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APPROXIMATION OF TWO GENERAL

FUNCTIONAL EQUATIONS IN 2–BANACH SPACES

CHOONKIL PARK, ABBAS NAJATI ∗ , MOHAMMAD B. MOGHIMI

AND BATOOL NOORI

(Communicated by J. Pečarić)

Abstract. In this paper, we study the Ulam stability and hyperstability of two general functional
equations in several variables in 2-Banach spaces. Multi-additive and multi-Jensen functions
are particular cases of these functional equations. We also improve the main results of Theorem
3 and Theorem 4 of [Ciepliński, K. Ulam stability of functional equations in 2-Banach spaces
via the fixed point method. J. Fixed Point Theory Appl. 23 (2021), no. 3, Paper No. 33, 14 pp.]
and their consequences.

1. Introduction and preliminaries

Assume that X is a linear space over the field F , and Y is a linear space over
the field K . Let a11,a12, . . . ,an1,an2 ∈ F, a1, j1,···, jn , . . . ,an, j1,···, jn ∈ F for j1, · · · , jn ∈
{−1,1} and Ai1,...,in ∈ K for i1, . . . , in ∈ {1,2} be given scalars. The following quite
general functional equations were very recently introduced by Ciepliński [5, 6]:

f (a11x11 +a12x12, . . . ,an1xn1 +an2xn2)

= ∑i1,...,in∈{1,2}Ai1,...,in f (x1i1 , . . . ,xnin)
(1)

and

∑ j1,..., jn∈{−1,1} f (a1, j1,···, jn(x11 + j1x12)+ · · ·+an, j1,···, jn(xn1 + jnxn2))

= ∑i1,...,in∈{1,2}Ai1,...,in f (x1i1 , . . . ,xnin)
(2)

He studied the Ulam stability of the functional equations (1) and (2) in 2-Banach spaces
[6]. The functional equation (1) generalizes among others the known functional equa-
tions

f (x11 + x12, . . . ,xn1 + xn2) = ∑
i1,...,in∈{1,2}

f (x1i1 , . . . ,xnin),

f

(
x11 + x12

2
, . . . ,

xn1 + xn2

2

)
= ∑

i1,...,in∈{1,2}

1
2n f (x1i1 , . . . ,xnin).
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These functional equations and other special cases of the functional equation (1) have
been investigated by some authors (see for example [1, 4, 13]). Let us also mention that
for the case n = 1, we obtain the linear functional equation

f (αx+ βy) = A f (x)+B f (y)

which includes, among others, the Cauchy equation and the Jensen functional equation.
The well-known Jordan-von Neumann equation

f (x+ y)+ f (x− y) = 2 f (x)+2 f (y)

is a special case of (2) for n = 1. The following functional equation

∑ j1,..., jn∈{−1,1} f (x11 + j1x12, . . . ,xn1 + jnxn2)

= ∑i1,...,in∈{1,2}2n f (x1i1 , . . . ,xnin)

is a particular case of Eq. (2) which characterizes the so-called n -quadratic functions
[9, 15]. Also, the functional equation

∑
j1, j2∈{−1,1}

f (x11 + j1x12,x21 + j2x22) = ∑
i, j∈{1,2}

Ai j f (x1i,x2 j)

is another particular case of Eq. (2) which was very recently investigated in [8].
In this note, we prove the Ulam stability and hyperstability of functional equations

(1) and (2) which improve Ciepliński’s results [6, Theorems 3, 4] and their conse-
quences.

2. Preliminaries

First, let us recall some basic definitions and facts concerning 2-normed spaces
(see for instance [2, 11, 14]).

DEFINITION 1. Let Y be an at least 2-dimensional real linear space. A function
‖., .‖ : Y 2 → R is called a 2 -norm on Y 2 if it fulfils the following four conditions:

(i) ‖x,y‖ = 0 if and only if x,y are linearly dependent;

(ii) ‖x,y‖ = ‖y,x‖ ;

(iii) ‖αx,y‖ = |α|‖x,y‖ ;

(iv) ‖x+ y,z‖ � ‖x,z‖+‖y,z‖ ,

for any α ∈ R and x,y,z ∈ Y . The pair (Y ,‖., .‖) is called a 2 -normed space.
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It follows from (i),(iii) and (iv) that the function ‖., .‖ is non-negative.
We say that a sequence {xn}n of elements of a 2-normed space (Y ,‖., .‖) is

Cauchy sequence provided

lim
n,k→∞

‖xn− xk,y‖ = 0, y ∈ Y .

