lower bound for γl−d(G) .

THEOREM 1. [23] For an n-vertex, k -regular graph, we have

γl−d(G) �
⌈

2n
k+3

⌉
.

Applying Salter’s lower bound (Theorem 1) on the complement of a regular graph,
we obtain the following result.

PROPOSITION 1. Let G be an n-vertex, k -regular graph. If G is the complement
of G, then

γl−d(G) �
⌈

2n
n− k+2

⌉
.

Proof. Note that G is an n -vertex regular graph with degree k = n− k−1. Thus,
applying Theorem 1 to G gets the required bound. �

If a set L ⊂ V (G) is simultaneously an LD set of both G and its complement G ,
then L is said to be a global LD set. The minimum order of such a set in G is known
as the global binary location-domination number λg(G) of G . An LD code C in G is
global if it is a global LD set, i.e. C is an LD set code of G and an LD set of G .

Hernando et al. [13] showed the following result.

PROPOSITION 2. [13] An LD set L is a global LD set if and only if there exists
no x ∈V \L such that element x dominates the set L .

By using the above proposition, one may show the following result.

PROPOSITION 3. If L is an LD set of a graph G, then L is a global LD set if and
only if L is a global dominating set.
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3. An integer linear programming (ILP) formulation

This section delivers an ILP formulation for evaluating the LD number for an
arbitrary graph, due to Simić et al. [20]. This ILP model is used in the subsequent
sections by means of CPLEX solver.

An ILP model for the problem of minimality of identifying codes was put forward
by Bange et al. [2]. For G = (V,E) , let v� (resp. P ⊂ V ) be the decision variables
(resp. identifying set) such that the following holds:

v� =
{

1, � ∈ P;
0, � /∈ P.

The proposed ILP by Bange et al. [2] proceeds as follows:

min ∑
�∈V

v� (1)

following the subjective constraints

∑
p∈N[�]

vp � 1, � ∈V (2)

∑
p∈(N[�]∇N[k])

vp � 1, �,k ∈V, � �= k (3)

v� ∈ {0,1}, � ∈V (4)

The symbol ∇ denotes the symmetric difference of two sets. The minimality of an
identifying set in the aforementioned formulation is ensured by the objective function
(1). Constraints (2 (resp. (3)) represent a dominating set P (resp. identifying feature).
The binary nature of v� i.e. deciding variables is ensured by constraint (4).

In what follows, we modify the above ILP formulation for the problem of the LD
number. This purpose is delivered by transforming constraint (3) to the following:

v� + vk + ∑
p∈(N(�)∇N(k))

vp � 1, �,k ∈V, � �= k (5)

If the vertices � � k i.e. N[�]∇N[k] = {�, p}∪ (
N(�)∇N(k)

)
, then constraints

(3) & (5) are exactly similar. This implies that the changes between (3) & (5) appear
only when � � k i.e. � ∈ N(k) . Thus, constraint (5) ensures that P must contain
at least one of � , k or some p ∈ (N(�)∇N(k)) . So, in case when � � k , we have
N[�]∇N[k] = {�, p}∪ (

N(�)∇N(k)
)

and that (3) & (5) are exactly similar.
Let λ (x,y) be the set of common neighbors of both x,y ∈V . A result by Sweigart

et al. [24] that for vertices x,y ∈ V at distance at least 3, we have λ (x,y) = φ . Thus,
we are not required to assess N(x)∩L �= N(y)∩L for equivalence. It also allows us to
lessen the required constraints which an LD set requirement delivers. This also happens
to be computationally significant for graphs on large number of vertices. Employment
of this idea improves (5) as follows:

v� + vk + ∑
p∈(N(�)∇N(k))

vp � 1, �,k ∈V, d(�,k) � 2, � �= k (6)
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It is worth noticing that the ILP model with reduced constraints assists us in calcu-
lating the exact values for the binary location-domination problem for small graphs. For
large dimension problems, metaheuristic approaches [7] could be employed in order to
transform the problem and obtain optimal solutions.

4. Classical graph families

In this section, we focus on calculating the LD number of some basic structures
such as the path graphs, the cycle graphs, and the complete multipartite graphs. We
would like to add that these results might be known to researchers in this area as they
provide the base for the binary location-domination number. However, they are not
explicitly available in the literature, thereby, we are providing proofs for these results
so that are readily available for the reader.

4.1. Complete multipartite graphs

A bipartite graph is called complete bipartite, if any vertex in one color class is
adjacent to all the vertices in the other color class and vice versa. It is denoted as Kp,q ,
where p and q are the cardinalities of the two partite sets. The next result finds the
exact value of γl−d(Kp,q) .

PROPOSITION 4. Let Kp,q be the complete bipartite graph, where p,q � 3 . Then
γl−d(Kp,q) = p+q−2 .

Proof. Let (X ,Y ) be the bipartition of the vertex set of Kp,q such that |X |= p and
|Y | = q . Note that the induced subgraphs on X and Y are the empty graphs Kp and Kq

respectively. Let x ∈ X and y ∈ Y be the arbitrary vertices in X and Y respectively.
Note that the set L = X \ {x}⋃

Y \ {y} is an LD set of Kp,q as for both vertices x
and y , the sets L∩N[x] = Y \ {y} and L∩N[y] = X \ {x} are mutually disjoint. Since
|L| = p+q−2, we obtain that γl−d(Kp,q) � p+q−2.

Next, we prove the lower bound γl−d(Kp,q) � p+ q− 2. We will prove this by
showing that γl−d(Kp,q) can not be p+q−3. On contrary,we suppose that γl−d(Kp,q)=
p+q−3. This implies that there exists an LD set L of cardinality p+q−3. Let x, y
and z be the three vertices in V \L . We distinguish the following possible cases for the
vertices x,y and z :

Case 1: All the three vertices x, y and z belong to one partite set.
Without loss of generality, we assume that x, y and z belong to X . Note that

L∩N[x] = L∩N[y] = L∩N[z] = Y which arises contradiction to the fact any two such
intersections must be disjoint. This suggests us the following case:

Case 2: One of the x , y or z belongs to the partite set different from other two vertices.
Without loss of generality, we assume that x ∈ X and y,z ∈ Y . Then L∩N[y] =

L∩N[z] = X , which again arises a contradiction that L preserves as an LD set.
All in all, we obtain that L must contain exactly p + q− 2 vertices which com-

pletes the proof. �
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Rather having two partite sets in complete bipartite graphs, if we have three partite
sets, then we obtain the complete tripartite graphs. Next proposition computes the
binary location-domination number of the complete tripartite graphs.

PROPOSITION 5. Let Kp,q,r be the complete tripartite graph with 1 � p � q � r .
Then γl−d(Kp,q,r) = p+q+ r−3 .

Proof. Let (X ,Y,Z) be the tripartition of V (Kp,q,r) such that |X | = p, |Y | = q
and |Z| = r . For arbitrary vertices x ∈ X , y ∈ Y and z ∈ Z , let L = X \ {x}⋃

Y \
{y}⋃

Z\{z} . Note that L is a binary locating-dominating set of Kp,q,r since L
⋂

N[x] =
Y \{y}⋃

Z \{z} , L
⋂

N[y] = X \{x}⋃
Z \{z} and L

⋂
N[z] = X \{x}⋃

Y \{y} are non-
empty and mutually disjoint. Thus, we obtain that γl−d(Kp,q,r) � |L| = p+q+ r−3.

