APPROXIMATION OF TWO GENERAL FUNCTIONAL EQUATIONS IN 2-BANACH SPACES

Choonkil Park, Abbas Najati*, Mohammad B. Moghimi
and Batool Noori

(Communicated by J. Pečarić)

Abstract

In this paper, we study the Ulam stability and hyperstability of two general functional equations in several variables in 2 -Banach spaces. Multi-additive and multi-Jensen functions are particular cases of these functional equations. We also improve the main results of Theorem 3 and Theorem 4 of [Ciepliński, K. Ulam stability of functional equations in 2-Banach spaces via the fixed point method. J. Fixed Point Theory Appl. 23 (2021), no. 3, Paper No. 33, 14 pp.] and their consequences.

1. Introduction and preliminaries

Assume that X is a linear space over the field \mathbb{F}, and Y is a linear space over the field \mathbb{K}. Let $a_{11}, a_{12}, \ldots, a_{n 1}, a_{n 2} \in \mathbb{F}, a_{1, j_{1}, \cdots, j_{n}}, \ldots, a_{n, j_{1}, \cdots, j_{n}} \in \mathbb{F}$ for $j_{1}, \cdots, j_{n} \in$ $\{-1,1\}$ and $A_{i_{1}, \ldots, i_{n}} \in \mathbb{K}$ for $i_{1}, \ldots, i_{n} \in\{1,2\}$ be given scalars. The following quite general functional equations were very recently introduced by Ciepliński [5, 6]:

$$
\begin{align*}
& f\left(a_{11} x_{11}+a_{12} x_{12}, \ldots, a_{n 1} x_{n 1}+a_{n 2} x_{n 2}\right) \\
& \quad=\sum_{i_{1}, \ldots, i_{n} \in\{1,2\}} A_{i_{1}, \ldots, i_{n}} f\left(x_{1 i_{1}}, \ldots, x_{n i_{n}}\right) \tag{1}
\end{align*}
$$

and

$$
\begin{gather*}
\sum_{j_{1}, \ldots, j_{n} \in\{-1,1\}} f\left(a_{1, j_{1}, \cdots, j_{n}}\left(x_{11}+j_{1} x_{12}\right)+\cdots+a_{n, j_{1}, \cdots, j_{n}}\left(x_{n 1}+j_{n} x_{n 2}\right)\right) \\
=\sum_{i_{1}, \ldots, i_{n} \in\{1,2\}} A_{i_{1}, \ldots, i_{n}} f\left(x_{1 i_{1}}, \ldots, x_{n i_{n}}\right) \tag{2}
\end{gather*}
$$

He studied the Ulam stability of the functional equations (1) and (2) in 2-Banach spaces [6]. The functional equation (1) generalizes among others the known functional equations

$$
\begin{aligned}
f\left(x_{11}+x_{12}, \ldots, x_{n 1}+x_{n 2}\right) & =\sum_{i_{1}, \ldots, i_{n} \in\{1,2\}} f\left(x_{1 i_{1}}, \ldots, x_{n i_{n}}\right), \\
f\left(\frac{x_{11}+x_{12}}{2}, \ldots, \frac{x_{n 1}+x_{n 2}}{2}\right) & =\sum_{i_{1}, \ldots, i_{n} \in\{1,2\}} \frac{1}{2^{n}} f\left(x_{1 i_{1}}, \ldots, x_{n i_{n}}\right) .
\end{aligned}
$$

Mathematics subject classification (2020): 39B82, 47H10, 39B72.
Keywords and phrases: Ulam stability, hyperstability, fixed point method, 2-Banach space, functional equation, linear functional equation.

* Corresponding author.

These functional equations and other special cases of the functional equation (1) have been investigated by some authors (see for example [1, 4, 13]). Let us also mention that for the case $n=1$, we obtain the linear functional equation

$$
f(\alpha x+\beta y)=A f(x)+B f(y)
$$

which includes, among others, the Cauchy equation and the Jensen functional equation.
The well-known Jordan-von Neumann equation

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

is a special case of (2) for $n=1$. The following functional equation

$$
\begin{gathered}
\sum_{j_{1}, \ldots, j_{n} \in\{-1,1\}} f\left(x_{11}+j_{1} x_{12}, \ldots, x_{n 1}+j_{n} x_{n 2}\right) \\
=\sum_{i_{1}, \ldots, i_{n} \in\{1,2\}} 2^{n} f\left(x_{1 i_{1}}, \ldots, x_{n i_{n}}\right)
\end{gathered}
$$

is a particular case of Eq. (2) which characterizes the so-called n-quadratic functions [9,15]. Also, the functional equation

$$
\sum_{j_{1}, j_{2} \in\{-1,1\}} f\left(x_{11}+j_{1} x_{12}, x_{21}+j_{2} x_{22}\right)=\sum_{i, j \in\{1,2\}} A_{i j} f\left(x_{1 i}, x_{2 j}\right)
$$

is another particular case of Eq. (2) which was very recently investigated in [8].
In this note, we prove the Ulam stability and hyperstability of functional equations (1) and (2) which improve Ciepliński's results [6, Theorems 3, 4] and their consequences.

