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Abstract. In this paper, we establish the general solution of the following functional inequality

‖2 f (x)+2 f (y)+2 f (z)− f (x+ y)− f (y+ z)‖ � ‖ f (x+ z)‖,
and then investigate the generalized Hyers-Ulam stability of this inequality in Banach spaces and
in non-Archimedean Banach spaces by using two different approaches.

1. Introduction

The study of stability problems for functional equations is related to a question of
Ulam [36] concerning the stability of group homomorphisms. A functional equation is
called stable if any approximate solution to the functional equation is near a true solu-
tion of that functional equation. Hyers [15] gave a first affirmative partial answer to the
question of Ulam for Banach spaces. Subsequently, Hyers’ result was generalized by
Aoki [3] and Bourgin [4] for additive mappings and by Rassias [32] for linear mappings
by considering the Cauchy difference operator CDf (x,y) = f (x+ y)− [ f (x)+ f (y)] to
controlled by ε(‖x‖p + ‖y‖p) (ε > 0, p ∈ [0,1)) . Gajda [9] answered the question
for the case p > 1, which was raised by Rassias. This new concept is known as gen-
eralized Hyers-Ulam stability or Hyers-Ulam-Rassias stability of functional equations.
In 1994, a generalization of the Rassias’ theorem was obtained by Găvruţă [10] who
permitted the Cauchy difference to become arbitrarily unbounded. Moslehian and Ras-
sias [23] investigated the Hyers-Ulam stability of the Cauchy functional equation and
the quadratic functional equation in non-Archimedean normed space. Later, the sta-
bility results of various functional equations in non-Archimedean normed spaces have
been studied in [13, 14, 22, 24, 25]. During the last decades, the stability of several
functional equations has been extensively studied and generalized by a number of au-
thors, and there has been many interesting and applicable results obtained concerning
this problem (see [1, 2, 6, 16, 17, 18, 19, 20, 21, 26, 29, 30, 31, 33, 35] and references
therein).
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Gilányi [11] and Rätz [34] showed that if f satisfies the functional inequality

‖2 f (x)+2 f (y)− f (xy−1)‖ � ‖ f (xy)‖, (1.1)

then f satisfies the Jordan-Von Neumann functional equation

2 f (x)+2 f (y) = f (xy)+ f (xy−1). (1.2)

Fechner [8] and Gilányi [12] considered the functional inequality (1.1) and proved the
generalized Hyers-Ulam stability of this inequality. Park et al. [27] investigated the
generalized Hyers-Ulam stability of functional inequalities associated with Jordon-Von
Neumann type additive functional equations. In 2008, Park et al. [28] studied the A-
linear mapping associated with the following functional inequality

‖2 f (x)+2 f (y)+2 f (z)− f (x+ y)− f (y+ z)‖� ‖ f (x+ z)‖ (1.3)

in Banach modules over a C∗ -algebra, and then proved the generalized Hyers-Ulam sta-
bility of A-linear mappings (1.3) in Banach A-modules associated with the functional
inequality (1.3) when f is an odd mapping. Furthermore, they applied these results
to investigate homomorphisms in complex Banach algebras and prove the generalized
Hyers-Ulam stability of homomorphisms in complex Banach algebras.

The main purpose of this paper is to determine the general solution of the func-
tional inequality (1.3), and then prove the generalized Hyers-Ulam stability of the func-
tional inequality (1.3) in Banach spaces and in non-Archimedean spaces by employing
the fixed point and direct methods.

2. Stability of (1.3): Fixed point method

In this section, assume that X is a normed space and Y is a Banach space. We will
prove the generalized Hyers-Ulam stability of the functional inequality (1.3) in Banach
spaces by using the fixed point method. First, we give the definition of a generalized
metric on a set E . A function d : E ×E → [0,∞] is called a generalized metric on E if
d satisfies the following:

(1) d(x,y) = 0 if and only if x = y ;
(2) d(x,y) = d(y,x), ∀x,y ∈ E ;
(3) d(x,z) � d(x,y)+d(y,z), ∀x,y,z ∈ E .
In [7], Diaz and Margolis constructed a method using a fixed point theory, which

is extensively applied to the stability theory of functional equations.

