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ABSCISSAS OF LAPLACE–STIELTJES TRANSFORMS

HONG YAN XU AND ZU XING XUAN ∗

(Communicated by M. Krnić)

Abstract. By making use of the basic properties of Laplace-Stieltjes transform, we establish
some inequalities concerning the abscissa of convergence, the abscissa of absolute convergence
and the abscissa of uniform convergence of Laplace-Stieltjes transform

∫ ∞
0 est dα(t) . Moreover,

we point out that our formulas for the three abscissas of convergence are consistent with the
previous results given by Yu [26] for Laplace-Stieltjes transform under some conditions.

1. Introduction and some basic lemmas

Let α(x) be a bounded variation on any finite interval [0,Y ] (0 < Y < +∞) and
σ ,t ∈ R , then we call the following integral∫ +∞

0
esxdα(x), s = σ + it, (1)

as a Laplace-Stieltjes transform, which is first named for Pierre-Simon Laplace and
Thomas Joannes Stieltjes. Clearly, we can rewrite (1) as the form∫ +∞

0
estdα(t) = lim

R→+∞

∫ R

0
estdα(t). (2)

If this limit in (2) exists for a given s , we say that the integral (1) converges for the
value s , denote

F(s) =
∫ +∞

0
estdα(t). (3)

If the limit (2) does not exist, then we say that the integral (1) diverges. If α(t) satisies

α(t) = a1 +a2 + · · ·+an, λn < t < λn+1,

α(t) = 0, t = 0,

α(t) =
α(t+)+ α(t−)

2
, t > 0,

(4)

Mathematics subject classification (2020): 44A10, 30D15.
Keywords and phrases: Laplace-Stieltjes transform, the abscissa of convergence, the abscissa of abso-

lute convergence, the abscissa of uniform convergence, estimate.
The authors was supported by the National Natural Science Foundation of China (12161074) and the Talent Introduc-

tion Research Foundation of Suqian University (106-CK00042/028).
∗ Corresponding author.

c© � � , Zagreb
Paper JMI-17-12

163

http://dx.doi.org/10.7153/jmi-2023-17-12


164 H. Y. XU AND Z. X. XUAN

where
0 � λ1 < λ2 < · · · < λn < · · · , λn → +∞(n → +∞). (5)

then (1) can become the Dirichlet series

f (s) =
+∞

∑
n=1

ane
λns. (6)

As is known to all, the study of the Laplace-Stieltjes transforms can be tracked
back to about ninety years ago or even earlier (see [4, 18]). Nowadays, we can find that
Laplace-Stieltjes transforms are widely and closely related to functional equation and
analysis, theoretical and applied probability, optimization and queuing theory, machin-
ery and control theory and so on.

In 1963, Yu [26] considered the convergence of Laplace-Stieltjes transforms

∫ +∞

0
e−sxdα(x),

which is different from (1), and obtained the Valiron-Knopp-Bohr formula concerning
the associated abscissas of bounded convergence, absolute convergence and uniform
convergence of Laplace-Stieltjes transforms. After that, many scholars had paid lots of
attention to exploring the growth and the value distribution of entire (analytic) functions
defined by such Laplace-Stieltjes transforms converges in the whole (half) plane, and
obtained a number of important and meaningful results (see [1, 2, 3, 11, 16, 5]). The
results about the singular points (singular directions) of analytic functions (entire func-
tions) represented by such Laplace-Stieltjes transforms can be found in [13, 14, 24, 25];
and a series of results of the growth of such Laplace-Stieltjes transforms can refer to
Refs. [1, 6, 7, 8, 12, 15, 19]. Since 2012, M. M. Sheremeta,Y. Y. Kong, X. Luo, H.
Y. Xu have studied the growth of Laplace-Stieltjes transform (1), by applying the max-
imum term and the centre indexes of maximum terms of (1) (see [10, 9, 22]); G. S.
Srivastava, Y. Y. Kong, S. Y. Liu, etc. have discussed the approximation of Laplace-
Stieltjes transform (1), and obtained a series of the condition of equivalence concerning
the error, the coefficients and the growth indexes (see [17, 20, 21, 23]).