2. Preliminaries

First, let us recall some basic definitions and facts concerning 2 -normed spaces (see for instance [2, 11, 14]).

Definition 1. Let \mathscr{Y} be an at least 2-dimensional real linear space. A function $\|.,\|:. \mathscr{Y}^{2} \rightarrow \mathbb{R}$ is called a 2 -norm on \mathscr{Y}^{2} if it fulfils the following four conditions:
(i) $\|x, y\|=0$ if and only if x, y are linearly dependent;
(ii) $\|x, y\|=\|y, x\|$;
(iii) $\quad\|\alpha x, y\|=|\alpha|\|x, y\|$;
(iv) $\|x+y, z\| \leqslant\|x, z\|+\|y, z\|$,
for any $\alpha \in \mathbb{R}$ and $x, y, z \in \mathscr{Y}$. The pair $(\mathscr{Y},\|.\|$,$) is called a 2$-normed space.

It follows from $(i),(i i i)$ and $(i v)$ that the function $\|.,$.$\| is non-negative.$
We say that a sequence $\left\{x_{n}\right\}_{n}$ of elements of a 2 -normed space $(\mathscr{Y},\|.,\|$.$) is$ Cauchy sequence provided

$$
\lim _{n, k \rightarrow \infty}\left\|x_{n}-x_{k}, y\right\|=0, \quad y \in \mathscr{Y} .
$$

The sequence $\left\{x_{n}\right\}_{n}$ is called convergent if there is a $y \in \mathscr{Y}$ such that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-y, z\right\|=0, \quad z \in \mathscr{Y}
$$

In this case we say that y is the limit of $\left\{x_{n}\right\}_{n}$ and it is denoted by

$$
\lim _{n \rightarrow \infty} x_{n}=y .
$$

By a 2-Banach space we mean a 2 -normed space such that each its Cauchy sequence is convergent.

In 2011, W. G. Park [12] introduces a basic property of linear 2-normed spaces as follows:

Lemma 1. Let $(\mathscr{Y},\|.,\|$.$) be a 2$-normed space.
(a) If $x \in \mathscr{Y}$ and $\|x, y\|=0$ for all $y \in \mathscr{Y}$, then $x=0$.
(b) For a convergent sequence $\left\{x_{n}\right\}$ in \mathscr{Y},

$$
\lim _{n \rightarrow \infty}\left\|x_{n}, y\right\|=\left\|\lim _{n \rightarrow \infty} x_{n}, y\right\|, \quad y \in \mathscr{Y} .
$$

By Lemma $1(a)$ and $(i v)$, it is obvious that each convergent sequence has exactly one limit and the standard properties of the limit of a sum and a scalar product hold true.

LEMMA 2. Let $(\mathscr{Y},\|.,\|$.$) be a 2$-normed space and $x_{1}, \cdots, x_{n} \in \mathscr{Y} \backslash\{0\}$. Suppose that $\varphi: \mathscr{Y}^{n} \rightarrow \mathscr{Y}$ is a function such that $\left\|\varphi\left(x_{1}, \cdots, x_{n}\right), y\right\|=0$ for all $y \in \mathscr{Y}$ with $\left\|x_{i}, y\right\| \neq 0$ for all $1 \leqslant i \leqslant n$. Then $\varphi\left(x_{1}, \cdots, x_{n}\right)=0$.

Proof. We can choose linearly independent elements $y, z \in \mathscr{Y}$ such that

$$
\left\|x_{i}, y\right\| \neq 0 \quad \text { and } \quad\left\|x_{i}, z\right\| \neq 0, \quad 1 \leqslant i \leqslant n .
$$

Since $\left\|\varphi\left(x_{1}, \cdots, x_{n}\right), y\right\|=0$ and $\left\|\varphi\left(x_{1}, \cdots, x_{n}\right), z\right\|=0$, there exist scalars λ, μ such that $\varphi\left(x_{1}, \cdots, x_{n}\right)=\lambda y$ and $\varphi\left(x_{1}, \cdots, x_{n}\right)=\mu z$. Then $\lambda y-\mu z=0$, and we conclude that $\lambda=\mu=0$. Hence $\varphi\left(x_{1}, \cdots, x_{n}\right)=0$.

Finally, it should be noted that more information on 2 -normed spaces as well as on some problems investigated in them can be found for example in $[2,3,10,11,14]$.