LEMMA 2.1. ([7]). Let (E,d) be a complete generalized metric space. Further
let J : E → E be a strictly contractive mapping with Lipschitz constant L < 1 . Then
for each fixed element x ∈ E , either

d(Jnx, Jn+1x) = ∞

for all nonnegative integers n or there exists a positive integer n0 such that
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(i) d(Jnx,Jn+1x) < ∞, ∀n � n0 ;
(ii) the sequence {Jnx} is convergent to a fixed point y∗ of J ;
(iii) y∗ is the unique fixed point of J in the set E∗ := {y ∈ E | d(Jn0x,y) < +∞} ;
(iv) d(y,y∗) � 1

1−L d(y,Jy), ∀y ∈ E∗ .

Now, we present the general solution of the functional inequality (1.3) in real
vector spaces.

LEMMA 2.2. Let V and W be real vector spaces. Let f : V →W be a mapping
such that

‖2 f (x)+2 f (y)+2 f (z)− f (x+ y)− f (y+ z)‖� ‖ f (x+ z)‖ (2.1)

for all x,y,z ∈V . Then the mapping f is Cauchy additive.

Proof. Putting x = y = z = 0 in (2.1) yields ‖4 f (0)‖ � ‖ f (0)‖ . So, f (0) = 0.
Letting y = 0 and z = −x in (2.1), we obtain

‖ f (x)+ f (−x)‖ � ‖ f (0)‖ = 0 (2.2)

for all x ∈V . It imply that f (−x) = − f (x) for all x ∈ V . Letting z = −x in (2.1), we
get

‖2 f (y)− f (y+ x)− f (y− x)‖� ‖ f (0)‖ = 0, (2.3)

which yields f (y+ x)+ f (y− x) = 2 f (y) for all x,y ∈V . And we infer that

f (x+ y) = f (x)+ f (y) (2.4)

for all x,y ∈V . Thus the mapping f is additive. �

THEOREM 2.1. Let ϕ : X3 → [0,∞) be a function such that there exists an 0 <
L < 1 with

ϕ(2x,2y,2z) � 2Lϕ(x,y,z)(
ϕ

( x
2
,
y
2
,
z
2

)
� L

2
ϕ(x,y,z),resp.

) (2.5)

for all x,y,z ∈ X . Suppose that f : X → Y is a mapping with f (0) = 0 and satisfying
the functional inequality

‖2 f (x)+2 f (y)+2 f (z)− f (x+ y)− f (y+ z)‖� ‖ f (x+ z)‖+ ϕ(x,y,z) (2.6)

for all x,y,z ∈ X . Then there exists a unique additive mapping A : X → Y such that

‖ f (x)−A(x)‖ � 1
2(1−L)

{ϕ(x,x,−x)+2ϕ(x,0,−x)}
(
‖ f (x)−A(x)‖ � L

2(1−L)
{ϕ(x,x,−x)+2ϕ(x,0,−x)},resp.

) (2.7)

for all x ∈ X .
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Proof. Letting y = x and z = −x in (2.6), we get

‖4 f (x)+2 f (−x)− f (2x)‖� ϕ(x,x,−x) (2.8)

for all x ∈ X . Putting y = 0 and z = −x in (2.6), we have

‖ f (x)+ f (−x)‖ � ϕ(x,0,−x) (2.9)

for all x ∈ X . It follows from (2.8) and (2.9) that

‖2 f (x)− f (2x)‖ � ϕ(x,x,−x)+2ϕ(x,0,−x) :≡ Φ(x) (2.10)

and so ∥∥∥∥ f (x)− f (2x)
2

∥∥∥∥ � 1
2

Φ(x) (2.11)

for all x ∈ X .
Consider the set S := {g| g : X → Y,g(0) = 0} , and introduce a generalized metric

d on S as follows:

d(g,h) := inf

{
δ ∈ R+

∣∣∣∣‖g(x)−h(x)‖ � δΦ(x),∀x ∈ X

}
.