However, to the knowledge of authors, there were seldom references focusing on
the convergence of Laplace-Stieltjes transform (1). Naturally, this paper is devoted to
investigate this problem, which will give an supplement of those references mentioned
in the above.

The paper is organized as follows. In Section 2, we will introduce three definitions
of the convergent abscissas of Laplace-Stieltjes transform (1) including the convergent
abscissas, absolute convergent abscissas and uniform convergent abscissas. In Section
3 we analyze the relationship between three convergent abscissas, and point out that our
formulas of the convergent abscissas are consistent with the Valiron-Knopp-Bohr for-
mula given by Yu [26]. The calculation formulas and properties of the three convergent
abscissas will be discussed in Section 4, Section 5 and Section 6, respectively.

Before the formal discussion, we first introduce some lemmas on the basic prop-
erties of Laplace-Stieltjes, which are used in this paper.
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LEMMA 1.1. (see [18]). If f (x) is of bounded variation and α is continuous in
(a,b) , then the Stieltjes integral of f (x) with respect to α(x) from a to b exists and

∫ b

a
f (x)dα(x) = f (b)α(b)− f (a)α(a)−

∫ b

a
α(x)d f (x).

LEMMA 1.2. (see [18]). If f (x) is continuous and α is of bounded variation in
[a,b] , then

G(x) =
∫ x

a
f (t)dα(t), a � x � b

is also of bounded variation in [a,b] and

VG(x) �
∫ x

a
| f (t)||dα(t)|,

where VG(x) is the total variation of G(x) in [0,x] , and

G(x+)−G(x) = f (x)[α(x+)−α(x)], (a � x < b),

G(x)−G(x−) = f (x)[α(x)−α(x−)], (a < x � b).

LEMMA 1.3. (see [18]). If f (x) and ϕ(x) are continuous and α is of bounded
variation in [a,b] , and if

β (x) =
∫ x

0
ϕ(t)dα(t), (a � x � b),

then ∫ b

a
f (x)dβ (x) =

∫ b

a
f (x)ϕ(x)dα(x).

LEMMA 1.4. (see [18]). If f (x) is continuous and α is of bounded variation in
[a,b] , then for any c in (a,b) ,

∫ b

a
f (x)dα(x) =

∫ c

a
f (x)dα(x)+

∫ b

c
f (x)dα(x),

∣∣∣∣
∫ b

a
f (x)dα(x)

∣∣∣∣ �
∫ b

a
| f (x)|dVα (x) � max

a�x�b
| f (x)|Vα(b),

where Vα(x) is the total variation of α(x) in [a,x] .

2. Some concepts of abscissas of convergence of (1)

Let σF
c , σF

a , σF
u be the abscissas of convergence, absolute convergence and uni-

form convergence of Laplace-Stieltjes transform (1), respectively, which are defined
by

σF
c = sup{σ0 : (1) converges in ℜs < σ0, σ0 ∈ R} ,



166 H. Y. XU AND Z. X. XUAN

σF
a = sup{σ1 : (1) converges absolutely in ℜs < σ1, σ1 ∈ R} ,

σF
u = sup{σ2 : (1) converges uni f ormly in ℜs < σ2, σ2 ∈ R} .

For the abscissas σF
c of convergence of Laplace-Stieltjes transform (1), we have

THEOREM 2.1. Let s0 = σ0 + iτ0 and

β (u) =
∫ u

0
es0t dα(t), (u � 0). (7)

If

sup
0�u<+∞

|β (u)| = sup
0�u<+∞

∣∣∣∣
∫ u

0
es0t dα(t)

∣∣∣∣ = M < ∞, (8)

then (1) converges for every s = σ + iτ such that σ < σ0 , and∫ +∞

0
estdα(t) = (s0 − s)

∫ +∞

0
estβ (t)dt, (9)

the integral on the right hand side of (9) converges absolutely.