3. Main results

We recall that a pair (G, d) is said to be a generalized metric space provided G is a nonempty set and $d: G \times G \rightarrow[0,+\infty]$ is a function satisfying the standard metric axioms.

We will use the following key theorem to prove our results.
THEOREM 1. [7] Let (G, d) be a complete generalized metric space and let J : $G \rightarrow G$ be a strictly contractive mapping with Lipschitz constant $0<L<1$. If there exists a nonnegative integer k such that $d\left(J^{k} x, J^{k+1} x\right)<\infty$ for some $x \in X$, then the following are true.
(i) the sequence $\left\{J^{n} x\right\}$ converges to a fixed point x^{*} of J;
(ii) x^{*} is the unique fixed point of J in

$$
G^{*}=\left\{y \in G: d\left(J^{k} x, y\right)<\infty\right\}
$$

(iii) $d\left(y, x^{*}\right) \leqslant \frac{1}{1-L} d(y, J y)$ for all $y \in G^{*}$.

For convenience, we set

$$
\begin{aligned}
\operatorname{Df}\left(x_{11}, x_{12}, \cdots, x_{n 1}, x_{n 2}\right):= & f\left(a_{11} x_{11}+a_{12} x_{12}, \ldots, a_{n 1} x_{n 1}+a_{n 2} x_{n 2}\right) \\
& -\sum_{i_{1}, \ldots, i_{n} \in\{1,2\}} A_{i_{1}, \ldots, i_{n}} f\left(x_{1 i_{1}}, \ldots, x_{n i_{n}}\right) .
\end{aligned}
$$

The following theorem presents a more general result than Theorem 3 of [6].
THEOREM 2. Assume that \mathscr{Y} is a 2 -normed space. Let $\varphi: X^{2 n} \rightarrow[0,+\infty)$ and $f: X^{n} \rightarrow \mathscr{Y}$ be functions such that

$$
\begin{equation*}
\left\|D f\left(x_{11}, x_{12}, \cdots, x_{n 1}, x_{n 2}\right), z\right\| \leqslant \varphi\left(x_{11}, x_{12}, \cdots, x_{n 1}, x_{n 2}\right) \tag{3}
\end{equation*}
$$

for $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2} \in X$ and $z \in \mathscr{Y}$. Then f fulfills equation (1).
Proof. Replacing z by $k z$ in (3) and dividing the resultant inequality by k, we obtain

$$
\begin{equation*}
\left\|D f\left(x_{11}, x_{12}, \cdots, x_{n 1}, x_{n 2}\right), z\right\| \leqslant \frac{1}{k} \varphi\left(x_{11}, x_{12}, \cdots, x_{n 1}, x_{n 2}\right) \tag{4}
\end{equation*}
$$

for $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2} \in X, z \in \mathscr{Y}$ and $k \in \mathbb{N}$. Allowing k tending to infinity, we get

$$
\left\|D f\left(x_{11}, x_{12}, \cdots, x_{n 1}, x_{n 2}\right), z\right\|=0
$$

for $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2} \in X$ and $z \in \mathscr{Y}$. Hence by Lemma 1, f satisfies (1).
Corollary 1. Assume that $\varepsilon>0$ and \mathscr{Y} is a 2 -normed space. If $f: X^{n} \rightarrow \mathscr{Y}$ is a function satisfying

$$
\begin{equation*}
\left\|D f\left(x_{11}, x_{12}, \cdots, x_{n 1}, x_{n 2}\right), z\right\| \leqslant \varepsilon \tag{5}
\end{equation*}
$$

for $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2} \in X$ and $z \in \mathscr{Y}$, then f fulfills equation (1) for $x_{1}, \ldots, x_{n} \in X$.

Proof. The result follows from Theorem 2 by letting

$$
\varphi\left(x_{11}, x_{12}, \cdots, x_{n 1}, x_{n 2}\right)=\varepsilon
$$

THEOREM 3. Assume that \mathscr{Y} is a 2-Banach space, $g: X \rightarrow \mathscr{Y}$ is a surjective function and

$$
\begin{equation*}
\left|\sum_{i_{1}, \ldots, i_{n} \in\{1,2\}} A_{i_{1}, \ldots, i_{n}}\right|>1 . \tag{6}
\end{equation*}
$$

Let $\varphi: X \rightarrow[0,+\infty)$ and $f: X^{n} \rightarrow \mathscr{Y}$ be a function satisfying

$$
\begin{equation*}
\left\|D f\left(x_{11}, x_{12}, \cdots, x_{n 1}, x_{n 2}\right), g(z)\right\| \leqslant \varphi(z) \tag{7}
\end{equation*}
$$

for $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2}, z \in X$. Then there is a unique function $F: X^{n} \rightarrow \mathscr{Y}$ fulfilling equation (1) and

$$
\begin{equation*}
\left\|f\left(x_{1}, \ldots, x_{n}\right)-F\left(x_{1}, \ldots, x_{n}\right), g(z)\right\| \leqslant \frac{\varphi(z)}{\left|\sum_{i_{1}, \ldots, i_{n} \in\{1,2\}} A_{i_{1}, \ldots, i_{n}}\right|-1} \tag{8}
\end{equation*}
$$

for $x_{1}, \ldots, x_{n}, z \in X$.