In order to complete the proof, we need to show that γl−d(Kp,q,r) � p+q+ r−3.
We show it by proving that γl−d(Kp,q,r) > p+q+ r−4. On contrary, we assume that
γl−d(Kp,q,r) = p+q+r−4. Thus there exists a binary locating-dominating set of order
four and let L be that set. Let V (Kp,q,r)\L = {w,x,y,z} . We distinguish the following
possible cases for the vertices w, x, y and z as follows:

Case 1: All w, x, y and z belong to one partite set.
Without loss of generality, we may assume that {w,x,y,z} ⊂ X . Assuming it

would generate L
⋂

N[w] = L
⋂

N[x] = L
⋂

N[y] = L
⋂

N[z] =Y
⋃

Z which arises a con-
tradiction to the fact that L is a binary locating-dominating set of Kp,q,r .

Case 2: All w, x, y and z belong to exactly two partite sets.

Subcase 2.1: One partite set is singleton.
Without loss of generality, we may assume that {w,x,y} ⊂ X and z ∈ Y . Then

same intersections L
⋂

N[w] = L
⋂

N[x] = L
⋂

N[y] = Z
⋃

Y \ {z} arise a contradiction
that L is a binary-locating dominating set.

Subcase 2.2: Both partite sets have cardinality 2.
Similar to the previous cases, without loss of generality, we may assume that

{w,x} ⊂ X and {y,z} ⊂ Y . In this case, we obtain that L
⋂

N[w] = L
⋂

N[x] = Z
⋃

Y \
{y,z} and L

⋂
N[y] = L

⋂
N[z] = Z

⋃
X \ {w,x} , which is a contradiction again.

Case 3: All w, x, y and z belong to exactly three partite sets.
Without loss of generality, we may assume that w ∈ X , x ∈ Y and {y,z} ∈ Z .

Assuming it would generate L
⋂

N[z] = X \ {w}⋃
Y \ {x} = L

⋂
N[y] . Thus, the two

intersections are not mutually disjoint which arises a contradiction.
Combining all the possible case, we obtain that L is not a binary locating-dominating

set of Kp,q,r . Since L was an arbitrary set of cardinality four, we obtain that γl−d(Kp,q,r)>
p+q+ r−4 � p+q+ r−3. This completes the proof. �

Next, we apply induction on the number of partite sets to calculate the binary
location-domination number of the complete r -partite graphs. This result has been
proven recently by Hayat et al. [10].
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THEOREM 2. Let Kt1,t2,...,tr be the complete r -partite graph with 1 � t1 � t2 �
. . . � tr and

r
∑
i=1

ti = n. Then

γl−d(Kt1,t2,...,tr) =
r

∑
i=1

ti − r. (7)

Proof. We prove the result by applying induction on r which is the number of
partite sets in Kt1,t2,...,tr . By Propositions 4 & 5, the result is true for r = 2 and r = 3
respectively. Now let the assertion of be valid for r = k as an induction step. We show
that the result is true for r = k+1 to complete the proof.

Let Ti (1 � i � r ) be the ith partite set of Kt1,t2,...,tr where |Ti| := ti . Since (2)
holds for r = k , we obtain that

γl−d(Kt1 ,t2,...,tk ) =
k

∑
i=1

ti − k. (8)

This implies that there exists a minimum binary locating-dominating set of cardinality
k
∑
i=1

ti − k in Kt1,t2,...,tk . Let L be the minimum binary locating-dominating set of cardi-

nality
k
∑
i=1

ti − k . in Kt1,t2,...,tk . Let U = {xi ∈ Ti : 1 � i � k} and L = V (Kt1,t2,...,tk)\U ,

then L comprises ti−1 elements from every Ti where 1 � i � r . Note that L is a binary
locating-dominating set of Kt1,t2,...,tk since L

⋂
N[xi] �= L

⋂
N[x j] for 1 � i < j � k and

L
⋂

N[xi] = L \Ti 1 � i � k . Moreover, L is minimum as the inclusion of more than
one vertices from any partite set Ti in L would arise a contradiction as the two vertices
from a same partite set would have the same intersections. Moreover, the minimality of
L follows from (8) as L is a binary locating-dominating set.

Now we add (k + 1) th partite set, say Tk+1 , to Kt1,t2,...,tk to obtain Kt1,t2,...,tk ,tk+1 .
For any x′ ∈ Tk+1 , let L′ = L

⋃{x′} . Note that L′ is a binary locating-dominating set
of Kt1,t2,...,tk+1 since L′⋂N[x′] �= L′ ⋂N[xi] for 1 � i � k and L′ ⋂N[x′] = L′ \ Tk+1 .

Moreover, L′ is minimum as L is minimum in Kt1,t2,...,tk . Since |L| = k+1
∑
i=1

ti − (k+ 1) ,

we obtain that

γl−d(Kt1,t2,...,tk+1) =
k+1

∑
i=1

ti − (k+1).

By applying the induction hypothesis on r , the proof is finished. �

As a corollary to Theorem 2, we have the following.

COROLLARY 1. Let Kn be the complete graph on n vertices, where n � 4 . Then
γl−d(Kn) = n−1 .
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4.2. Cycle graphs

This subsection studies the LD number and the global LD number of cycle graphs.
Note that a connected graph is called cycle if it is regular of degree two.

The following result evaluates the exact value of γl−d(Cn) .

THEOREM 3. Let Cn denote the n-vertex cycle graph having n � 3 . Then

γl−d(Cn) =
⌈

2n
5

⌉
.

Proof. Notice that Cn is an n -vertex 2-regular graph. By using Theorem 1, we
find the lower bound, i.e.

γl−d(Cn) �
⌈

2n
5

⌉
.

To prove the upper bound, we introduce L such that

L =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{y5k+3,y5k} | k = 0, . . . , �−1 n = 5�, n ≡ 0 (mod 5);
{y5�}⋃{y5k+3,y5k} | k = 0, . . . , �−1 n = 5�+1, n ≡ 1 (mod 5);
{y5�}⋃{y5k,y5k+3} | k = 0, . . . , �−1 n = 5�+2, n ≡ 2 (mod 5);
{y5�,y5�+2}⋃{y5k+3,y5k} | k = 0, . . . , �−1 n = 5�+3, n ≡ 3 (mod 5);
{y5k+3,y5k}⋃{y5�+3,y5�} | k = 0, . . . , �−1 n = 5�+4, n ≡ 4 (mod 5).

Here we prove that L is an LD set.

n x ∈V \L L∩N[x] x ∈V \L L∩N[x]
5� y5k+4 {y5(k+1),y5k+3} y5k+2 {y5k+3}

y5k+1 {y5k}
5�+1 y5k+4 {y5(k+1),y5k+3} y5k+2 {y5k+3}

y5k+1 {y5k}
5�+2 y5k+4 {y5k+3,y5(k+1)} y5�+1 {y0,y5�}

y5k+1 {y5k} y5k+2 {y5k+3}
5�+3 y5k+4 {y5(k+1),y5k+3} y5�+1 {y5�+2,y5�}

y5k+1 {y5k} y5k+2 {y5k+3}
5�+4 y5k+4 {y5(k+1),y5k+3

} y5�+1 {y5�}
y5�+2 {y5�+3} y5(�−1)+4 {y5�−2,y0}
y5k+1 {y5k} y5k+2 {y5k+3}

Table 1: Vertices in an LD set of Cn .