The sequence {xn}n is called convergent if there is a y ∈ Y such that

lim
n→∞

‖xn− y,z‖ = 0, z ∈ Y .

In this case we say that y is the limit of {xn}n and it is denoted by

lim
n→∞

xn = y.

By a 2 -Banach space we mean a 2-normed space such that each its Cauchy se-
quence is convergent.

In 2011, W. G. Park [12] introduces a basic property of linear 2-normed spaces as
follows:

LEMMA 1. Let (Y ,‖., .‖) be a 2 -normed space.

(a) If x ∈ Y and ‖x,y‖ = 0 for all y ∈ Y , then x = 0 .

(b) For a convergent sequence {xn} in Y ,

lim
n→∞

‖xn,y‖ =
∥∥∥ lim

n→∞
xn,y

∥∥∥ , y ∈ Y .

By Lemma 1 (a) and (iv) , it is obvious that each convergent sequence has exactly
one limit and the standard properties of the limit of a sum and a scalar product hold
true.

LEMMA 2. Let (Y ,‖., .‖) be a 2 -normed space and x1, · · · ,xn ∈ Y \ {0} . Sup-
pose that ϕ : Y n →Y is a function such that ‖ϕ(x1, · · · ,xn),y‖= 0 for all y∈Y with
‖xi,y‖ �= 0 for all 1 � i � n. Then ϕ(x1, · · · ,xn) = 0 .

Proof. We can choose linearly independent elements y,z ∈ Y such that

‖xi,y‖ �= 0 and ‖xi,z‖ �= 0, 1 � i � n.

Since ‖ϕ(x1, · · · ,xn),y‖ = 0 and ‖ϕ(x1, · · · ,xn),z‖ = 0, there exist scalars λ ,μ such
that ϕ(x1, · · · ,xn) = λy and ϕ(x1, · · · ,xn) = μz . Then λy− μz = 0, and we conclude
that λ = μ = 0. Hence ϕ(x1, · · · ,xn) = 0. �

Finally, it should be noted that more information on 2-normed spaces as well as
on some problems investigated in them can be found for example in [2, 3, 10, 11, 14].
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3. Main results

We recall that a pair (G,d) is said to be a generalized metric space provided G
is a nonempty set and d : G×G → [0,+∞] is a function satisfying the standard metric
axioms.

We will use the following key theorem to prove our results.

THEOREM 1. [7] Let (G,d) be a complete generalized metric space and let J :
G → G be a strictly contractive mapping with Lipschitz constant 0 < L < 1 . If there
exists a nonnegative integer k such that d(Jkx,Jk+1x) < ∞ for some x ∈ X , then the
following are true.

(i) the sequence {Jnx} converges to a fixed point x∗ of J ;

(ii) x∗ is the unique fixed point of J in

G∗ = {y ∈ G : d(Jkx,y) < ∞};

(iii) d(y,x∗) � 1
1−Ld(y,Jy) for all y ∈ G∗ .

For convenience, we set

Df (x11,x12, · · · ,xn1,xn2) : = f (a11x11 +a12x12, . . . ,an1xn1 +an2xn2)

−∑i1,...,in∈{1,2}Ai1,...,in f (x1i1 , . . . ,xnin).

The following theorem presents a more general result than Theorem 3 of [6].

THEOREM 2. Assume that Y is a 2 -normed space. Let ϕ : X2n → [0,+∞) and
f : Xn → Y be functions such that

‖Df (x11,x12, · · · ,xn1,xn2),z‖ � ϕ(x11,x12, · · · ,xn1,xn2) (3)

for x11,x12, . . . ,xn1,xn2 ∈ X and z ∈ Y . Then f fulfills equation (1).

Proof. Replacing z by kz in (3) and dividing the resultant inequality by k , we
obtain

‖Df (x11,x12, · · · ,xn1,xn2),z‖ � 1
k ϕ(x11,x12, · · · ,xn1,xn2) (4)

for x11,x12, . . . ,xn1,xn2 ∈ X , z ∈ Y and k ∈ N . Allowing k tending to infinity, we get

‖Df (x11,x12, · · · ,xn1,xn2),z‖ = 0

for x11,x12, . . . ,xn1,xn2 ∈ X and z ∈ Y . Hence by Lemma 1, f satisfies (1). �

COROLLARY 1. Assume that ε > 0 and Y is a 2 -normed space. If f : Xn → Y
is a function satisfying