Proof. Put

$$
A:=\sum_{i_{1}, \ldots, i_{n} \in\{1,2\}} A_{i_{1}, \ldots, i_{n}}, \quad a_{i}:=a_{i 1}+a_{i 2}, \quad i \in\{1, \ldots, n\} .
$$

Let us first note that (7) with $x_{i 1}=x_{i 2}=z_{i}$ for $i \in\{1, \ldots, n\}$ gives

$$
\begin{equation*}
\left\|f\left(a_{1} z_{1}, \ldots, a_{n} z_{n}\right)-A f\left(z_{1}, \ldots, z_{n}\right), g(z)\right\| \leqslant \varphi(z), \quad\left(z_{1}, \ldots, z_{n}, z\right) \in X^{n+1} \tag{9}
\end{equation*}
$$

Set $\mathscr{G}:=\left\{T: X^{n} \rightarrow \mathscr{Y}\right\}$ and define $d: \mathscr{G} \times \mathscr{G} \rightarrow[0,+\infty]$ by

$$
d(T, S):=\inf \left\{C \in[0,+\infty]:\left\|(T-S)\left(x_{1}, \cdots, x_{n}\right), g(z)\right\| \leqslant C \varphi(z), x_{1}, \cdots, x_{n}, z \in X\right\}
$$

It can be shown that (\mathscr{G}, d) is a complete generalized metric space. Let us define

$$
Q: \mathscr{G} \rightarrow \mathscr{G}, \quad Q T\left(x_{1}, \cdots, x_{n}\right)=\frac{1}{A} T\left(a_{1} x_{1}, \cdots, a_{n} x_{n}\right) .
$$

We show that $Q: \mathscr{G} \rightarrow \mathscr{G}$ is a strictly contractive operator with the Lipschitz constant $\frac{1}{|A|}$. Let $T, S \in \mathscr{G}$ with $d(T, S)<\infty$ and $\varepsilon>0$. Then

$$
\left\|(T-S)\left(x_{1}, \cdots, x_{n}\right), g(z)\right\| \leqslant(d(T, S)+\varepsilon) \varphi(z), \quad x_{1}, \cdots, x_{n}, z \in X
$$

Consequently

$$
\begin{aligned}
\left\|Q T\left(x_{1}, \cdots, x_{n}\right)-Q S\left(x_{1}, \cdots, x_{n}\right), g(z)\right\| & =\frac{1}{|A|}\left\|(T-S)\left(a_{1} x_{1}, \cdots, a_{n} x_{n}\right), g(z)\right\| \\
& \leqslant \frac{1}{|A|}(d(T, S)+\varepsilon) \varphi(z)
\end{aligned}
$$

for all $x_{1}, \cdots, x_{n}, z \in X$. Therefore $d(Q T, Q S) \leqslant \frac{1}{\mid A}(d(T, S)+\varepsilon)$. Since $\varepsilon>0$ is arbitrary, we get $d(Q T, Q S) \leqslant \frac{1}{|A|} d(T, S)$, as claimed. On the other hand, (9) yields

$$
\begin{aligned}
\left\|Q f\left(x_{1}, \cdots, x_{n}\right)-f\left(x_{1}, \cdots, x_{n}\right), g(z)\right\| & =\left\|\frac{1}{A} f\left(a_{1} x_{1}, \cdots, a_{n} x_{n}\right)-f\left(x_{1}, \cdots, x_{n}\right), g(z)\right\| \\
& \leqslant \frac{1}{|A|} \varphi(z), \quad x_{1}, \cdots, x_{n}, z \in X
\end{aligned}
$$

Thus $d(Q f, f) \leqslant \frac{1}{|A|}$. Hence by Theorem $1(i)$, we deduce that the sequence $\left\{Q^{m} f\right\}_{m}$ is convergent in (\mathscr{G}, d) and $F=\lim _{m \rightarrow \infty} Q^{m} f$ is a fixed point of Q. Thus

$$
\begin{aligned}
F\left(x_{1}, \cdots, x_{n}\right)=\lim _{m \rightarrow \infty} Q^{m} f\left(x_{1}, \cdots, x_{n}\right)= & \lim _{m \rightarrow \infty} \frac{f\left(a_{1}^{m} x_{1}, \cdots, a_{n}^{m} x_{n}\right)}{A^{m}}, \\
& \frac{1}{A} F\left(a_{1} x_{1}, \cdots, a_{n} x_{n}\right)=F\left(x_{1}, \cdots, x_{n}\right), \quad x_{1}, \cdots, x_{n} \in X .
\end{aligned}
$$