In Table 1, the vertices x ∈ V \ L and their corresponding L∩N[x] are shown.
Since all intersections are simultaneously disjoint & nonempty, this implies L to be
an LD set. Since |L| =

⌈ 2n
5

⌉
, we obtain that γl−d(Cn) �

⌈ 2n
5

⌉
. This completes the

proof. �
Now we proceed to the global version of the LD number of cycles. First, we prove

the following result on the LD number of the complements of the cycle graphs.
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PROPOSITION 6. Let Cn be the n-vertex cycle graph having n � 6 . Then

2 � γl−d(Cn) �
⌈

2n
5

⌉
.

Moreover, the upper bound is tight.

Proof. The lower bound follows from Proposition 1.
Now we show that the set L from the proof of Theorem 3 is also an LD set for

the complements of cycles Cn . By Proposition 2, we only need to show that L is a
dominating set of Cn . By Table 1 from the proof of Theorem 3, there does not exist any
vertex v ∈V \L , such that L∩N[v] = L . This means that for any v ∈V \L , there exists
at least one vertex u ∈ L , such u /∈ L∩N[v] . This implies that in the complement Cn ,
for every v ∈ V (Cn) \L we have L∩N[v] �= /0 . This shows that L is a dominating set
of Cn and thus by Proposition 2 L satisfies the property of being an LD set of Cn . This
shows the upper bound.

The ILP formulation with (1), (2), (4) and (6) is used in CLPEX solver to show
tightness. This, in turn, provides us with the following optimal solution for small cases:
γl−d

(
C6

)
= 3, γl−d

(
C7

)
= 3,. . . , γl−d

(
C15

)
= 6,. . . ,γl−d

(
C35

)
= 14. This shows the

tightness. �
By using the definition of the global LD code and then using Theorem 3 and Propo-

sition 6, we obtain the following result.

THEOREM 4. Let Cn denote n-vertex cycle graph having n � 3 . Then

λg(Cn) =
⌈

2n
5

⌉
.

Recently, Arockiaraj et al. [11] studied optimal wirelength of balanced complete
multipartite graphs onto cartesian product of path, cycle and trees. These results could
also be employed to study domination related parameters.

4.3. Path graphs

This subsection studies the problem of LD number and its global version for paths.
A path graph is obtained by deleting an edge from a cycle graph.

Now we consider the binary location-domination number of path graphs. A path
graph on n vertices is denoted by Pn , where n � 2. The following result provides an
upper bound for Pn .

THEOREM 5. Let Pn denote the n-vertex path graph having n � 5 . Then

γl−d(Pn) �
{⌈ 2n

5

⌉
+1, n ≡ 0 (mod 5);⌈

2n
5

⌉
, n ≡ 1,2,3,4 (mod 5).

Moreover, the upper bound is tight.
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Proof. Let L ⊂V (Pn) , where

L =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{y5�−1}⋃{y5k+3,y5k} | k = 0, . . . , �−1 n = 5�, n ≡ 0 (mod 5);
{y5�}⋃{y5k+3,y5k} | k = 0, . . . , �−1 n = 5�+1, n ≡ 1 (mod 5);
{y5�}⋃{y5k+3,y5k} | k = 0, . . . , �−1 n = 5�+2, n ≡ 2 (mod 5);
{y5�,y5�+2}⋃{y5k+3,y5k} | k = 0, . . . , �−1 n = 5�+3, n ≡ 3 (mod 5);
{y5�+3,y5�}⋃{y5k+3,y5k} | k = 0, . . . , �−1 n = 5�+4, n ≡ 4 (mod 5).

Here we prove that L is an LD set of Pn . Table 2 shows the vertices v ∈ V \
L and their corresponding intersections L∩N[v] . Note that, for a fixed � , any two
intersections are mutually disjoint as well as nonempty. This implies that L is an LD
set of Pn . Since

|L| =
{⌈ 2n

5

⌉
+1, n ≡ 0 (mod 5);⌈ 2n

5

⌉
, n ≡ 1,2,3,4 (mod 5).

This shows the upper bound.

n x ∈V \L L∩N[x] x ∈V \L L∩N[x]
5� y5k+4 (k < �−1) {y5(k+1),y5k+3} y5k+2 {y5k+3}

y5k+1 {y5k}
5�+1 y5k+4 {y5(k+1),y5k+3} y5k+2 {y5k+3}

y5k+1 {y5k}
5�+2 y5k+4 {y5(k+1),y5k+3} y5�+1 {y5�}

y5k+1 {y5k} y5k+2 {y5k+3}
5�+3 y5k+4 {y5(k+1),y5k+3} y5�+1 {y5�+2,y5�}

y5k+1 {y5k} y5k+2 {y5k+3}
5�+4 y5k+4 {y5(k+1),y5k+3} y5�+1 {y5�}

y5k+1 {y5k} y5k+2 {y5k+3}
y5�+2 {y5�+3}

Table 2: Locating-dominating vertices in the path graph Pn .

The ILP formulation with (1), (2), (4) and (6) is used in CLPEX solver to show
tightness. This, in turn, provides us with the following optimal solution for small cases:
γl−d

(
P5

)
= 3, γl−d

(
P6

)
= 3,. . . , γl−d

(
P15

)
= 7,. . . ,γl−d

(
P33

)
= 14. This shows the

tightness. �

5. Generalized Petersen graphs

Denoted by P(n,k) where n � 3 satisfying 1 � k �
⌊

n−1
2

⌋
, the vertex set of the

generalized Petersen graph is

V = {y0,y1, . . . ,yn−1,x0,x1, . . . ,xn−1}
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and an edge set

E = {yiyi+1,yixi,xixi+k | with indices taken as modulo n−1}.

Watkins [27] was the first researcher who introduced these combinatorially important
graphs. Recently, Rajasingh et al. [28] studied the circular wirelength of generalized
Petersen graphs. For k = 1, the generalized Petersen graph P(n,1) is called prism
graph, denoted by Dn .

5.1. Generalized Petersen graph P(n,2)

We consider the the problem of finding an LD set of generalized Petersen graph for
k = 2. For the sake of simplicity we call the cycle induced by {y0,y1, . . . ,yn−1} , outer
cycle and the cycle induced by {x0,x1, . . . ,xn−1} , inner cycle or cycles respectively. In
Figure 1, the generalized Petersen graphs P(5,2) and P(6,2) are depicted.

(a) (b)

Figure 1: (a): The generalized Petersen graph P(5,2) , (b): The generalized Petersen graph
P(6,2) .

The following theorem exhibits the exact value of γl−d(G) , where G = P(n,2) .

THEOREM 6. Let G be a generalized Petersen graph P(n,2) , where n � 3 . Then

γl−d(G) =
⌈

2n
3

⌉
.

Proof. Since G is a 3-regular graph, by Theorem 1, we obtain

γl−d(G) �
⌈

2n
3

⌉
.
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Let

L =

⎧⎪⎨
⎪⎩

{x3k,y3k+1} | k = 0, . . . , �−1 n = 3�, n ≡ 0 (mod 3);
{x3k,y3k+1}⋃{x3�} | k = 0, . . . , �−1 n = 3�+1, n ≡ 1 (mod 3);
{x3k+1,y3k}

⋃{x3�+1,y3�} | k = 0, . . . , �−1 n = 3�+2, n ≡ 2 (mod 3);

n x ∈V \L L∩N[x] x ∈V \L L∩N[x]
3� x3k+1 {x3(k+1),y3k+1} x3k+2 {x3k}

y3k {x3k,y3k+1} y3k+2 {y3k+1}
3�+1 x3k+1 {x3(k+1),y3k+1} x3k+2 {x3(k−1)+3}

y3k {x3k,y3k+1} y3k+2 {y3k+1}
y3� {x3�}

3�+2 x0 {y0} y3�+1 {x3�+1,y0,y3�}
x3(k+1) {x3k+1,y3(k+1)} x3k+2 {x3k+4}
y3k+1 {y3k,x3k+1} y3k+2 {y3(k+1)}

Table 3: Vertices belonging to an LD set in P(n,2) .

