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Abstract. The negation of a probability distribution has been defined in the context of belief
theory by [13]. Since then, its generalizations and applications have been studied. Although
a probability distribution and its negation have been studied separately in terms of entropy in
the literature, the relative entropy (Kullback-Leibler divergence) between them has not been
investigated. In this article, we investigate the difference between a probability distribution and
its negation in terms of the Kullback-Leibler divergence. In particular, we establish some bounds
for the Kullback-Leibler divergence in terms of logical entropy of a probability distribution. To
do this, we not only use the generalized Ky Fan inequality but also provide an extension of
the generalized Ky Fan inequality. As a result, this article provides a nice application of the
generalized Ky Fan inequality in a special topic in information science.

1. Introduction

Discrete probability distributions have been one of the most useful tools in prob-
ability, statistics, information theory and so many other areas of science. Depending
on the needs arising in different areas of science, new concepts related to probability
distributions are defined and developed.

In information science, one of the important problems is to be able to extract infor-
mation from a source that has uncertainities, e.g. fuzzy sets or belief functions. Related
to this problem, the question of how to define the negation of a probability distribu-
tion has been raised. This question is important because the negation of an information
might help to determine the uncertainty level.

Although there have been some attempts to define the negation of a probability
distribution in different contexts, the definition proposed in [13] in the context of belief
functions in evidence theory (also called the Demspter-Shafer Theory in the literature.
See [14] for further reading) has been the most influential in the last decade. It has been
defined in the following way:
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Let X be discrete random variable taking the values x1, . . . ,xn with probability
distribution function P and P(xi) denote P(X = xi) . The negation of P (denoted by
P) is defined as

P(xi) =
1−P(xi)

n−1
.

In [13] it has been shown that this definition of negation is unique in that it is based
on maximum entropy according to the Dempster-Shafer theory. In [13], the logical
entropy is used. The logical entropy for a discrete probability is given by

H(P) = 1−
n

∑
i

P(xi)2.

Note that the logical entropy H(P) and ∑n
i P(xi)2 can be considered as heterogeneity

distribution and homogeneity of the distribution [3] respectively. Note that the maxi-
mum value of ∑n

i P(xi)2 is 1 and it approaches to 1 as one of the values of the random
variable approaches to 1 and the minimum value of ∑n

i P(xi)2 is 1/n and this happens
if the distribution becomes a uniform distribution (homogeneous in terms of probabili-
ties).

There have been studies following the definition of negation in [13]. Based on [13],
negation of bivariate probability distributions have been defined in [9] and its properties
have been listed. Also, [15] extended the negation of a probability distribution using
the idea of a nonextensive statistic based on the Tsallis entropy. [4] gave the application
of negation of a distribution in target recognition based on sensor fusion. [10] proposed
a multi-criteria decision making based on the negation distribution.

Although the definition of negation distribution given by [13] has some merit in
belief theory, it is imperfect in literal meaning of negation. First, following the meaning
of negation in classical sense, one expects that the negation of negation of a probability
distribution is itself. However, this is not the case. Note that

P �= P

unless P = P , which occurs if and only if P is uniform discrete probability distri-
bution, i.e., P(xi) = 1

n . Moreover, consecutive negations of a probability distribution
approaches to the uniform distribution, which can be stated as

lim
k→∞

Pk = U,

where P1 = P and Pi+1 = Pi and U denotes the uniform distribution. Thus, it can be
seen as a transformation to approximate the uniform distribution rather than negation.

Secondly, while n = 2 corresponds to the usual definition of negation, the classical
meaning of negation weakens as n gets larger. We observe this as

P(xi) < P(xi) if P(xi) <
1
n

P(xi) > P(xi) if P(xi) >
1
n
.
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The flaws mentioned above makes it important to evaluate the difference between
a probability distribution and the distribution of its negation in terms of statistical dis-
tance. For this purpose, we use the Kullback-Leibler divergence in this article.

In mathematical statistics, the Kullback-Leibler divergence, DKL (also called rel-
ative entropy) is given as a measure of how a probability distribution P differs from
a second, reference probability distribution Q . For discrete probability distributions
P and Q defined on the same probability space, X , the Kullback-Leibler divergence
from Q to P is defined to be

DKL(P ‖ Q) = ∑
xi∈X

P(xi) ln

(
P(xi)
Q(xi)

)
.