Since $f \in \mathscr{G}^{*}$, Theorem 1 (iii) implies

$$
d(f, F) \leqslant \frac{1}{1-\frac{1}{|A|}} d(Q f, f) \leqslant \frac{1}{|A|-1}
$$

which proves (8). Now, we show that the function $F: X^{n} \rightarrow \mathscr{Y}$ fulfilling equation (1). Indeed, from (7), we get

$$
\left\|\frac{D f\left(a_{1}^{m} x_{11}, a_{1}^{m} x_{12}, \cdots, a_{n}^{m} x_{n 1}, a_{n}^{m} x_{n 2}\right)}{A^{m}}, g(z)\right\| \leqslant \frac{1}{A^{m}} \varphi(z)
$$

for $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2}, z \in X$. Letting $m \rightarrow \infty$, and applying the definition of F we infer that

$$
\left\|D F\left(x_{11}, x_{12}, \cdots, x_{n 1}, x_{n 2}\right), g(z)\right\|=0, \quad x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2}, z \in X
$$

Since g is surjective, we deduce that F fulfils equation (1) by Lemma 1 (a).
To prove the uniqueness of F, let $H: X^{n} \rightarrow \mathscr{Y}$ be a solution of (1) satisfying (8). Since H satisfies (1), we get

$$
H\left(a_{1} x_{1}, a_{2} x_{2}, \cdots, a_{n} x_{n}\right)=A H\left(x_{1}, x_{2}, \cdots, x_{n}\right), \quad x_{1}, x_{2}, \cdots, x_{n} \in X
$$

Hence H is a fixed point of Q. On the other hand, (8) yields $d(f, H) \leqslant \frac{1}{|A|-1}$. Hence $H \in \mathscr{G}^{*}$, and consequently $H=F$ by Theorem 1 (ii).

In the following results, \mathscr{X} is a normed linear space.
Corollary 2. Assume that $\varepsilon, \theta \geqslant 0$ and \mathscr{Y} is an 2-Banach space. Let g : $\mathscr{X} \rightarrow \mathscr{Y}$ be a surjective function and

$$
\begin{equation*}
\left|\sum_{i_{1}, \ldots, i_{n} \in\{1,2\}} A_{i_{1}, \ldots, i_{n}}\right|>1 \tag{10}
\end{equation*}
$$

If $f: \mathscr{X}^{n} \rightarrow \mathscr{Y}$ is a function satisfying

$$
\begin{equation*}
\left\|D f\left(x_{11}, x_{12}, \cdots, x_{n 1}, x_{n 2}\right), g(z)\right\| \leqslant \varepsilon+\theta\|z\| \tag{11}
\end{equation*}
$$

for $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2}, z \in \mathscr{X}$, then there is a unique function $F: X^{n} \rightarrow \mathscr{Y}$ fulfilling (1) and

$$
\begin{equation*}
\left\|f\left(x_{1}, \ldots, x_{n}\right)-F\left(x_{1}, \ldots, x_{n}\right), g(z)\right\| \leqslant \frac{\varepsilon+\theta\|z\|}{\left|\sum_{i_{1}, \ldots, i_{n} \in\{1,2\}} A_{i_{1}, \ldots, i_{n}}\right|-1} \tag{12}
\end{equation*}
$$

for $x_{1}, \ldots, x_{n}, z \in X$.
THEOREM 4. Assume that $\varepsilon \geqslant 0$ and \mathscr{Y} is an 2 -normed space. Let $\left\{\alpha_{i}\right\}_{i=1}^{n}$, $\left\{\beta_{i}\right\}_{i=1}^{n}$ and $\left\{r_{i}\right\}_{i=1}^{n}$ be nonnegative real numbers with $\max _{1 \leqslant i \leqslant n} r_{i}<1$, and let f : $\mathscr{Y}^{n} \rightarrow \mathscr{Y}$ be a function such that

$$
\begin{equation*}
\left\|D f\left(x_{11}, x_{12}, \cdots, x_{n 1}, x_{n 2}\right), z\right\| \leqslant \varepsilon+\sum_{i=1}^{n}\left[\alpha_{i}\left\|x_{i 1}, z\right\|^{r_{i}}+\beta_{i}\left\|x_{i 2}, z\right\|^{r_{i}}\right] \tag{13}
\end{equation*}
$$

for $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2}, z \in \mathscr{Y}$. Then f satisfies (1).
Proof. Replacing z by $k z$ in (13) and dividing the resultant inequality by k, we obtain

$$
\left\|D f\left(x_{11}, x_{12}, \cdots, x_{n 1}, x_{n 2}\right), z\right\| \leqslant \frac{\varepsilon}{k}+\sum_{i=1}^{n} k^{r_{i}-1}\left[\alpha_{i}\left\|x_{i 1}, z\right\|^{r_{i}}+\beta_{i}\left\|x_{i 2}, z\right\|^{r_{i}}\right]
$$