By Table 3, it is observed that L does satisfy to be an LD set. Note that |L|= ⌈ 2n
3

⌉
.

This implies that γl−d(G) �
⌈ 2n

3

⌉
. This shows the theorem. �

Next, we study the global LD number of the generalized Petersen graphs P(n,2) .
First, we show the following result on the LD number of the complement of P(n,2) .

PROPOSITION 7. Let G be generalized Petersen graph P(n,2) , where n � 5 .
Then

4 � γl−d(G) �
⌈

2n
3

⌉
.

Moreover, the upper bound is tight.

Proof. The lower bound follows from Proposition 1.
Now we show that the set L from the proof of Theorem 6 for G is also an LD

set for the complements of G . By Proposition 2, we only need to show that L is a
dominating set of G . By Table 3 from the proof of Theorem 6, there does not exist any
vertex v ∈V \L , such that L∩N[v] = L . This means that for any v ∈V \L , there exists
at least one vertex u ∈ L , such u /∈ L∩N[v] . This implies that in the complement G ,
for every v ∈ V (G) \L we have L∩N[v] �= /0 . This shows that L is a dominating set
of G and thus by Proposition 2 L is also a binary locating-dominating set of G . This
shows the upper bound.

The ILP formulation with (1), (2), (4) and (6) is used in CLPEX solver to show
tightness. This, in turn, provides us with the following optimal solution for small cases:
γl−d

(
P(5,2)

)
= 4, γl−d

(
P(6,2)

)
= 4,. . . , γl−d

(
P(11,2)

)
= 8,. . . ,γl−d

(
P(28,2)

)
= 19.

This shows the tightness. �
By using the definition of the global LD code and then using Theorem 6 and Propo-

sition 7, we obtain the following result.
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THEOREM 7. Let G be the generalized Petersen graph P(n,2) , where n � 5 .
Then

λg(G) =
⌈

2n
3

⌉
.

5.2. Generalized Petersen graph P(n,4)

In this subsection, we consider the problem of finding the LD number of general-
ized Petersen graphs P(n,4) . For the sake of simplicity we call the cycle induced by
{y0,y1, . . . ,yn−1} , outer cycle and the cycle induced by {x0,x1, . . . ,xn−1} , inner cycle
or cycles respectively. In Figure 2, the generalized Petersen graphs P(9,4) and P(10,4)
are depicted.

(a) (b)

Figure 2: (a): The generalized Petersen graph P(9,4) , (b): The generalized Petersen graph
P(10,4) .

In the following theorem, we present the LD number of P(n,4) .

THEOREM 8. Let G be a generalized Petersen graph P(n,4) , where n � 12 .
Then

⌈2n
3

⌉
� γl−d(G)

⎧⎪⎨
⎪⎩

=
⌈

2n
3

⌉
, n ≡ 0 (mod 3);

�
⌈ 2n

3

⌉
+2, n ≡ 1 (mod 3);

�
⌈

2n
3

⌉
+1, n ≡ 2 (mod 3).

Moreover, the upper bounds are tight.

Proof. Note that generalized Petersen graph P(n,4) is a regular graph of degree

3, with 2n vertices. By Theorem 1, we obtain γl−d(G) �
⌈ 2(2n)

3+3

⌉
=

⌈
2n
3

⌉
. Let
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L =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{y6i,y6i+3,x6i+1,x6i+4}⋃{y6(�−1),y6(�−1)+3,
x6(�−1)+1,x6�−2} | i = 0, . . . , �−2},

n = 6�, n ≡ 0 (mod 6);
{y6i,y6i+3,x6i+1,x6i+4}⋃{y6(�−1),y6�−3,y6�−1,
x6(�−1)+1,x6(�−1)+2,x6�−2,x6�−1} | i = 0, . . . , �−2},

n = 6�+1, n ≡ 1 (mod 6);
{y6i+1,y6i+4,x6i,x6i+3}⋃{y6(�−1)+1,y6�−2,y6�,
x6(�−1),x6(�−1)+3,x6�−1,x6�} | i = 0, . . . , �−2},

n = 6�+2, n ≡ 2 (mod 6);
{y6i,y6i+3,x6i+1,x6i+4}⋃{y6(�−1),y6�−3,y6�,
x6(�−1)+1,x6�−2,x6�+1} | i = 0, . . . , �−2},

n = 6�+3, n ≡ 3 (mod 6);
{y6i,y6i+3,x6i+1,x6i+4}⋃{y6(�−1),y6�−3,y6�,
y6�+3,x6(�−1)+1,x6�−2,x6�,x6�+1,x6�+2} | i = 0, . . . , �−2},

n = 6�+4, n ≡ 4 (mod 6);
{y6i,y6i+3,x6i+1,x6i+4}⋃{y6(�−1),y6�−3,y6�,
y6�+3,x6(�−1)+1,x6�−2,x6�+1,x6�+3,x6�+4} | i = 0, . . . , �−2},

n = 6�+5, n ≡ 5 (mod 6);

The following cases are distinguished to prove L to be an LD set.

Case 1: When n ≡ 0 (mod 6) .
Table 4 presents the required intersections for vertices in V \L . It can be observed

that all the intersections are simultaneously disjoint and nonempty. Thus, we get x,y ∈
V \L , it is satisfied that L

⋂
N[x] �= L

⋂
N[y] �= /0 . Thus, L meets the requirements to an

LD set.

Case 2: When n ≡ 1 (mod 6) .
Employing the same reasoning as we have in Case 1 and since the intersections in

Table 4 are disjoint and nonempty, we obtain that L is an LD set.

Case 3: When n ≡ 2 (mod 6) .
By using the same reasoning as in previous two cases and Table 4, we find that L

is an LD set, if n ≡ 2 (mod 6) .
The cases when n ≡ 3,4,5 (mod 6) are exactly similar to the previous cases.
Note that

|L| =

⎧⎪⎨
⎪⎩

⌈ 2n
3

⌉
, n ≡ 0 (mod 3);⌈ 2n

3

⌉
+2, n ≡ 1 (mod 3);⌈

2n
3

⌉
+1, n ≡ 2 (mod 3).