‖Df (x11,x12, · · · ,xn1,xn2),z‖ � ε (5)

for x11,x12, . . . ,xn1,xn2 ∈ X and z ∈ Y , then f fulfills equation (1) for x1, . . . ,xn ∈ X .
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Proof. The result follows from Theorem 2 by letting

ϕ(x11,x12, · · · ,xn1,xn2) = ε. �

THEOREM 3. Assume that Y is a 2 -Banach space, g : X → Y is a surjective
function and ∣∣∣∣∣ ∑

i1,...,in∈{1,2}
Ai1,...,in

∣∣∣∣∣ > 1. (6)

Let ϕ : X → [0,+∞) and f : Xn → Y be a function satisfying

‖Df (x11,x12, · · · ,xn1,xn2),g(z)‖ � ϕ(z) (7)

for x11,x12, . . . ,xn1,xn2 , z ∈ X . Then there is a unique function F : Xn → Y fulfilling
equation (1) and

‖ f (x1, . . . ,xn)−F(x1, . . . ,xn),g(z)‖ � ϕ(z)
|∑i1,...,in∈{1,2}Ai1,...,in |−1

(8)

for x1, . . . ,xn , z ∈ X .

Proof. Put

A := ∑
i1,...,in∈{1,2}

Ai1,...,in , ai := ai1 +ai2, i ∈ {1, . . . ,n}.

Let us first note that (7) with xi1 = xi2 = zi for i ∈ {1, . . . ,n} gives

‖ f (a1z1, . . . ,anzn)−A f (z1, . . . ,zn),g(z)‖ � ϕ(z), (z1, . . . ,zn,z) ∈ Xn+1. (9)

Set G := {T : Xn → Y } and define d : G ×G → [0,+∞] by

d(T,S) := inf{C ∈ [0,+∞] : ‖(T −S)(x1, · · · ,xn),g(z)‖ � Cϕ(z), x1, · · · ,xn, z ∈ X}.
It can be shown that (G ,d) is a complete generalized metric space. Let us define

Q : G → G , QT (x1, · · · ,xn) =
1
A

T (a1x1, · · · ,anxn).

We show that Q : G → G is a strictly contractive operator with the Lipschitz constant
1
|A| . Let T,S ∈ G with d(T,S) < ∞ and ε > 0. Then

‖(T −S)(x1, · · · ,xn),g(z)‖ � (d(T,S)+ ε)ϕ(z), x1, · · · ,xn, z ∈ X .

Consequently

‖QT (x1, · · · ,xn)−QS(x1, · · · ,xn),g(z)‖ =
1
|A| ‖(T −S)(a1x1, · · · ,anxn),g(z)‖

� 1
|A| (d(T,S)+ ε)ϕ(z)
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for all x1, · · · ,xn , z ∈ X . Therefore d(QT,QS) � 1
|A|(d(T,S) + ε) . Since ε > 0 is

arbitrary, we get d(QT,QS) � 1
|A|d(T,S) , as claimed. On the other hand, (9) yields

‖Qf (x1, · · · ,xn)− f (x1, · · · ,xn),g(z)‖ =
∥∥∥∥ 1

A
f (a1x1, · · · ,anxn)− f (x1, · · · ,xn),g(z)

∥∥∥∥
� 1

|A|ϕ(z), x1, · · · ,xn, z ∈ X .

Thus d(Qf , f ) � 1
|A| . Hence by Theorem 1 (i) , we deduce that the sequence {Qm f}m

is convergent in (G ,d) and F = limm→∞ Qm f is a fixed point of Q . Thus

F(x1, · · · ,xn) = lim
m→∞

Qm f (x1, · · · ,xn) = lim
m→∞

f (am
1 x1, · · · ,am

n xn)
Am ,

1
A

F(a1x1, · · · ,anxn) = F(x1, · · · ,xn), x1, · · · ,xn ∈ X .

Since f ∈ G ∗ , Theorem 1 (iii) implies

d( f ,F) � 1

1− 1
|A|

d(Qf , f ) � 1
|A|−1

which proves (8). Now, we show that the function F : Xn → Y fulfilling equation (1).
Indeed, from (7), we get

∥∥∥Df (am
1 x11,a

m
1 x12,···,am

n xn1,am
n xn2)

Am ,g(z)
∥∥∥ � 1

Am ϕ(z)

for x11,x12, . . . ,xn1,xn2 , z ∈ X . Letting m → ∞ , and applying the definition of F we
infer that

‖DF(x11,x12, · · · ,xn1,xn2),g(z)‖ = 0, x11,x12, . . . ,xn1,xn2, z ∈ X .