Letting now $k \rightarrow \infty$, we get

$$
\left\|D f\left(x_{11}, x_{12}, \cdots, x_{n 1}, x_{n 2}\right), z\right\|=0, \quad x_{11}, \ldots, x_{n 2}, z \in \mathscr{Y}
$$

Hence by Lemma 1, f satisfies (1).
THEOREM 5. Assume that $\varepsilon \geqslant 0$ and \mathscr{Y} is an 2-normed space. Let $\left\{\alpha_{i}\right\}_{i=1}^{n}$, $\left\{\beta_{i}\right\}_{i=1}^{n}$ be nonnegative real numbers and $\left\{r_{i}\right\}_{i=1}^{n}$ be real numbers with $\max _{1 \leqslant i \leqslant n} r_{i}<$ 1. Suppose $f: \mathscr{Y}^{n} \rightarrow \mathscr{Y}$ satisfies (13) for $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2}, z \in \mathscr{Y} \backslash\{0\}$ with $\left\|x_{i j}, z\right\| \neq 0$ for $1 \leqslant i \leqslant n$ and $j=1,2$. Then f satisfies (1) for $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2} \in$ $\mathscr{Y} \backslash\{0\}$.

Proof. Let $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2} \in \mathscr{Y} \backslash\{0\}$. By the same argument as above, we get

$$
\left\|D f\left(x_{11}, x_{12}, \cdots, x_{n 1}, x_{n 2}\right), z\right\|=0
$$

for all $z \in \mathscr{Y}$ with $\left\|x_{i j}, z\right\| \neq 0$ for $1 \leqslant i \leqslant n, j=1,2$. Thus the result follows from Lemma 2.

THEOREM 6. Assume that \mathscr{Y} is an 2 -normed space. Let $\left\{\alpha_{i}\right\}_{i=1}^{n},\left\{\beta_{i}\right\}_{i=1}^{n}$ and $\left\{r_{i}\right\}_{i=1}^{n}$ be nonnegative real numbers with $\min _{1 \leqslant i \leqslant n} r_{i}>1$, and $f: \mathscr{Y}^{n} \rightarrow \mathscr{Y}$ be a function such that

$$
\begin{equation*}
\left\|D f\left(x_{11}, x_{12}, \cdots, x_{n 1}, x_{n 2}\right), z\right\| \leqslant \sum_{i=1}^{n}\left[\alpha_{i}\left\|x_{i 1}, z\right\|^{r_{i}}+\beta_{i}\left\|x_{i 2}, z\right\|^{r_{i}}\right] \tag{14}
\end{equation*}
$$

for $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2}, z \in \mathscr{Y}$. Then f satisfies (1).

Proof. By replacing z by $\frac{z}{k}$ in (14) and applying a similar argument as in the proof of Theorem 4, the result is achieved.

4. Stability and hyperstability of the functional equation (2)

For convenience, we set

$$
\begin{aligned}
& \Delta f\left(x_{11}, x_{12}, \cdots, x_{n 1}, x_{n 2}\right) \\
& =\sum_{j_{1}, \ldots, j_{n} \in\{-1,1\}} f\left(a_{1, j_{1}, \cdots, j_{n}}\left(x_{11}+j_{1} x_{12}\right)+\cdots+a_{n, j_{1}, \cdots, j_{n}}\left(x_{n 1}+j_{n} x_{n 2}\right)\right) \\
& \quad-\sum_{i_{1}, \ldots, i_{n} \in\{1,2\}} A_{i_{1}, \ldots, i_{n}} f\left(x_{1 i_{1}}, \ldots, x_{n i_{n}}\right) .
\end{aligned}
$$

By an argument similar to the proof of Theorem 2, it can be shown that the following result improves Theorem 4 of [6].

Theorem 7. Assume that \mathscr{Y} is a 2 -normed space. Let $\varphi: X^{2 n} \rightarrow[0,+\infty)$ and $f: X^{n} \rightarrow \mathscr{Y}$ be functions such that

$$
\left\|\Delta f\left(x_{11}, x_{12}, \cdots, x_{n 1}, x_{n 2}\right), z\right\| \leqslant \varphi\left(x_{11}, x_{12}, \cdots, x_{n 1}, x_{n 2}\right)
$$

for $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2} \in X$ and $z \in \mathscr{Y}$. Then f fulfills equation (2).
The proof of the following theorem is similar to the proof of Theorem 3. Hence, we omit the proof.