This shows the upper bound.
The ILP formulation with (1), (2), (4) and (6) is used in CLPEX solver to show

tightness. This, in turn, provides us with the following optimal solution for small cases:
γl−d

(
P(13,4)

)
= 11, γl−d

(
P(14,4)

)
= 11,. . . , γl−d

(
P(22,4)

)
= 17,. . . ,γl−d

(
P(35,4)

)
= 25. This shows the tightness. �
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n x ∈V \L L∩N[x] x ∈V \L L∩N[x]
6� y6i+1 {y6i,x6i+1} y6i+2 {y6i+3}

y6i+4 {y6i+3,x6i+4} y6i+5 {y6(i+1)}
x6i {y6i,x6i+4} x6i+2 {x6(i−1)+4}

x6i+3 {y6i+3,x6i+7} x6i+5 {x6i+1}
y6(�−1)+1 {y6(�−1),x6(�−1)+1} y6(�−1)+4 {y6(�−1)+3,x6(�−1)+4}

y6�−1 {y0} y6(�−1)+2 {y6(�−1)+3}
x6(�−1) {y6(�−1),x6�−2} x6(�−1)+2 {x6(�−1)−2}
x6�−3 {y6�−3,x1} x6�−1 {x6(�−1)+1}

6�+1 y6i+1 {y6i,x6i+1} y6i+2 {y6i+3}
y6i+4 {y6i+3,x6i+4} y6i+5 {y6(i+1)}
x6i {y6i,x6i+4} x6i+2 {x6(i−1)+4}

x6i+3 {y6i+3,x6i+7} x6i+5 {x6i+1}
y6(�−1)+1 {y6(�−1),x6(�−1)+1} y6(�−1)+2 {y6�−3,x6(�−1)+2}

y6� {y6�−1,y0} y6�−2 {y6�−3,y6�−1,x6�−2}
x6(�−1) {y6(�−1),x6�−2} x6�−3 {y6�−3}

x6� {x6(�−1)+2}
6�+2 y6i {y6i+1,x6i} y6i+2 {y6i+1}

y6i+3 {y6i+4,x6i+3} y6i+5 {y6i+4}
x6i+1 {y6i+1,x6(i−1)+3} x6i+2 {x6(i+1)}
x6i+4 {y6i+4,x6(i−1)+6} x6i+5 {y6i+9}

y6(�−1) {y6(�−1)+1,x6(�−1)} y6(�−1)+2 {y6(�−1)+1}
y6(�−1)+3 {y6(�−1)+4,x6(�−1)+3} y6�−1 {y6�−2,y6�,x6�−1}

y6�+1 {y6�} x6�−4 {x6�}
x6�−2 {y6�−2,x6(�−1) ,x0} x6�+1 {x6�−3,x3}

x6(�−1)+1 {y6(�−1)+1,x6(�−2)+3,x6�−1}
6�+3 y6i+1 {y6i,x6i+1} y6i+2 {y6i+3}

y6i+4 {y6i+3,x6i+4} y6i+5 {y6(i+1)}
x6i {y6i,x6i+4} x6i+2 {x6(i−1)+4}

x6i+3 {y6i+3,x6i+7} x6i+5 {x6i+1}
y6(�−1)+1 {y6(�−1),x6(�−1)+1} y6�−4 {y6�−3}

y6�−2 {y6�−3,x6�−2} y6�−1 {y6�}
y6�+1 {y6�,x6�+1} y6�+2 {y0}
x6�−3 {y6�−3,x6�+1} x6�−1 {x6(�−1)+1}
x6� {y6�,x1} x6�+2 {x6�−2}

x6(�−1) {y6(�−1),x6�−2}
6�+4 y6i+1 {y6i,x6i+1} y6i+2 {y6i+3}

y6i+4 {y6i+3,x6i+4} y6i+5 {y6(i+1)}
x6i {y6i,x6i+4} x6i+3 {y6i+3,x6i+7}

x6i+5 {x6i+1} x6i+2 {x6(i−1)+4}
y6(�−1)+1 {y6(�−1),x6(�−1)+1} y6(�−1)+2 {y6(�−1)+3}

y6�−2 {y6�−3,x6�−2} y6�−1 {y6�}
y6�+1 {y6�,x6�+1} y6�+2 {y6�+3,x6�+2}
x6(�−1) {y6(�−1),x6�−2} x6(�−1)+2 {x6�}
x6�−3 {y6�−3,x6�+1} x6�−1 {x6(�−1)+1}
x6�+3 {y6�+3}

6�+5 y6i+1 {y6i,x6i+1} y6i+2 {y6i+3}
y6i+4 {y6i+3,x6i+4} y6i+5 {y6(i+1)}
x6i {y6i,x6i+4} x6i+2 {x6(i−1)+4}

x6i+3 {y6i+3,x6i+7} x6i+5 {x6i+1}
y6(�−1)+1 {y6(�−1),x6(�−1)+1} y6(�−1)+2 {y6(�−1)+3}

y6�−2 {y6�−3,x6�−2} y6�−1 {y6�}
y6�+1 {y6�,x6�+1} y6�+2 {y6�+3}
y6�+4 {y6�+3,x6�+4,y0} x6(�−1) {y6(�−1),x6�−2}

x6(�−1)+2 {x6(�−1)−2} x6�−3 {y6�−3,x6�+1}
x6�−1 {x6�+3,x6(�−1)+1} x6� {y6�,x6�+4}
x6�+2 {x6�−2,x1}

Table 4: Vertices belonging to an LD set in P(n,4) .
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Next, we study the global LD number of the generalized Petersen graphs P(n,4) .
First, we show the following result on the LD number of the complement of P(n,4) .

PROPOSITION 8. Let G be a generalized Petersen graph P(n,4) , where n � 12 .
Then

4 � γl−d(G)

⎧⎪⎨
⎪⎩

=
⌈

2n
3

⌉
, n ≡ 0 (mod 3);

�
⌈ 2n

3

⌉
+2, n ≡ 1 (mod 3);

�
⌈

2n
3

⌉
+1, n ≡ 2 (mod 3).

Moreover, the upper bounds are tight.

Proof. The lower bound follows from Proposition 1.
Now we show that the set L from the proof of Theorem 8 for G is also an LD set

of G . By Proposition 2, we only need to show that L is a dominating set of G . By
Table 4 from the proof of Theorem 8, there does not exist any vertex v∈V \L , such that
L∩N[v] = L . This means that for any v ∈V \L , there exists at least one vertex u ∈ L ,
such u /∈ L∩N[v] . This implies that in the complement G , for every v ∈ V (G)\L we
have L∩N[v] �= /0 . This shows that L is a dominating set of G and thus by Proposition
2 L is also a binary locating-dominating set of G . This shows the upper bound.

The ILP formulation with (1), (2), (4) and (6) is used in CLPEX solver to show
tightness. This, in turn, provides us with the following optimal solution for small cases:
γl−d

(
P(5,2)

)
= 5, γl−d

(
P(6,2)

)
= 4,. . . , γl−d

(
P(11,2)

)
= 9,. . . ,γl−d

(
P(28,2)

)
= 20.

This shows the tightness. �

By using the definition of the global LD code and then using Theorem 8 and Propo-
sition 8, we obtain the following result.

THEOREM 9. Let G be the generalized Petersen graph P(n,4) , where n � 12 .
Then

λg(G)

⎧⎪⎨
⎪⎩

=
⌈ 2n

3

⌉
, n ≡ 0 (mod 3);

�
⌈

2n
3

⌉
+2, n ≡ 1 (mod 3);

�
⌈ 2n

3

⌉
+1, n ≡ 2 (mod 3).

5.3. Prism graphs

This subsection studies the problems of LD and its global version for the general-
ized Petersen graph P(n,1) , also known as the prism graphs.

A general prism is a polyhedron possessing two congruent polygonal faces and
with all remaining faces parallelograms. A prism is a graph corresponding to the skele-
ton of an n -prism. An n -prism graph has 2n nodes and 3n edges, and is equivalent
to the generalized Petersen graph P(n,1) . Figure 3 shows the prism graph P(7,1) and
P(8,1) are shown.

The following result exhibits a lower bound and a tight upper bound on γl−d(G) ,
where G = P(n,1) .
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(a) (b)

Figure 3: (a): The generalized Petersen graph P(7,1) , (b): The generalized Petersen graph
P(8,1) .