Proof. By Lemma 1.3, we have

∫ R

0
estdα(t) =

∫ R

0
e(s−s0)t dβ (t). (10)

With the analysis of integration by part, it follows that

∫ R

0
estdα(t) = e(s−s0)Rβ (R)− (s− s0)

∫ R

0
e(s−s0)tβ (t)dt. (11)

Since ∣∣∣e(s−s0)Rβ (R)
∣∣∣ = e(σ−σ0)R |β (R)| ,

thus by combining with (8), we can get

lim
R→+∞

e(s−s0)Rβ (R) = 0, σ < σ0. (12)

On the other hand, the condition (8) can lead to∣∣∣∣
∫ +∞

0
e(s−s0)tβ (t)dt

∣∣∣∣ �
∫ +∞

0
e(σ−σ0)t |β (t)||dt| � M

∫ +∞

0
e(σ−σ0)t dt =

M
σ0 −σ

.

This shows that the integral
∫ +∞
0 e(s−s0)tβ (t)dt converges absolutely for σ < σ0 .

Therefore, this completes the proof of Theorem 2.1. �
From Theorem 2.1, we have

COROLLARY 2.1. If (1) converges for s0 = σ0 + iτ0 , then (1) converges for all
s = σ + iτ satisfying σ < σ0 .
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REMARK 2.1. From Corollary 2.1, we can see that the convergence region of
(1) must be a half plane or whole plane. For example, the abscissa of convergence∫ +∞
0 esteet

dt is −∞ , the abscissa of convergence
∫ +∞
0 este−et

dt is +∞ , the abscissa of
convergence

∫ +∞
0 estdt is 0 .

Let V (x) denote the total variation of α(x) in [0,x] . If s = σ + iτ and∫ +∞

0
eσt |dα(t)| =

∫ +∞

0
eσtdV (x)

converges, then we say that Laplace-Stieltjes transform (1) converges absolutely at s =

σ + iτ . Similarly, if α(t) is stated as in (4), and the series
+∞
∑

n=1
|an|eλnσ converges, then

we say that Dirichlet series
+∞
∑

n=1
aneλns converges absolutely for s = σ + iτ . For any

fixed σ0 and σ � σ0 , we have∫ +∞

0
eσtdV (t) �

∫ +∞

0
eσ0t dV (t). (13)

For the abscissa of absolute convergence of Laplace-Stieltjes transform (1), we
have

THEOREM 2.2. If (1) converges absolutely at the point s0 = σ0 + iτ0 , then (1)
converges absolutely for all s = σ + iτ satisfying σ � σ0 .

REMARK 2.2. We can get from (13) that (1) converges uniformly for all s = σ +
iτ satisfying σ � σ0 .

The following example show that the abscissa of convergence of (1) can be differ-
ent from the abscissa of absolute convergence of (1).

EXAMPLE 2.1. Let F1(s) =
∫ +∞
0 esteθt sineθt dt (θ < 0) , in view of

|esteθt sineθt | � e(σ+θ)t ,

∫ t

0
|sineθt |dt =

1
θ

∫ +∞

1

|sinu|
u

du = ∞,

thus it follows that σF1
a < −θ . And in view of∫ +∞

0
esteθt sineθtdt =

1
θ

∫ +∞

1

sinu

u−s/k
du,

then we have σF1
c = 0.

EXAMPLE 2.2. Let F2(s) =
∫ +∞
0 e(s−1)teet

sineet
dt . Set u = eet

, in view of

F2(s) =
∫ +∞

0
e(s−1)teet

sineet
dt =

∫ +∞

e

sinu
(logu)−s du,

thus we have σF2
c = 0 and σF2

a = −∞ .
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For the uniform convergence of Laplace-Stieltjes transform (1), we have

THEOREM 2.3. If (1) converges uniformly for s0 = σ0 + iτ , −∞ < τ < +∞ , then
(1) converges uniformly for all s = σ + iτ satisfying σ � σ0 .

Proof. In view of Theorem 2.3, we should prove that for any ε > 0, there exists
r0 > 0 independent of σ ,τ such that r > r0 ,∣∣∣∣

∫ +∞

r
e(σ+iτ)tdα(t)

∣∣∣∣ < ε,

holds for σ < σ0 , −∞ < τ < +∞ .
Since (1) converges uniformly for s0 = σ0 + iτ , −∞ < τ < +∞ , then for any

ε(> 0) , there exists r0 > 0 such that∣∣∣∣
∫ +∞

r
e(σ0+iτ)tdα(t)

∣∣∣∣ <
ε
2
, r > r0, −∞ < τ < +∞. (14)