It is easy to prove that (S,d) is a complete generalized metric space (cf. [5]). Now we
define the mapping J : S → S given by

J g(x) :=
1
2
g(2x), for all g ∈ S and x ∈ X . (2.12)

Let g,h ∈ S and let δ ∈ R+ be an arbitrary constant with d(g,h) � δ . From the
definition of d , we obtain

‖g(x)−h(x)‖� δΦ(x)

for all x ∈ X . Hence

‖J g(x)−J h(x)‖ � δ
2

Φ(2x) � δLΦ(x). (2.13)

for some L < 1 and for all x ∈ X . Hence, it holds that d(J g,J h) � δL , that is,
d(J g,J h) � Ld(g,h) for all g,h ∈ S .

It follows from (2.11) that d( f ,J f ) � 1
2 holds. Hence, by Lemma 2.1, the se-

quence J n f converges to a fixed point A of J , that is,

A : X → Y, lim
n→∞

1
2n f (2nx) = A(x)

and

A(2x) = 2A(x) (2.14)
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for all x ∈ X . And the mapping A is the unique fixed point of J in the set S∗ = {g ∈
S : d( f ,g) < ∞} . This implies that A is a unique mapping satisfying (2.14) such that
there exists a δ ∈ R+ such that

‖ f (x)−A(x)‖ � δΦ(x)

for all x ∈ X . Hence, we have

d( f ,A) � 1
1−L

d( f ,J f ) � 1
2(1−L)

.

This means that the inequality (2.7) holds.
Next, we verify that the mapping A is additive. It follows from (2.5) and (2.6) that

‖2A(x)+2A(y)+2A(z)− f (x+ y)− f (y+ z)‖
= lim

n→∞

1
2n ‖2 f (2nx)+2 f (2ny)+2 f (2nz)

− f (2n(x+ y))− f (2n(y+ z))‖
� lim

n→∞

1
2n ‖ f (2n(x+ z))‖+ lim

n→∞

1
2n ϕ(2nx,2ny,2nz)

� lim
n→∞

1
2n ‖ f (2n(x+ z))‖+ lim

n→∞
Lnϕ(x,y,z)

= ‖A(x+ z)‖ (2.15)

for all x,y,z ∈ X . Thus, by Lemma 2.2, the mapping A : X →Y is additive, as desired.
This completes the proof. �

COROLLARY 2.1. Let θ � 0 be a real number and r be a positive real number
with r �= 1 . If a mapping f : X → Y with f (0) = 0 satisfies the inequality

‖2 f (x)+2 f (y)+2 f (z)− f (x+ y)− f (y+ z)‖
� ‖ f (x+ z)‖+ θ (‖x‖r +‖y‖r +‖z‖r) (2.16)

for all x,y,z ∈ X , then there exists a unique additive mapping A : X → Y such that

‖ f (x)−A(x)‖ � 7θ
|2−2r| ‖x‖

r (2.17)

for all x ∈ X .

Proof. The proof follows from Theorem2.1 by taking ϕ(x,y,z) = θ (‖x‖r +‖y‖r +
‖z‖r) for all x,y,z ∈ X . Then we can choose L = 2r−1 or L = 21−r , and we get the
desired result. �
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3. Stability of (1.3): Direct method

In this section, we suppose that X is a normed space and Y is a Banach space. We
will investigate the generalized Hyers-Ulam stability of the functional inequality (1.3)
in Banach spaces by using the direct method.

THEOREM 3.1. Let ϕ : X3 → [0,∞) be a function such that

∞

∑
j=0

1
2 j ϕ(2 jx,2 jy,2 jz) < ∞,

( ∞

∑
j=1

2 jϕ
( x

2 j ,
y
2 j ,

z
2 j

)
< ∞,resp.

) (3.1)

for all x,y,z ∈ X . Suppose that a mapping f : X → Y with f (0) = 0 satisfies the
inequality

‖2 f (x)+2 f (y)+2 f (z)− f (x+ y)− f (y+ z)‖� ‖ f (x+ z)‖+ ϕ(x,y,z) (3.2)

for all x,y,z ∈ X . Then there exists a unique additive mapping A : X → Y such that

‖ f (x)−A(x)‖ � 1
2

∞

∑
j=0

1
2 j {ϕ(2 jx,2 jx,−2 jx)+2ϕ(2 jx,0,−2 jx)},

(
‖ f (x)−A(x)‖ � 1

2

∞

∑
j=1

2 j
{

ϕ
( x

2 j ,
x
2 j ,−

x
2 j

)
+2ϕ

( x
2 j ,0,− x

2 j

)}
,resp.