THEOREM 8. Assume that \mathscr{Y} is a 2-Banach space, $g: X \rightarrow \mathscr{Y}$ is a surjective function and

$$
\left|\sum_{i_{1}, \ldots, i_{n} \in\{1,2\}} A_{i_{1}, \ldots, i_{n}}\right|>1 .
$$

Let $\varphi: X \rightarrow[0,+\infty)$ and $f: X^{n} \rightarrow \mathscr{Y}$ be a function such that $f\left(x_{1}, \cdots, x_{n}\right)=0$ for any $\left(x_{1}, \cdots, x_{n}\right) \in X^{n}$ with at least one component which is equal to zero, and satisfying

$$
\left\|\Delta f\left(x_{11}, x_{12}, \cdots, x_{n 1}, x_{n 2}\right), g(z)\right\| \leqslant \varphi(z)
$$

for $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2}, z \in X$. Then there is a unique function $F: X^{n} \rightarrow \mathscr{Y}$ fulfilling equation (2) and

$$
\left\|f\left(x_{1}, \ldots, x_{n}\right)-F\left(x_{1}, \ldots, x_{n}\right), g(z)\right\| \leqslant \frac{\varphi(z)}{\left|\sum_{i_{1}, \ldots, i_{n} \in\{1,2\}} A_{i_{1}, \ldots, i_{n}}\right|-1}
$$

for $x_{1}, \ldots, x_{n}, z \in X$.
In the following results, \mathscr{X} is a normed linear space.

Corollary 3. Assume that $\varepsilon, \theta \geqslant 0$ and \mathscr{Y} is an 2-Banach space. Let g : $\mathscr{X} \rightarrow \mathscr{Y}$ be a surjective function and

$$
\left|\sum_{i_{1}, \ldots, i_{n} \in\{1,2\}} A_{i_{1}, \ldots, i_{n}}\right|>1 .
$$

If $f: \mathscr{X}^{n} \rightarrow \mathscr{Y}$ is a function such that $f\left(x_{1}, \cdots, x_{n}\right)=0$ for any x_{1}, \cdots, x_{n} in X with at least one component which is equal to zero, and satisfying

$$
\begin{equation*}
\left\|\Delta f\left(x_{11}, x_{12}, \cdots, x_{n 1}, x_{n 2}\right), g(z)\right\| \leqslant \varepsilon+\theta\|z\| \tag{15}
\end{equation*}
$$

for $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2}, z \in \mathscr{X}$, then there is a unique function $F: X^{n} \rightarrow \mathscr{Y}$ fulfilling (2) and

$$
\left\|f\left(x_{1}, \ldots, x_{n}\right)-F\left(x_{1}, \ldots, x_{n}\right), g(z)\right\| \leqslant \frac{\varepsilon+\theta\|z\|}{\left|\sum_{i_{1}, \ldots, i_{n} \in\{1,2\}} A_{i_{1}, \ldots, i_{n}}\right|-1}
$$

for $x_{1}, \ldots, x_{n}, z \in X$.
The proof of the following theorems are similar to the proof of Theorems 4, 5 and 6. Hence, we omit the proofs.

THEOREM 9. Assume that $\varepsilon \geqslant 0$ and \mathscr{Y} is an 2 -normed space. Let $\left\{\alpha_{i}\right\}_{i=1}^{n}$, $\left\{\beta_{i}\right\}_{i=1}^{n}$ and $\left\{r_{i}\right\}_{i=1}^{n}$ be nonnegative real numbers with $\max _{1 \leqslant i \leqslant n} r_{i}<1$, and let f : $\mathscr{Y}^{n} \rightarrow \mathscr{Y}$ be a function such that

$$
\begin{equation*}
\left\|\Delta f\left(x_{11}, x_{12}, \cdots, x_{n 1}, x_{n 2}\right), z\right\| \leqslant \varepsilon+\sum_{i=1}^{n}\left[\alpha_{i}\left\|x_{i 1}, z\right\|^{r_{i}}+\beta_{i}\left\|x_{i 2}, z\right\|^{r_{i}}\right] \tag{16}
\end{equation*}
$$

for $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2}, z \in \mathscr{Y}$. Then f satisfies (2).
THEOREM 10. Assume that $\varepsilon \geqslant 0$ and \mathscr{Y} is an 2 -normed space. Let $\left\{\alpha_{i}\right\}_{i=1}^{n}$, $\left\{\beta_{i}\right\}_{i=1}^{n}$ be nonnegative real numbers and $\left\{r_{i}\right\}_{i=1}^{n}$ be real numbers with $\max _{1 \leqslant i \leqslant n} r_{i}<$ 1. Suppose $f: \mathscr{Y}^{n} \rightarrow \mathscr{Y}$ satisfies (16) for $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2}, z \in \mathscr{Y} \backslash\{0\}$ with $\left\|x_{i j}, z\right\| \neq 0$ for $1 \leqslant i \leqslant n$ and $j=1,2$. Then f satisfies (2) for $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2} \in$ $\mathscr{Y} \backslash\{0\}$.