THEOREM 10. Let G be the prism graph P(n,1) , where n � 15 . Then

⌈2n
3

⌉
� γl−d(G) �

{⌈
4n
5

⌉
+1, n ≡ 0,1,2,3 (mod 5);⌈ 4n

5

⌉
, n ≡ 4 (mod 5).

Moreover, the upper bound is tight.

Proof. Firstly, we see that G is a regular graph of degree 3, with 2n vertices.

Then by Theorem 1, we obtain γl−d(G) �
⌈

2(2n)
3+3

⌉
=

⌈
2n
3

⌉
.

Next, we show the upper bound. Let

L =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{y5i,y5i+3,x5i,x5i+3}⋃
{y5(�−1),y5�−2,x5(�−1),x5�−3,x5�−1} | i = 0, . . . , �−2

n ≡ 0 (mod 5), n = 5�;
{y5i,y5i+3,x5i,x5i+3}⋃
{y5(�−1),y5�−2,y5�,x5(�−1),x5�−3,x5�−1} | i = 0, . . . , �−2

n ≡ 1 (mod 5), n = 5�+1;
{y5i,y5i+3,x5i,x5i+3}⋃
{y5(�−1),y5�−2,y5�,x5(�−1),x5�−3,x5�−1,x5�+1} | i = 0, . . . , �−2

n ≡ 2 (mod 5), n = 5�+2;
{y5i,y5i+3,x5i,x5i+3}⋃
{y5(�−1),y5�−2,y5�,y5�+2,x5(�−1),x5�−3,x5�−1,x5�+2} | i = 0, . . . , �−2

n ≡ 3 (mod 5), n = 5�+3;
{y5i,y5i+3,x5i,x5i+3}⋃
{y5(�−1),y5�−2,y5�,y5�+3,x5(�−1),x5�−3,x5�−1,x5�+2} | i = 0, . . . , �−2

n ≡ 4 (mod 5), n = 5�+4.
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Here we prove L to be an LD set. Note that Table 5 shows the LD vertices in
P(n,1) . By distinguishing the cases as we have done in Theorem 5 for the case of path
graphs and using Table 5, it follows that L is an LD set. Note that

|L| =
{⌈ 4n

5

⌉
+1, n ≡ 0,1,2,3 (mod 5);⌈

4n
5

⌉
, n ≡ 4 (mod 5).

This shows the upper bound.
The ILP formulation with (1), (2), (4) and (6) is used in CLPEX solver to show

tightness. This, in turn, provides us with the following optimal solution for small cases:
γl−d

(
P(15,1)

)
= 13, γl−d

(
P(16,1)

)
= 14,. . . , γl−d

(
P(23,1)

)
= 20,. . . ,γl−d

(
P(50,1)

)
= 41. This shows the tightness. �

6. Strongly regular graphs

Let G be a connected k -regular graphs on n vertices. Then G is said to strongly
regular, if any two distinct pairs of adjacent (resp. non-adjacent) vertices in G has
λ (resp. μ ) common neighbors. A graph of this kind with parameter n, k, λ and
μ is written as srg(n,k,λ ,μ ). Trivially, the regular complete multipartite graphs are
strongly regular. Other non-trivial examples include the cycle of length 5 with pa-
rameters srg(5,2,0,1) and the generalized Petersen graph P(5,2) (see Section 5) with
parameters srg(10,3,0,1).

Strongly regular graphs have interesting algebraic and combinatorial properties.
For example, their adjacency matrix has always three distinct eigenvalues and they are
characterized by this property. Also, they are contained in more general combinatorial
and geometric structure such as association schemes and partial geometries.

6.1. Triangular graphs

In this section, we study the LD number of an important infinite family of strongly
regular graphs known as the triangular graphs.

An m-dimensional triangular graph Tm is the line graph of the complete graph
Km . The vertices of Tm may be identified with the 2-subsets of {1,2, . . . ,m} that are
adjacent if and only if the 2-subsets have a nonempty intersection. It is a special class of
so-called Johnson graphs J(m,n) with n = 2. The triangular graph Tm is a strongly reg-

ular graph with parameters srg
( m(m−1)

2 ,2(m−2),m−2,4
)
. For the sake of simplicity,

we label an arbitrary vertex of Tm by yi
(
i = 0,1,2, . . . , m(m−1)

2 −1
)
.

The following theorem is the main result of this subsection.

THEOREM 11. Let Tm , where m � 9 be the triangular graph of dimension m.
Then ⌈

m(m−1)
2m−1

⌉
� γl−d(Tm) � m−2.

Moreover, the upper bound is tight.
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n x ∈V \L L∩N[x] x ∈V \L L∩N[x]
5� y5i+1 {y5i} y5i+2 {y5i+3}

y5i+4 {y5i+3,y5(i+1)} x5i+1 {x5i}
x5i+2 {x5i+3} x5i+4 {x5i+3,x5(i+1)}

y5(�−1)+1 {y5(�−1)} y5�−3 {y5�−2,x5�−3}
y5�−1 {y5�−2,x5�−1,y0} x5(�−1)+1 {x5(�−1),x5�−3}
x5�−2 {x5�−3,y5�−2,x5�−1}

5�+1 y5i+1 {y5i} y5i+2 {y5i+3}
y5i+4 {y5i+3,y5(i+1)} x5i+1 {x5i}
x5i+2 {x5i+3} x5i+4 {x5i+3,x5(i+1)}

y5(�−1)+1 {y5(�−1)} y5�−3 {y5�−2,x5�−3}
y5�−1 {y5�−2,x5�−1,y5�} x5(�−1)+1 {x5(�−1),x5�−3}
x5�−2 {x5�−3,y5�−2,x5�−1} x5� {x5�−1,y5�−1,x0}

5�+2 y5i+1 {y5i} y5i+2 {y5i+3}
y5i+4 {y5i+3,y5(i+1)} x5i+1 {x5i}
x5i+2 {x5i+3} x5i+4 {x5i+3,x5(i+1)}

y5(�−1)+1 {y5(�−1)} y5�−3 {y5�−2,x5�−3}
y5�−1 {y5�−2,x5�−1,y5�} y5�+1 {y5�,x5�+1,x0}

x5(�−1)+1 {x5(�−1),x5�−3} x5�−2 {x5�−3,y5�−2,x5�−1}
x5� {x5�−1,y5�,x5�+1}

5�+3 y5i+1 {y5i} y5i+2 {y5i+3}
y5i+4 {y5i+3,y5(i+1)} x5i+1 {x5i}
x5i+2 {x5i+3} x5i+4 {x5i+3,x5(i+1)}

y5(�−1)+1 {y5(�−1)} y5�−3 {y5�−2,x5�−3}
y5�−1 {y5�−2,x5�−1,y5�} y5�+1 {y5�,x5�+1,y5�+2}

x5(�−1)+1 {x5(�−1),x5�−3} x5�−2 {x5�−3,y5�−2,x5�−1}
x5� {x5�−1,y5�} x5�+1 {x5�+2}

5�+4 y5i+1 {y5i} y5i+2 {y5i+3}
y5i+4 {y5i+3,y5(i+1)} x5i+1 {x5i}
x5i+2 {x5i+3} x5i+4 {x5i+3,x5(i+1)}

y5(�−1)+1 {y5(�−1)} y5�−3 {y5�−2,x5�−3}
y5�−1 {y5�−2,x5�−1,y5�} y5�+1 {y5�}
y5�+2 {y5�+3,x5�+2} x5(�−1)+1 {x5(�−1),x5�−3}
x5�−2 {x5�−3,y5�−2,x5�−1} x5� {x5�−1,y5�}
x5�+1 {x5�+2} x5�+3 {x5�+2,y5�+3,x0}

Table 5: Vertices belonging to an LD set in P(n,1) .