Let

β (t,τ) =
∫ +∞

t
e(σ0+iτ)ydα(y), t � 0, −∞ < τ < +∞,

thus for any t � r0 , −∞ < τ < +∞ , it follows that

|β (t,τ)| < ε
2
, (15)

and ∫ r′

r
e(σ+iτ)tdα(t) = −

∫ r′

r
e(σ−σ0)t dtβ (t,τ), r′ > r, −∞ < τ < +∞. (16)

Since ∫ r′

r
e(σ+iτ)tdα(t) =−β (r′,τ)e(σ−σ0)r′ + β (r,τ)e(σ−σ0)r

+(σ −σ0)
∫ r′

r
e(σ−σ0)tβ (t,τ)dt, (17)

and let r′ → +∞ , by combining with σ � σ0 , |β (r′,τ)| � ε
2 and e(σ−σ0)r′ → +∞ ,

r′ → +∞ , we obtain∫ +∞

r
e(σ+iτ)tdα(t) = β (r,τ)e(σ−σ0)r +(σ −σ0)

∫ +∞

r
e(σ−σ0)tβ (t,τ)dt. (18)

In view of (15) and (18), we can deduce that for any r0 > 0,∣∣∣∣
∫ +∞

r
e(σ+iτ)tdα(t)

∣∣∣∣ � ε
2
− ε

2
(σ −σ0)

∫ +∞

r
e(σ−σ0)t dt � ε.

Therefore, this completes the proof of Theorem 2.3. �
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3. Results

From Theorems 4.1, 5.1–6.1, we can obtain

THEOREM 3.1. For Laplace-Stieltjes transform (1), if α(t) satisfies (4), and λn

satisfies (5), then the abscissas σF
c , σF

a , σF
u of convergence of (3) satisfy

− limsup
n→+∞

logn
λn

− limsup
t→+∞

log |α(t)|
t

� σF
a � σF

u � σF
c � − limsup

t→+∞

log |α(t)|
t

. (19)

Here, we give a brief proof of this result. From the assumptions of Theorem 3.1,
we have the fact that

|α(x)−α(0)| =
∣∣∣∣
∫ x

0
dα(t)

∣∣∣∣ �
∣∣∣∣
∫ x

0
|eitτ |dα(t)

∣∣∣∣ � A(x),

If α(0) exists, then it follows that σF
u � σF

c .
On the other hand, in view of Lemma 1.4, for any τ ∈ (−∞,+∞) , we have

|β (x,τ)| �
∫ x

0

∣∣eiτt
∣∣dV (x) � V (x),

that is, A(x) � V (x) . By combining with Theorem 5.1 and Theorem 6.1, we have
σF

a � σF
u . Thus, we can get by Theorem 5.2 that the conclusions of Theorem 3.1.

We can see that the conclusion (19) is very similar to the Valiron-Knopp-Bohr
formula given by Yu [26]. Let us first recall the Valiron-Knopp-Bohr formula. If the
sequence {λn} satisfies (5),

limsup
n→+∞

(λn+1−λn) < +∞, (20)

and

limsup
n→+∞

logn
λn

= D < +∞. (21)

then the abscissa σF
c of convergence, the abscissa σF

a of absolute convergence, the
abscissa σF

u of uniform convergence of (1) satisfy

− limsup
n→+∞

logn
λn

− limsup
n→+∞

logAn

λn
� σF

c � − limsup
n→+∞

logAn

λn
, (22)

− limsup
n→+∞

logn
λn

− limsup
n→+∞

log Ãn

λn
� σF

a � − limsup
n→+∞

log Ãn

λn
, (23)

− limsup
n→+∞

logn
λn

− limsup
n→+∞

logA∗
n

λn
� σF

u � − limsup
n→+∞

logA∗
n

λn
, (24)

where
An = sup

λn<x�λn+1

|α(x)−α(λn)| ,
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Ãn =
∫ λn+1

λn

|dα(x)| = V (λn+1)−V(λn),

A∗
n = sup

λn<x�λn+1,−∞<t<∞

∣∣∣∣
∫ x

λn

eitydα(y)
∣∣∣∣ .