THEOREM 11. Assume that \mathscr{Y} is an 2-normed space. Let $\left\{\alpha_{i}\right\}_{i=1}^{n},\left\{\beta_{i}\right\}_{i=1}^{n}$ and $\left\{r_{i}\right\}_{i=1}^{n}$ be nonnegative real numbers with $\min _{1 \leqslant i \leqslant n} r_{i}>1$, and $f: \mathscr{Y}^{n} \rightarrow \mathscr{Y}$ be a function such that

$$
\left\|\Delta f\left(x_{11}, x_{12}, \cdots, x_{n 1}, x_{n 2}\right), z\right\| \leqslant \sum_{i=1}^{n}\left[\alpha_{i}\left\|x_{i 1}, z\right\|^{r_{i}}+\beta_{i}\left\|x_{i 2}, z\right\|^{r_{i}}\right]
$$

for $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2}, z \in \mathscr{Y}$. Then f satisfies (2).

Acknowledgements. The authors would like to thank the reviewer for some valuable comments and useful suggestions.

REFERENCES

[1] A. BAhYRYCZ, K. CIEPLIŃSKI AND J. OLKO, On an equation characterizing multi-Cauchy-Jensen mappings and its Hyers-Ulam stability, Acta Math. Sci. Ser. B (Engl. Ed.), 35 (2015), 1349-1358.
[2] J. BRZDȨK and K. Ciepliński, A fixed point theorem in n-Banach spaces and Ulam stability, J. Math. Anal. Appl., 4702019 (2019), 632-646.
[3] X. Y. Chen and M. M. Song, Characterizations on isometries in linear n-normed spaces, Nonlinear Anal. 72 (2010), 1895-1901.
[4] K. Ciepliński, Generalized stability of multi-additive mappings, Appl. Math. Lett. 23 (2010), 12911294.
[5] K. Ciepliński, On Ulam Stability of a Functional Equation, Results Math., 75 (2020), Paper No. $151,11 \mathrm{pp}$.
[6] K. CIEPLIŃSKI, Ulam stability of functional equations in 2-Banach spaces via the fixed point method, J. Fixed Point Theory Appl., 23 (2021), Paper No. 33, 14 pp.
[7] J. B. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Am. Math. Soc., 74 (1968), 305-309.
[8] I. EL-FASSI, E. EL-HADY AND K. NIKODEM, On set-valued solutions of a generalized bi-quadratic functional equation, Results Math., 75 (2020), Paper No. 89, 14 pp.
[9] P. Ji, W. Qi and X. Zhan, Generalized stability of multi-quadratic mappings, J. Math. Res. Appl., 34 (2014), 209-215.
[10] Y. Ma, The Aleksandrov-Benz-Rassias problem on linear n-normed spaces, Monatsh. Math., 180 (2016), 305-316.
[11] MISIAK, n-inner product spaces, Math. Nachr., 140 (1989), 299-319.
[12] W. G. Park, Approximate additive mapping in 2-Banach spaces and related topics, J. Math. Anal. Appl., 376 (2011), 193-202.
[13] W. Prager and J. Schwaiger, Stability of the multi-Jensen equation, Bull. Korean Math. Soc. 45 (2008), 133-142.
[14] T. Z. Xu, Approximate multi-Jensen, multi-Euler-Lagrange additive and quadratic mappings in n Banach spaces, Abstr. Appl. Anal., 2013, Art. ID 648709, 12 pp.
[15] X. Zhao, X. Yang and C.-T. Pang, Solution and stability of the multiquadratic functional equation, Abstr. Appl. Anal., 2013, Art. ID 415053, 8 pp.
(Received May 17, 2022)
Choonkil Park
Research Institute for Natural Sciences
Hanyang University
Seoul 04763, Korea
e-mail: baak@hanyang.ac.kr
Abbas Najati
Department of Mathematics, Faculty of Sciences
University of Mohaghegh Ardabili
Ardabil, Iran
e-mail: a.nejati@yahoo.com
Mohammad B. Moghimi
Department of Mathematics, Faculty of Sciences
University of Mohaghegh Ardabili
Ardabil, Iran
e-mail: mbfmoghimi@yahoo.com
Batool Noori
Department of Mathematics, Faculty of Sciences
University of Mohaghegh Ardabili
Ardabil, Iran
e-mail: noori.batool@yahoo.com

[^0]
[^0]: Journal of Mathematical Inequalities
 www.ele-math.com
 jmi@ele-math.com