Since g is surjective, we deduce that F fulfils equation (1) by Lemma 1 (a) .
To prove the uniqueness of F , let H : Xn → Y be a solution of (1) satisfying (8).

Since H satisfies (1), we get

H(a1x1,a2x2, · · · ,anxn) = AH(x1,x2, · · · ,xn), x1,x2, · · · ,xn ∈ X .

Hence H is a fixed point of Q . On the other hand, (8) yields d( f ,H) � 1
|A|−1 . Hence

H ∈ G ∗ , and consequently H = F by Theorem 1 (ii) . �
In the following results, X is a normed linear space.

COROLLARY 2. Assume that ε,θ � 0 and Y is an 2 -Banach space. Let g :
X → Y be a surjective function and∣∣∣∣∣ ∑

i1,...,in∈{1,2}
Ai1,...,in

∣∣∣∣∣ > 1. (10)
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If f : X n → Y is a function satisfying

‖Df (x11,x12, · · · ,xn1,xn2),g(z)‖ � ε + θ‖z‖ (11)

for x11,x12, . . . ,xn1,xn2 , z ∈ X , then there is a unique function F : Xn → Y fulfilling
(1) and

‖ f (x1, . . . ,xn)−F(x1, . . . ,xn),g(z)‖ � ε + θ‖z‖
|∑i1,...,in∈{1,2}Ai1,...,in |−1

(12)

for x1, . . . ,xn , z ∈ X .

THEOREM 4. Assume that ε � 0 and Y is an 2 -normed space. Let {αi}n
i=1 ,

{βi}n
i=1 and {ri}n

i=1 be nonnegative real numbers with max1�i�n ri < 1 , and let f :
Y n → Y be a function such that

‖Df (x11,x12, · · · ,xn1,xn2),z‖ � ε + ∑n
i=1 [αi‖xi1,z‖ri + βi‖xi2,z‖ri ] (13)

for x11,x12, . . . ,xn1,xn2 , z ∈ Y . Then f satisfies (1).

Proof. Replacing z by kz in (13) and dividing the resultant inequality by k , we
obtain

‖Df (x11,x12, · · · ,xn1,xn2),z‖ � ε
k

+
n

∑
i=1

kri−1 [αi‖xi1,z‖ri + βi‖xi2,z‖ri ] .

Letting now k → ∞ , we get

‖Df (x11,x12, · · · ,xn1,xn2),z‖ = 0, x11, . . . ,xn2, z ∈ Y .

Hence by Lemma 1, f satisfies (1). �

THEOREM 5. Assume that ε � 0 and Y is an 2 -normed space. Let {αi}n
i=1 ,

{βi}n
i=1 be nonnegative real numbers and {ri}n

i=1 be real numbers with max1�i�n ri <
1 . Suppose f : Y n → Y satisfies (13) for x11,x12, . . . ,xn1,xn2 , z ∈ Y \ {0} with
‖xi j,z‖ �= 0 for 1 � i � n and j = 1,2 . Then f satisfies (1) for x11,x12, . . . ,xn1,xn2 ∈
Y \ {0} .

Proof. Let x11,x12, . . . ,xn1,xn2 ∈ Y \ {0} . By the same argument as above, we
get

‖Df (x11,x12, · · · ,xn1,xn2),z‖ = 0

for all z ∈ Y with ‖xi j,z‖ �= 0 for 1 � i � n, j = 1,2. Thus the result follows from
Lemma 2. �

THEOREM 6. Assume that Y is an 2 -normed space. Let {αi}n
i=1 , {βi}n

i=1 and
{ri}n

i=1 be nonnegative real numbers with min1�i�n ri > 1 , and f : Y n → Y be a
function such that

‖Df (x11,x12, · · · ,xn1,xn2),z‖ � ∑n
i=1 [αi‖xi1,z‖ri + βi‖xi2,z‖ri ] (14)

for x11,x12, . . . ,xn1,xn2 , z ∈ Y . Then f satisfies (1).



160 C. PARK, A. NAJATI, M. B. MOGHIMI AND B. NOORI

Proof. By replacing z by z
k in (14) and applying a similar argument as in the proof

of Theorem 4, the result is achieved. �

4. Stability and hyperstability of the functional equation (2)

For convenience, we set

Δ f (x11,x12, · · · ,xn1,xn2)

= ∑
j1,..., jn∈{−1,1}

f (a1, j1,···, jn(x11 + j1x12)+ · · ·+an, j1,···, jn(xn1 + jnxn2))

− ∑
i1,...,in∈{1,2}

Ai1,...,in f (x1i1 , . . . ,xnin).