In view of the proof of the conclusion (22) given by Yu in [26], we know that the
hypothesis of α(λn) being finite is the premise. For any x > 0, we have

|α(t)| � |α(t)−α(λn)|+ |α(λn)|, |α(t)−α(λn)| � |α(t)|+ |α(λn)|,
thus we can prove that the conclusions of the abscissa of convergence σF

c of Laplace-
Stieltjes transform (1) in (19) and (22) are consistent.

From the definitions of A(x), Ãn , A∗
n and V (x) , we have

Ãn � V (x) � n max
1�k�n

Ãk, A∗
n � A(x) � n max

1�k�n
A∗

n.

If

limsup
n→+∞

log Ãn

λn
= −∞,

(
limsup

n→∞

logA∗
n

λn
= −∞,

)
limsup
n→+∞

logn
λn

= D < +∞, (25)

thus we can deduce from (19) and (23) that σF
a = +∞ (σF

u = +∞).
If

limsup
n→+∞

log Ãn

λn
= 0,

(
limsup
n→+∞

logA∗
n

λn
= 0,

)
limsup
n→+∞

logn
λn

= 0, (26)

thus we can deduce from (19) and (23) that σF
a = 0 (σF

u = 0).

4. The abscissa of convergence of Laplace-Stieltjes transform

In this section, we will give the formula of the abscissa of convergence of Laplace-
Stieltjes transform (1) as follows.

THEOREM 4.1. If Laplace-Stieltjes transform (1) satisfies

limsup
t→+∞

log |α(t)|
t

= A �= 0, (27)

then σF
c = −A.

To prove Theorem 4.1, we require three lemmas below.

LEMMA 4.1. For Laplace-Stieltjes transform (1), if α(x) satisfies

α(t) = O(eσ0t), t → +∞, (28)

for some real number σ0 , then (1) converges for all s = σ + iτ satisfying σ < −σ0 .
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Proof. By Lemma 1.1, for any 0 < R < +∞ , we have

∫ R

0
estdα(t) = esRα(R)−α(0)− s

∫ R

0
estα(t)dt. (29)

Since α(t) is a bounded variation function at any finite interval, and in view of (28),
there exists a positive constant K such that 0 � t < +∞ ,

|α(t)| � Keσ0t . (30)

Let R → +∞ , for s = σ + iτ with σ < −σ0 , it follows from (29) and (30) that

|α(R)esR| � e(σ+σ0)R → 0, (31)

and ∣∣∣∣
∫ +∞

0
estα(t)dt

∣∣∣∣ � K
∫ +∞

0
e(σ+σ0)tdt = − K

σ + σ0
. (32)

Let R → +∞ in (29), and by combining with (31) and (32), one can prove that (1)
converges for all s = σ + iτ with σ < −σ0 .

Therefore, this completes the proof of this lemma. �

COROLLARY 4.1. If α(+∞) exists, and

α(t)−α(+∞) = O(eσ0t),

for some real number σ0 , then (1) converges for all s = σ + iτ with σ < −σ0 .

REMARK 4.1. In view of (29), we have

∫ +∞

0
estdα(t) = −α(0)− s

∫ +∞

0
estα(t)dt, σ < −σ0. (33)

REMARK 4.2. It should be pointed out that the inverse proposition of Lemma 4.1
does not hold. For example,

∫ ∞
0 estdt converges for all s = σ + it with σ < 0, but

α(t) = t does not satisfy (28).

LEMMA 4.2. If (1) converges at the point s0 = σ0 + iτ with σ0 < 0 , then we have

α(t) = o(e−σ0t), t → +∞. (34)

REMARK 4.3. The conclusions of Lemma 4.2 is not true for σ0 = 0. For example,
Let α(0) = 0, α(t) = 1,(t > 0) in (1), then (1) converges for all s , but α(t) �= o(1) as
t → +∞ .

Proof. Let

β (t) =
∫ t

0
es0udα(u), 0 < t < +∞,
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then

α(t)−α(0) =
∫ t

0
e−s0udβ (u). (35)

In view of Lemma 1.1, it follows

α(t)−α(0) = β (t)e−s0t + s0

∫ t

0
e−s0uβ (u)du. (36)

Since (1) converges for s0 = σ0 + iτ , it follows that β (+∞) exists. By combining with
(36), we have

lim
t→+∞

[α(t)−α(0)]es0t = lim
t→+∞

(
β (+∞)+ s0e

s0t
∫ t

0
e−s0uβ (u)du

)

= lim
t→+∞

s0e
s0t

∫ t

0
e−s0u[β (u)−β (+∞)]du. (37)

In view of σ0 < 0, it follows that the limit of the above equality is 0, that is,

α(t)−α(0) = o(e−σ0t), α(t) = o(e−σ0t), t → +∞.