In the studies related to negation of probability distribution in the literature, the
Kullback-Leibler divergence between the probability distribution and its negation has
not been investigated to the best of our knowledge. In this article, we relate the Kullback-
Leibler divergence between a probability distribution and its negation with logical en-
tropy. In particular, we provide some bounds for the the Kullback-Leibler divergence
between a probability distribution and its negation in terms of its logical entropy. These
bounds follow as a direct application of the generalized Ky Fan Inequality. However,
we not only use the Ky Fan Inequality but also extend it in a direction for our special
purpose. This extension is also a novel finding of this article.

In the next section we establish the generalized Ky Fan inequality and its exten-
sion. For the sake of self-containment, we also provide Jensen’s inequality and explain
how the generalized Ky Fan Inquality is obtained from Jensen’s Inequality. Then we
provide some bounds for Kullback-Leibler divergence between the probability distri-
bution and its negation.

2. Ky Fan inequality

The Ky Fan inequality is a mathematical inequality that is derived from Jensen’s
inequality. For the sake of self-containment, we start from Jensen inequality and derive
the others subsequently. Jensen’s inequality is one of the well-known inequalities of
mathematical analysis, which characterizes the convex functions.

THEOREM 1. (Jensen’s Inequality) Let f : R → R be a convex function and λi

be positive real numbers for i = 1, . . . ,n that satisfy
n

∑
i=1

λi = 1 . In this case,

f

(
n

∑
i=1

λixi

)
�

n

∑
i=1

λi f (xi)

holds for any real numbers xi ∈ R for i = 1, . . . ,n.

Note that for a random variable X with a discrete probability distribution, the
Jensen inequality can be stated as

f (E(X)) � E( f (X))
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for any convex function f .
The Jensen inequality yields different inequalities for different choices of convex

functions. Many generalizations and refinements of this inequality have been obtained,
for example, see [5, 12, 6] and the references therein. Also, related to classical entropy,
see [2] and [8].

The following inequality is known as the generalized Ky Fan inequality in the
literature. It follows from Jensen’s inequality for the choice of f (x) = ln(x)− ln(1− x)
for x ∈ (0, 1

2 ].

THEOREM 2. (Generalized Ky Fan inequality) If λi is a positive real number for

i = 1, . . . ,n satisfying
n

∑
i=1

λi = 1 , then

∏n
i=1 aλi

i

∏n
i=1(1−ai)λi

� ∑n
i=1 λiai

∑n
i=1 λi(1−ai)

holds for real numbers ai ∈ (0, 1
2 ] for i = 1, . . . ,n and the equality holds if x1 = · · ·= xn .

In the literature, there are refinements or generalizations of the inequality above
and other inequalities associated with Ky Fan, for example, see [7, 6, 1, 11] and the
references therein. We present a new one in Theorem 3.

Note that Theorem 2 requires the condition ai � 1
2 . The following theorem flexes

this condition. Our motivation to do so is that if we assume that ai ’s represent the
probabilities of a discrete probability distribution, then one of the ai ’s may be bigger
than 1

2 .

THEOREM 3. Assume that ai ∈ (0, 1
2 ] for i ∈ {1, . . .n} \ {m} and 1

2 � am � 1 . If

γi is a positive real number for i = 1, . . . ,n such that
n

∑
i=1

γi = 1 , then

∏n
i=1 aγi

i

∏n
i=1(1−ai)γi

� a2γm
m

(1−am)2γm

(
γm(1−am)+ ∑n

i�=m γiai

γm(am)+ ∑n
i�=m γi(1−ai)

)
.

Proof. We start with rewriting the ratio of products in the following way:

∏n
i=1 aγi

i

∏n
i=1(1−ai)γi

=
a2γm

m

(1−am)2γm

(
∏n

i�=m aγi
i

∏n
i�=m(1−ai)γi

)
(1−am)γm

aγm
m

(1)

Since 1−am � 1
2 , we can use Theorem 2 in the following way:

a2γm
m

(1−am)2γm

(
∏n

i�=m aγi
i

∏n
i�=m(1−ai)γi

)
(1−am)γm

aγm
m

� a2γm
m

(1−am)2γm

(
γm(1−am)+ ∑n

i�=m γiai

γm(am)+ ∑n
i�=m γi(1−ai)

)
. �

Note that this theorem coincides with Theorem 2 when xm = 1
2 .
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3. Kullback-Leibler divergence between
a probability distribution and its negation

In the following theorem, we provide an upper bound for the Kullback-Leibler
divergence between probability distribution and its negation.

THEOREM 4. Let P and P be discrete probability distribution and its negation
respectively. In this case,

DKL(P ‖ P) � ln(n−1)+ ln

(
1−H(P)

H(P)

)

provided that P(xi) � 1/2 . The equality holds if P(xi) =
1
n

for i = 1, . . . ,n.