) (3.3)

for all x ∈ X .

Proof. According to (2.10), we obtain

‖ f (x)− f (2x)
2

‖ � 1
2
{ϕ(x,x,−x)+2ϕ(x,0,−x)} (3.4)

for all x ∈ X . Then, It follows from (3.4) that for all nonnegative integers n and m with
n > m

∥∥∥∥ f (2mx)
2m − f (2nx)

2n

∥∥∥∥ �
n−1

∑
j=m

1
2 j

∥∥∥∥ f (2 jx)− f (2 j+1x)
2

∥∥∥∥
� 1

2

n−1

∑
j=m

1
2 j {ϕ(2 jx,2 jx,−2 jx)+2ϕ(2 jx,0,−2 jx)} (3.5)

for all x ∈ X . It means that the sequence { f (2nx)
2n } is a Cauchy sequence for all x ∈

X . Since Y is complete, it follows from that the sequence { f (2nx)
2n } converges in Y .

Therefore, one can define a mapping A : X → Y by A(x) := lim
n→∞

f (2nx)
2n for all x ∈ X .

Moreover, letting m = 0 and taking the limit n → ∞ in (3.5), we get the approximation
(3.3) of f by A , as desired.
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Next, we claim that the mapping A : X → Y is additive. In fact, it follows from
(3.1) and (3.2) that

‖2A(x)+2A(y)+2A(z)−A(x+ y)− f (y+ z)‖
= lim

n→∞

1
2n ‖2 f (2nx)+2 f (2ny)+2 f (2nz)

− f (2n(x+ y))− f (2n(y+ z))‖
� lim

n→∞

1
2n ‖ f (2n(x+ z))‖+ lim

n→∞

1
2n ϕ(2nx,2ny,2nz)

= ‖A(x+ z)‖. (3.6)

Thus, the mapping A : X → Y is additive by Lemma 2.2.
Finally, we show that the uniqueness of A . Let A′ : X → Y is another additive

mapping satisfying (3.3). Then, we obtain

‖A(x)−A′(x)‖ =
1
2n ‖A(2nx)−A′(2nx)‖

� 1
2n (‖A(2nx)− f (2nx)‖+‖A′(2nx)− f (2nx)‖)

�
∞

∑
j=0

1
2 j+n {ϕ(2 j+nx,2 j+nx,−2 j+nx)+2ϕ(2 j+nx,0,−2 j+nx)}

=
∞

∑
j=n

1
2 j {ϕ(2 jx,2 jx,−2 jx)+2ϕ(2 jx,0,−2 jx)} (3.7)

which tends to zero as n → ∞ for all x ∈ X . Hence A(x) = A′(x) for all x ∈ X . This
completes the proof of the theorem. �

COROLLARY 3.1. Let θi � 0 be a real number and ri be a positive real numbers
with ri < 1 or ri > 1 for all i = 1,2,3 . If a mapping f : X →Y with f (0) = 0 satisfies
the inequality

‖2 f (x)+2 f (y)+2 f (z)− f (x+ y)− f (y+ z)‖
� ‖ f (x+ z)‖+ θ1‖x‖r1 + θ2‖y‖r2 + θ3‖z‖r3 (3.8)

for all x,y,z ∈ X , then there exists a unique additive mapping A : X → Y such that

‖ f (x)−A(x)‖ � 3θ1

|2−2r1| ‖x‖
r1 +

θ2

|2−2r2| ‖x‖
r2 +

3θ3

|2−2r3| ‖x‖
r3 (3.9)

for all x ∈ X .