Proof. Note that Tm is (2m−4)-regular graph on m(m−1)
2 number of vertices. The

lower bound follows directly from Theorem 1. For the upper bound, we define

L =
m−2⋃
i=1

yα , where α =
(i−1)(2m− i)

2
.
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For instance, for n = 8 and n = 9, the above formula generates L = {y0,y7,y13,y18,
y22,y25} and L = {y0,y8,y15,y21,y26,y30,y33} respectively. Now we focus on showing
L to be an LD set.

x ∈V \L L∩N[x]
ym−2 {y0}
ym(m−1)

2 −1

{
ym(m−1)

2 −3

}
ym−3

{
y0,ym(m−1)

2 −3

}
yα , where
α = (i−2)m− (1

2 i2 − 3
2 i+2

)
,

i � m and i = 4,5,6 . . .

{
yα1 ,yα2

}
, where

α1 = (i−4)m− (1
2 i2 − 7

2 i+6
)

and
α2 = (i−3)m− (

1
2 i2 − 5

2 i+3
)

yα , where
α = (i−2)m− (

i2
2 − 3

2 i+3
)
,

i � m−1 and i = 4,5,6, . . .

{
yα1 ,yα2 ,ym(m−1)

2 −3

}
, where

α1 = (i−4)m− (
i2
2 − 7

2 i+6
)

and

α2 = (i−3)m− (
i2
2 − 5

2 i+3
)

yi−4, where i � m and i = 5,6,7, . . .

{
y0,yα1 ,yα2

}
, where

α1 = (i−4)m− (
i2
2 − 7

2 i+6
)

and

α2 = (i−3)m− (
i2
2 − 5

2 i+3
)

yα , where

α = ( j−5)m+ i− ( j2

2 − 7
2 j +9

)
,

j � m, j = 6,7,8, . . ., i � m and
i = j, j +1, j +2, . . .

{
yα1 ,yα2 ,yα3 ,yα4

}
, where

α1 = ( j − 6)m− ( j2

2 − 11
2 j + 15

)
,

α2 = ( j − 5)m − ( j2

2 − 9
2 j + 10

)
,

α3 = (i−4)m− (
i2
2 − 7

2 i+6
)

and

α4 = (i−3)m− (
i2
2 − 5

2 j +3
)

Table 6: Vertices belonging to an LD set in Tm .

n x ∈V \L L∩N[x] x ∈V \L L∩N[x]
8 y1 {y0,y7,y13} y2 {y0,y13,y18}

y3 {y0,y18,y22} y4 {y0,y22,y25}
y5 {y0,y25} y6 {y0}
y8 {y0,y7,y13,y18} y9 {y0,y7,y18,y22}
y10 {y0,y7,y22,y25} y11 {y0,y7,y25}
y12 {y0,y7} y14 {y7,y13,y18,y22}
y15 {y7,y13,y22,y25} y16 {y7,y13,y25}
y17 {y7,y13} y19 {y13,y18,y22,y25}
y20 {y13,y18,y25} y21 {y13,y18}
y23 {y18,y22,y25} y24 {y18,y22}
y26 {y22,y25} y27 {y25}

Table 7: Vertices belonging to an LD set in T8 .

Table 6 depicts the vertices x ∈ V \ L and their corresponding intersections L∩
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n x ∈V \L L∩N[x] x ∈V \L L∩N[x]
9 y1 {y0,y8,y15} y2 {y0,y15,y21}

y3 {y0,y21,y26} y4 {y0,y26,y30}
y5 {y0,y30,y33} y6 {y0,y33}
y7 {y0} y9 {y0,y8,y15,y21}
y10 {y0,y8,y21,y26} y11 {y0,y8,y26,y30}
y12 {y0,y8,y30,y33} y13 {y0,y8,y33}
y14 {y0,y8} y16 {y8,y15,y21,y26}
y17 {y8,y15,y26,y30} y18 {y8,y15,y30,y33}
y19 {y8,y15,y33} y20 {y8,y15}
y22 {y15,y21,y26,y30} y23 {y15,y21,y30,y33}
y24 {y15,y21,y33} y25 {y15,y21}
y27 {y21,y26,y30,y33} y28 {y21,y26,y33}
y29 {y21,y26} y31 {y26,y30,y33}
y32 {y26,y30} y34 {y30,y33}
y35 {y33}

Table 8: Vertices belonging to an LD set in T9 .

N[x] . Note that, for any fixed m , all the intersections are nonempty and mutually dis-
tinct. For instance, for m = 7 and m = 8, Table 6 generates Tables 7 and 8 respec-
tively. Notice that the intersections are not empty and for any x,y ∈ V \ L , we have
L∩N[x] �= L∩N[y] . This shows that L is an LD set of Tm .

Note that |L| = m− 2, therefore, we obtain that γl−d(Tm) � m− 2. The ILP for-
mulation with (1), (2), (4) and (6) is used in CLPEX solver to show tightness. This, in
turn, provides us with the following optimal solution for small cases: γl−d

(
T10

)
= 8,. . . ,

γl−d
(
T15

)
= 13,. . . , γl−d

(
T33

)
= 31, . . . ,γl−d

(
T50

)
= 48. This shows the tightness. �

Next, we study the global LD number of the triangular graph Tm . First, we show
the following result on the LD number of the complement of Tm .

PROPOSITION 9. Let G be a triangular graph Tm , where m � 9 . Then⌈
m(m−1)

m(m−3)+6

⌉
� γl−d

(
G

)
� m−2.

Moreover, the upper bounds are tight.

Proof. The lower bound follows from Proposition 1.
Now we show that the set L from the proof of Theorem 11 for G is also an LD

set for the complements of G . By Proposition 2, we only need to show that L is a
dominating set of G . By Table 6 from the proof of Theorem 11, there does not exist
any vertex x ∈ V \L , such that L∩N[x] = L . This means that for any x ∈ V \L , there
exists at least one vertex y ∈ L , such y /∈ L∩N[x] . This implies that in the complement
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G , for every x ∈V (G)\L we have L∩N[x] �= /0 . This shows that L is a dominating set
of G and thus by Proposition 2 L is an LD. This shows the upper bound.

The ILP formulation with (1), (2), (4) and (6) is used in CLPEX solver to show
tightness. This, in turn, provides us with the following optimal solution for small cases:
γl−d

(
T10

)
= 8,. . . , γl−d

(
T15

)
= 13,. . . , γl−d

(
T33

)
= 31,. . . ,γl−d

(
T50

)
= 48. This shows

the tightness. �

By using the definition of the global LD code and then using Theorem 11 and
Proposition 9, we get:

THEOREM 12. Assume G is an m-dimensional triangular graph Tm , where m �
9 . Then

λg(G) � m−2.

6.2. Square grid graphs

This section studies the binary location-domination number of another important
infinite family of strongly regular graphs known as the square grid graphs or the lat-
tice square graphs. They are constructed by taking the Cartesian product of two com-
plete graphs with same sizes. The (n×n )-grid graph is strong regular with parameters
srg(n2,2n−2,n−2,2). We denote by S(n) the (n×n )-grid graph. Note that the Ham-
ming graph H(d,q) is the Cartesian product of d -copies of the complete graph Kq .
Since we have considered H(2,q) which is a subfamily of the general Hamming graph,
it is standard to call it the square grid graph.