By an argument similar to the proof of Theorem 2, it can be shown that the following
result improves Theorem 4 of [6].

THEOREM 7. Assume that Y is a 2 -normed space. Let ϕ : X2n → [0,+∞) and
f : Xn → Y be functions such that

‖Δ f (x11,x12, · · · ,xn1,xn2),z‖ � ϕ(x11,x12, · · · ,xn1,xn2)

for x11,x12, . . . ,xn1,xn2 ∈ X and z ∈ Y . Then f fulfills equation (2).

The proof of the following theorem is similar to the proof of Theorem 3. Hence,
we omit the proof.

THEOREM 8. Assume that Y is a 2 -Banach space, g : X → Y is a surjective
function and ∣∣∣∣∣ ∑

i1,...,in∈{1,2}
Ai1,...,in

∣∣∣∣∣ > 1.

Let ϕ : X → [0,+∞) and f : Xn →Y be a function such that f (x1, · · · ,xn) = 0 for any
(x1, · · · ,xn) ∈ Xn with at least one component which is equal to zero, and satisfying

‖Δ f (x11,x12, · · · ,xn1,xn2),g(z)‖ � ϕ(z)

for x11,x12, . . . ,xn1,xn2 , z ∈ X . Then there is a unique function F : Xn → Y fulfilling
equation (2) and

‖ f (x1, . . . ,xn)−F(x1, . . . ,xn),g(z)‖ � ϕ(z)
|∑i1,...,in∈{1,2}Ai1,...,in |−1

for x1, . . . ,xn , z ∈ X .

In the following results, X is a normed linear space.
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COROLLARY 3. Assume that ε,θ � 0 and Y is an 2 -Banach space. Let g :
X → Y be a surjective function and

∣∣∣∣∣ ∑
i1,...,in∈{1,2}

Ai1,...,in

∣∣∣∣∣ > 1.

If f : X n → Y is a function such that f (x1, · · · ,xn) = 0 for any x1, · · · ,xn in X with
at least one component which is equal to zero, and satisfying

‖Δ f (x11,x12, · · · ,xn1,xn2),g(z)‖ � ε + θ‖z‖ (15)

for x11,x12, . . . ,xn1,xn2 , z ∈ X , then there is a unique function F : Xn → Y fulfilling
(2) and

‖ f (x1, . . . ,xn)−F(x1, . . . ,xn),g(z)‖ � ε + θ‖z‖
|∑i1,...,in∈{1,2}Ai1,...,in |−1

for x1, . . . ,xn , z ∈ X .

The proof of the following theorems are similar to the proof of Theorems 4, 5 and
6. Hence, we omit the proofs.

THEOREM 9. Assume that ε � 0 and Y is an 2 -normed space. Let {αi}n
i=1 ,

{βi}n
i=1 and {ri}n

i=1 be nonnegative real numbers with max1�i�n ri < 1 , and let f :
Y n → Y be a function such that

‖Δ f (x11,x12, · · · ,xn1,xn2),z‖ � ε + ∑n
i=1 [αi‖xi1,z‖ri + βi‖xi2,z‖ri ] (16)

for x11,x12, . . . ,xn1,xn2 , z ∈ Y . Then f satisfies (2).

THEOREM 10. Assume that ε � 0 and Y is an 2 -normed space. Let {αi}n
i=1 ,

{βi}n
i=1 be nonnegative real numbers and {ri}n

i=1 be real numbers with max1�i�n ri <
1 . Suppose f : Y n → Y satisfies (16) for x11,x12, . . . ,xn1,xn2 , z ∈ Y \ {0} with
‖xi j,z‖ �= 0 for 1 � i � n and j = 1,2 . Then f satisfies (2) for x11,x12, . . . ,xn1,xn2 ∈
Y \ {0} .

THEOREM 11. Assume that Y is an 2 -normed space. Let {αi}n
i=1,{βi}n

i=1 and
{ri}n

i=1 be nonnegative real numbers with min1�i�n ri > 1 , and f : Y n → Y be a
function such that

‖Δ f (x11,x12, · · · ,xn1,xn2),z‖ � ∑n
i=1 [αi‖xi1,z‖ri + βi‖xi2,z‖ri ]

for x11,x12, . . . ,xn1,xn2 , z ∈ Y . Then f satisfies (2).
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