4. Stability of (1.3) in non-Archimedean spaces: Fixed point method

In this section, we will prove the stability of the functional inequality (1.3) in non-
Archimedean Banach spaces by using the fixed point method. Now, we first recall some
basic facts concerning non-Archimedean Banach space and some preliminary results.
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By a non-Archimedean field we mean a field K equipped with a function (valu-
ation) | · | from K into [0,∞) such that |r| = 0 if and only if r = 0, |rs| = |r||s| , and
|r + s| � max{|r|, |s|} for r,s ∈ K . Clearly |1| = |−1| = 1 and |n| � 1 for all n ∈ N .
By the trivial valuation we mean the function | · | taking everything but 0 into 1 and
|0|= 0 (i.e., the function | · | is called the trivial valuation if |r| = 1,∀r ∈ K,r �= 0, and
|0| = 0).

DEFINITION 4.1. ([13, 23]). Let X be a vector space over a scalar field K with
a non-Archimedean non-trivial valuation | · | . A function ‖ · ‖ : X → R is called a
non-Archimedean norm (valuation) if it satisfies the following conditions:

(i) ‖x‖ = 0 if and only if x = 0;
(ii) ‖rx‖ = |r|‖x‖ for all r ∈ K and x ∈ X ;
(iii) The strong triangle inequality; namely,

‖x+ y‖� max{‖x‖,‖y‖}
for all x,y ∈ X .

Then (X ,‖ · ‖) is called a non-Archimedean normed space.

Due to the fact that

‖xn− xm‖ � max{‖x j+1− x j‖ : m � j � n−1}, (n > m),

a sequence {xn} is Cauchy if and only if {xn+1 − xn} converges to zero in a non-
Archimedean normed space. By a complete non-Archimedean normed space we mean
one in which every Cauchy sequence is convergent.

From now on, unless otherwise stated, we suppose that X is a non-Archimedean
normed space and that Y is a non-Archimedean Banach space.

THEOREM 4.1. Let ϕ : X3 → [0,∞) be a function such that there exists an 0 <
L < 1 with

ϕ(2x,2y,2z) � |2|Lϕ(x,y,z)(
ϕ

( x
2
,
y
2
,
z
2

)
� L

|2|ϕ(x,y,z),resp.
) (4.1)

for all x,y,z ∈ X . Suppose that f : X → Y is a mapping with f (0) = 0 and satisfying
the functional inequality

‖2 f (x)+2 f (y)+2 f (z)− f (x+ y)− f (y+ z)‖� ‖ f (x+ z)‖+ ϕ(x,y,z) (4.2)

for all x,y,z ∈ X . Then there exists a unique additive mapping A : X → Y such that

‖ f (x)−A(x)‖ � 1
|2|(1−L)

Φ(x)

(
‖ f (x)−A(x)‖ � L

|2|(1−L)
Φ(x),resp.

) (4.3)

for all x ∈ X , where Φ(x) := max{ϕ(x,x,−x), |2|ϕ(x,0,−x)} for all x ∈ X .
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Proof. It follows from (2.8) and (2.9) that

‖ f (2x)−2 f (x)‖ � max{‖4 f (x)+2 f (−x)− f (2x)‖, |2|‖ f (x)+ f (−x)‖}
� max{ϕ(x,x,−x), |2|ϕ(x,0,−x)‖} :≡ Φ(x) (4.4)

for all x ∈ X . Therefore, we get

‖ f (x)− 1
2

f (2x)‖ � 1
|2|Φ(x) (4.5)

for all x∈X . Applying the similar argument to the corresponding proof of Theorem 2.1
on the complete generalized metric space (S,d) , we obtain the desired result. �

COROLLARY 4.1. Let θ � 0 be a real number and r be a positive real number
with r �= 1 . If a mapping f : X → Y with f (0) = 0 satisfies the inequality

‖2 f (x)+2 f (y)+2 f (z)− f (x+ y)− f (y+ z)‖
� ‖ f (x+ z)‖+ θ (‖x‖r +‖y‖r +‖z‖r) (4.6)

for all x,y,z ∈ X , then there exists a unique additive mapping A : X → Y such that

‖ f (x)−A(x)‖ � max{3,2|2|}
||2|− |2|r| θ‖x‖r (4.7)

for all x ∈ X .

5. Stability of (1.3) in non-Archimedean spaces: Direct method

In this section, we will prove the stability of the functional inequality (1.3) in non-
Archimedean Banach spaces by the direct method.