Proof. DKL(P ‖ P) = ∑n
i=1 P(xi) ln

(
(n−1)P(xi)
1−P(xi)

)
.

Let ti = P(xi) . So

DKL(P ‖ P) =
n

∑
i=1

ti ln

(
(n−1)ti
1− ti

)

= ln(n−1)+ ln

(
n

∏
i=1

ttii
(1− ti)ti

)
.

Now letting ai = λi = ti in Theorem 2 yields

∏n
i=1 ttii

∏n
i=1(1− ti)ti

� ∑n
i=1 t2i

∑n
i=1 ti(1− ti)

. (3)

So we get

DKL(P ‖ P) = ln(n−1)+ ln

(
n

∏
i=1

ttii
(1− ti)ti

)

� ln(n−1)+ ln

(
∑n

i=1 t2i
1−∑n

i=1 t2i

)
.

Note that if P(xi) = 1
n then P(xi) = 1

n , i.e. P is uniform distribution, then DKL(P ‖
P) = 0. �

Using the generalized Ky Fan inequality, we can find a lower bound for DKL(P ‖
P) in terms of logical entropy of the probability distribution P .

THEOREM 5. If P and P be discrete probability distribution and its negation
respectively, then

DKL(P ‖ P) � ln

(
n−1−H(P)

H(P)

)
− ln(n−1)

provided that P(xi) � 1/2. The equality holds if P(xi) = 1
n for i = 1, . . . ,n.
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Proof. Note that

DKL(P ‖ P) =
n

∑
i=1

(1−P(xi))
n−1

ln

(
1−P(xi)

(n−1)P(xi)

)
. (5)

Letting P(xi) = ti yields

n

∑
i=1

1− ti
n−1

ln

(
1− ti

(n−1)ti

)
=

n

∑
i=1

ln

(
1− ti

(n−1)ti

) 1−ti
n−1

= ln

⎛
⎜⎜⎜⎝∏ (1− ti)

1− ti
n−1

t

1− ti
n−1
i

⎞
⎟⎟⎟⎠− ln(n−1).

Taking the reciprocals of both sides in the inequality in Theorem 2 yields a new
inequality:

∏n
i=1(1−ai)γi

∏n
i=1 aγi

i

� ∑n
i=1 γi(1−ai)
∑n

i=1 γiai
.

The new inequality is used below. Letting γi = 1−ti
n−1 and ai = ti yields

ln

⎛
⎝∏ (1− ti)

1−ti
n−1

t
1−ti
n−1
i

⎞
⎠� ln

(
∑n

i=1
1−ti
n−1 (1− ti)

∑n
i=1

1−ti
n−1 ti

)

= ln

(
∑n

i=1(1− ti)2

1−∑n
i=1 ti2

)

= ln

(
n−2+ ∑n

i=1 t2i
1−∑n

i=1 ti2

)
.

Subtracting ln(n−1) from both sides yields

DKL(P ‖ P) � ln

(
n−2+ ∑n

i=1 t2i
1−∑n

i=1 ti2

)
− ln(n−1).

It is clear that DKL(P ‖ P) = 0 if P(xi) = 1
n . �

Now using Theorem 3, we extend Theorem 4 to all probability distributions.

THEOREM 6. Let P and P be discrete probability distribution and its negation
respectively. If P(xM) � 1

2 for some 1 � M � n, then

DKL(P ‖ P) � 2xM ln

(
xM

1− xM

)
+ ln(n−1)+ ln

(
1−H(P)−θ

H(P)+ θ

)

where θ = 2x2
M − xM.
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Proof. We use the same idea in the proof of Theorem 4. Now taking γi = xi in
Theorem 3 yields

∏n
i=1 xxi

i

∏n
i=1(1− xi)xi

� x2xM
M

(1− xM)2xM

∑n
i=1 xi

2 −2x2
M + xM

1− (∑n
i=1 x2

i −2x2
M + xM)

.

The rest of the proof is just to apply natural logarithm to both sides. Note that the
equality occurs only if n = 2 and x1 = x2 . �

Note that taking xM = 1
2 in Theorem 6 coincide with Theorem 4 for xM = 1

2 .

Conclusion

In the light of Theorem 6, we can conclude that the Kullback-Leibler divergence
between a distribution and its negation becomes higher when there is an xM such that
P(xM) is very close to 1. Thus, this definition of negation makes more sense for such
probability distributions. However, a definition of negation addressing the imperfec-
tions listed in the introduction and maximizing the relative entropy remains to be an
open problem.
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