The following result exhibits the tight upper & lower bound on the LD number for
S(n) .

THEOREM 13. For square grid graphs S(n) , where n � 14 , we have

n � γl−d
(
S(n)

)
�

⌈
3n−4

2

⌉
.

Moreover, the upper bound is tight.

Proof. By Theorem 1, we obtain

γl−d
(
S(n)

)
�

⌈
2n2

2n+1

⌉
,

� n, as lim
n→∞

(
1
n

)
= 0.

This shows the lower bound.
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Let xi, j be the vertex of S(n) in ith row and jth column. Assume

L1 = {x1,1;x1,5;x2,9;x3,2;x3,4;x4,3;x4,8;x5,6;x5,7;x7,11;x8,10},
L2 =

⋃
12�i�n−1

{xi,i},

L′
3 =

⋃
i≡0 (mod 2)
12�i�n−1

{xi,i+1},

L′′
3 =

⋃
i≡0 (mod 2)
12�i�n−2

{xi,i+1},

where,

L3 =
{

L′
3, if n � 2

L′′
3 , if n | 2.

Let L =
⋃3

i=1 Li such that L ⊂ V (S(n)) . For n � 14, L = L1 ∪ L2 ∪ L3 where
Li (i = 1,2,3) is chosen accordingly.

Now we prove L to be an LD set. By looking at the defining structure of S(n) , we
can see that for any vertex xm,n ∈V \L , we have

N[xm,n]∩L = Lm,∗ ∪L∗,n.

Note that, at least one of the two sets Lm,∗ and L∗,n is non-empty. This shows that any
such intersection is not empty. Let xm,n,xp,q ∈V \L where m �= p and n �= q . Then

N[xm,n]∩L �= N[xp,q]∩L,

because Lmn ∩Lpq = 0, where Lmn = Lm,∗ ∪L∗,n and Lpq = Lp,∗ ∪ L∗,q . This shows
that any two such intersections are distinct implying that L is an LD set. Note that
|L| = n+

⌈
n−4
2

⌉
=

⌈ 3n−4
2

⌉
. Thus we have γl−d

(
S(n)

)
�

⌈ 3n−4
2

⌉
.

The ILP formulation with (1), (2), (4) and (6) is used in CLPEX solver to show
tightness. This, in turn, provides us with the following optimal solution for small
cases: γl−d

(
S(11)

)
= 15, γl−d

(
S(12)

)
= 16, γl−d

(
S(13)

)
= 18,. . . , γl−d

(
S(20)

)
=

28,. . . ,γl−d
(
S(33)

)
= 48, . . . ,γl−d

(
S(50)

)
= 73. This shows the tightness. �

Next, we study the global LD number of the square grid graphs S(n) . First, we
show the following result on the LD number of S(n) .

PROPOSITION 10. Let G be a n-dimensional square grid graphs S(n) , where
n � 11 . Then ⌈

2n2

n2−2n+4

⌉
� γl−d

(
G

)
�

⌈
3n−4

2

⌉
.

Moreover, the upper bounds are tight.

Proof. The lower bound follows from Proposition 1.
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Now we show that the set L from the proof of Theorem 13 for G is also an LD
set for the complements of G . By Proposition 2, we only need to show that L is a
dominating set of G . By Table 6 from the proof of Theorem 13, there does not exist
any vertex x ∈ V \L , such that L∩N[x] = L . This means that for any x ∈ V \L , there
exists at least one vertex y ∈ L , such y /∈ L∩N[x] . This implies that in the complement
G , for every x ∈V (G)\L we have L∩N[x] �= /0 . This shows that L is a dominating set
of G and thus by Proposition 2 L is also an LD set. This shows the upper bound.

The ILP formulation with (1), (2), (4) and (6) is used in CLPEX solver to show
tightness. This, in turn, provides us with the following optimal solution for small
cases: γl−d

(
S(11)

)
= 15, γl−d

(
S(12)

)
= 16, γl−d

(
S(13)

)
= 18,. . . , γl−d

(
S(20)

)
=

28,. . . ,γl−d
(
S(33)

)
= 48, . . . ,γl−d

(
S(50)

)
= 73. This shows the tightness. �

By using the definition of the global LD code and then using Theorem 13 and
Proposition 10, we obtain the following result.

THEOREM 14. Let G be the square grid graphs S(n) , where n � 11 . Then

λg(G) �
⌈

3n−4
2

⌉
.

7. Conclusion

7.1. Contributions

In this paper, we study the binary location-domination number of graphs. In par-
ticular, the following are the main contributions of this paper:

• Exact values of the binary location-domination number of the complete multipar-
tite graphs and cycle graphs were computed, whereas, an upper bound was given
for the path graphs.

• Exact values for the generalized Petersen graphs P(n,2),n � 4 and P(n,4),
(
5 �

n ≡ 0 (mod 3)
)

were also proven.

• Certain upper & lower bounds for the prism graph, the generalized Petersen graph
P(n,4),

(
5 � n≡ 0 (mod 3)

)
and two infinite families of strongly-regular graphs

were provided.

• Using a modified ILP model, tightness in the obtained upper bounds was shown.

• By studying the binary locating-dominating sets in the complements of all these
families, the global binary location-domination number was also studied.

7.2. Implications

The following are some direct implications of this study:

• The results contribute towards a broader domination theory of graphs.
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• Constructions in this paper contribute in developing new proof techniques.

• Using CPLEX solver to prove tightness of bounds is novel.

• The results might have strong industrial applications in coding theory and, in
general, computer science.

7.3. Limitations

Although, there are no direct limitation of the study. However, the methods have
limitations in finding tight lower bounds on the binary location-domination number of
non-regular graphs.

7.4. Future study

Based on the study conducted in this paper, we believe that the following conjec-
tures are true:

CONJECTURE 1. Let Pn denote the n-vertex path graph satisfying n � 5 . Then

γl−d(Pn) =
{⌈

2n
5

⌉
+1, n ≡ 0 (mod 5);⌈ 2n

5

⌉
, n ≡ 1,2,3,4 (mod 5).

CONJECTURE 2. Let Pn denote the n-vertex path graph satisfying n � 5 . Then

γl−d(Pn) �
{⌈

2n
5

⌉
, n ≡ 0,1,2,4 (mod 5);⌈

2n
5

⌉−1, n ≡ 3 (mod 5).

Moreover, the upper bound is tight.

CONJECTURE 3. Let G be a generalized Petersen graph P(n,4) and n � 5 , then

γl−d(G) =

⎧⎨
⎩

⌈ 2n
3

⌉
, n ≡ 0 (mod 3);⌈

2n
3

⌉
+2, n ≡ 1 (mod 3);⌈

2n
3

⌉
+1, n ≡ 2 (mod 3).

We also raise the following open problems:

PROBLEM 1. (i) Study the LD number of the generalized Petersen graphs P(n,k) ,
with k = 3 or k � 5 .

(ii) Study the LD number of the circulant graphs.

(iii) Find the LD number of the triangular and square grid graphs.

(iv) Study the LD number of other families of strongly regular graphs such as the
Paley graphs and the Johnson graph J(n,2) etc.

Acknowledgements. The authors are indebted to the anonymous reviewer for sug-
gesting improvements to the initial submission of the paper.
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