THEOREM 5.1. Let ϕ : X3 → [0,∞) be a function such that

lim
n→∞

1
|2|n ϕ(2nx,2ny,2nz) = 0,

(
lim
n→∞

|2|nϕ
( x

2n ,
y
2n ,

z
2n

)
= 0,resp.

) (5.1)

for all x,y ∈ X and the limit

ϕ̃(x) = lim
n→∞

max

{
1
|2|k Φ(2kx) : 0 � k < n

}
,

(
ϕ̃(x) = lim

n→∞
max

{
|2|kΦ

( x
2k

)
: 1 � k < n+1

}
,resp.

) (5.2)

exists for all x ∈ X , where

Φ(x) := max{ϕ(x,x,−x), |2|ϕ(x,0,−x)} (5.3)
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for all x ∈ X . Suppose that f : X → Y is a mapping with f (0) = 0 and satisfying the
functional inequality

‖2 f (x)+2 f (y)+2 f (z)− f (x+ y)− f (y+ z)‖� ‖ f (x+ z)‖+ ϕ(x,y,z) (5.4)

for all x,y,z ∈ X . Then there exists an additive mapping A : X → Y such that

‖ f (x)−A(x)‖ � 1
|2| ϕ̃(x) (5.5)

for all x ∈ X . Moreover, if

lim
i→∞

lim
n→∞

max

{
1
|2|k Φ(2kx) : i � k < n+ i

}
= 0,

(
lim
i→∞

lim
n→∞

max

{
|2|kΦ(

x
2k ) : i+1 � k < n+ i+1

}
= 0,resp.

) (5.6)

for all x,y ∈ X , then A is the unique additive mapping satisfying (5.5).

Proof. Replacing x by 2nx and dividing the both sides of (4.5) by |2|n , we obtain
∥∥∥∥ f (2n+1x)

2n+1 − f (2nx)
2n

∥∥∥∥ � 1
|2|

1
|2|n Φ(2nx) (5.7)

for all x ∈ X . It follows from (5.1) and (5.7) that the sequence { f (2nx)
2n } is Cauchy for

all x ∈ X . Since Y is the non-Archimedean Banach space, we conclude that { f (2nx)
2n }

is convergent. Hence, we can define a mapping A : X → Y as

A(x) = lim
n→∞

f (2nx)
2n

for all x ∈ X .
Using induction one can show that

∥∥∥∥ f (x)− f (2nx)
2n

∥∥∥∥ � 1
|2| max

{
1
|2|k Φ(2kx) : 0 � k < n

}
(5.8)

for all n ∈ N and all x ∈ X . By taking n to approach infinity in (5.8) and using (5.2)
one obtain (5.5). By (5.1) and (5.4), we get

‖2A(x)+2A(y)+2A(z)− f (x+ y)− f (y+ z)‖
= lim

n→∞

1
|2|n ‖2 f (2nx)+2 f (2ny)+2 f (2nz)

− f (2n(x+ y))− f (2n(y+ z))‖
� lim

n→∞

1
|2|n ‖ f (2n(x+ z))‖+ lim

n→∞

1
|2|n ϕ(2nx,2ny,2nz)

= ‖A(x+ z)‖ (5.9)
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for all x,y,z ∈ X . Thus, by Lemma 2.2, the mapping A : X → Y is additive. To prove
the uniqueness property of A , let A′ be another additive mapping satisfying (5.5). Then

‖A(x)−A′(x)‖ = lim
i→∞

|2|−i‖A(2ix)−A′(2ix)‖
� lim

i→∞
|2|−i max{‖A(2ix)− f (2ix)‖,‖ f (2ix)−A′(2ix)‖}

� 1
|2| lim

i→∞
lim
n→∞

max

{
Φ(2kx)
|2|k : i � k < n+ i

}

= 0

for all x ∈ X . Therefore, we have A = A′ , and the proof is complete. �

COROLLARY 5.1. Let ρ : [0,∞) → [0,∞) be function satisfying
(i) ρ(|2|t) � ρ(|2|)ρ(t) for all t � 0 ,
(ii) ρ(|2|) � |2|λ , where λ is a fixed real number in λ ∈ [1,∞) .
Let δ > 0 , and let f : X → Y be a mapping with f (0) = 0 and satisfying the

functional inequality

‖2 f (x)+2 f (y)+2 f (z)− f (x+ y)− f (y+ z)‖
� ‖ f (x+ z)‖+ δ [ρ(‖x‖)+ ρ(‖y‖)+ρ(‖z‖)] (5.10)

for all x,y,z ∈ X . Then there exists a unique additive mapping A : X → Y such that

‖ f (x)−A(x)‖ � 1
|2| max{3,2|2|}δρ(‖x‖) (5.11)

for all x ∈ X .

Proof. Defining ϕ : X3 → [0,∞) by

ϕ(x,y) := δ [ρ(‖x‖)+ ρ(‖y‖)+ ρ(‖z‖)].

Since |2|−1ρ(|2|) < |2|λ−1 � 1, we have

lim
n→∞

ϕ(2nx,2ny,2nz)
|2|n � lim

n→∞

(ρ(|2|)
|z|

)n
ϕ(x,y,z) = 0

for all x,y,z ∈ X . It follows from (5.3) that

Φ(x) : = max{ϕ(x,x,−x), |2|ϕ(x,0,−x)}
= max{3,2|2|}δρ(‖x‖) (5.12)

for all x ∈ X . By direct calculation,

ϕ̃(x) = lim
n→∞

max

{
1
|2|k Φ(2kx) : 0 � k < n

}
= Φ(x), (5.13)
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exists and

lim
i→∞

lim
n→∞

max

{
1
|2|k Φ(2kx) : i � k < n+ i

}
= lim

i→∞

1
|2|i Φ(2ix) = 0 (5.14)

holds for all x ∈ X . Applying Theorem 5.1, we infer that

‖ f (x)−A(x)‖ � 1
|2| ϕ̃(x) =

1
|2|Φ(x)

=
1
|2| max{3,2|2|}δρ(‖x‖) (5.15)

for all x ∈ X , and the proof is complete. �

COROLLARY 5.2. Let ω : [0,∞) → [0,∞) be function satisfying
(i) ω(|2|−1t) � ω(|2|−1)ω(t) for all t � 0 ,
(ii) ω(|2|−1) � |2|−μ , where μ is a fixed real number in μ ∈ (−∞,1] .
Let δ > 0 , and let f : X → Y be a mapping with f (0) = 0 and satisfying the

functional inequality

‖2 f (x)+2 f (y)+2 f (z)− f (x+ y)− f (y+ z)‖
� ‖ f (x+ z)‖+ δ [ω(‖x‖)+ ω(‖y‖)+ ω(‖z‖)] (5.16)

for all x,y,z ∈ X . Then there exists a unique additive mapping A : X → Y such that

‖ f (x)−A(x)‖ � 1
|2|μ max{3,2|2|}δω(‖x‖) (5.17)

for all x ∈ X .

Proof. Let ϕ : X3 → [0,∞) defined by

ϕ(x,y,z) := δ [ω(‖x‖)+ ω(‖y‖)+ ω(‖z‖)].
Since |2|ω(|2|−1) < |2|1−μ � 1, we have

lim
n→∞

|2|nϕ
( x

2n ,
y
2n ,

z
2n

)
� lim

n→∞
|2|nω(|2|−1)nϕ(x,y,z) = 0

for all x,y,z ∈ X . Also

ϕ̃(x) = lim
n→∞

max

{
|2|kΦ(

x
2k ) : 1 � k < n+1

}
= |2|Φ

( x
2

)

and

lim
i→∞

lim
n→∞

max

{
|2|kΦ(

x
2k

) : i+1 � k < n+ i+1

}
= lim

i→∞
|2|i+1Φ

( x
2i+1

)
= 0

for all x ∈ X . Hence the result follows by Theorem 5.1. �
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[10] P. GĂVRUŢĂ, A generalization of the Hyers-Ulam-Rassias stability of approximately additive map-
pings, J. Math. Anal. Appl. 184 (1994), 431–436.

[11] A. GILÁNYI, Eine zur Parallelogrammgleichung äquivalente Ungleichung, Aequationes Math. 62
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