Therefore, this completes the proof of this lemma. �

LEMMA 4.3. If (1) converges at the point s0 = σ0 + iτ with σ0 > 0 , then α(+∞)
exists and

α(t)−α(+∞) = o(e−σ0t), t → +∞. (38)

REMARK 4.4. The following example shows that the conclusion of Lemma 4.3
can not hold if σ0 < 0 is replaced by σ0 � 0. Let α(t) = c , (t � 1) , α(t) = 3t

1
3 ,

(t > 1) , s = i in (1), then (1) becomes

∫ +∞

1

cost + isin t

t
2
3

dt.

By the Dirichlet criterion in the anomalous integral, we obtain that α(+∞) does not
exist.

Proof. From the assumptions of Lemma (4.3), we have that (1) converges at the
point s = 0. By combining with

∫ ∞
0 dα(t) = α(+∞)−α(0) , we have that α(+∞)

exists. Since

α(+∞)−α(t) =
∫ +∞

t
e−s0udβ (u),

where β (t) is stated as in Lemma 4.2, this leads to

α(+∞)−α(t) = lim
R→+∞

e−s0Rβ (R)− e−s0tβ (t)+ s0

∫ +∞

t
e−s0uβ (u)du. (39)
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Since (1) converges at the point s0 = σ0 + iτ , it follows that β (+∞) exists. In view of
σ0 > 0, then we have lim

R→+∞
e−s0Rβ (R) = 0. Thus, we can deduce from (39) that

lim
t→+∞

[α(+∞)−α(t)]es0t = −β (+∞)+ lim
t→+∞

s0e
s0t

∫ +∞

t
e−s0uβ (u)du

= − lim
t→+∞

s0e
s0t

∫ +∞

t
e−s0u[β (+∞)−β (u)]du

= 0,

Therefore, this completes the proof of Lemma 4.3. �
The proof of Theorem 4.1. Two cases will be discussed below.
Case 1. Suppose that A > 0. For ε > 0, then −(A+ ε) < 0. In view of (27), it

follows that
α(t) = O(e(A+ε)t), t → +∞. (40)

And by Lemma 4.1 and (40), we have that (1) converges for all s = σ + iτ with σ <
−(A+ ε) . Due to the arbitrariness of ε , thus it follows that (1) converges for all s =
σ + iτ with σ < −A .

Next, we prove that (1) diverges for all s = σ + iτ with σ > −A . By means of
reduction to absurdity, suppose that (1) converges for s1 = γ + iτ with −A < γ < 0. In
view of Lemma 4.2, it follows that

α(t) = o(e−γt), t → +∞. (41)

This means that there exists a positive number K and t0 ∈ R such that for t > t0 ,

|α(t)| < Ke−γt ,

that is,
log |α(t)| < logK− γt, (t > t0).

Thus, it follows that

A = limsup
r→+∞

log |α(t)|
t

� −γ,

which is contradiction with the hypothesis of −A < γ . Hence, we obtain that σF
c =−A

for A > 0.

Case 2. Suppose that A < 0. Similar to the argument as in Case 1, we can prove
that (1) converges for all s = σ + iτ with σ < −A . Thus, it yields that (1) converges
at the point s = 0. This leads to α(+∞) = 0. On the other hand, assume that (1)
converges at the point s = γ + iτ with γ > −A . In view of Lemma 4.3, and combining
with α(+∞) = 0, it follows that

α(t) = o(e−γt), t → +∞.

Thus, we have

A = limsup
t→+∞

log |α(t)|
t

� −γ,
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which is a contradiction with γ > −A . Hence, we obtain that (1) converges for all
s = γ + iτ with γ < −A .

From Case 1 and Case 2, we obtain σF
c = −A . This completes the proof of Theo-

rem 4.1. �

From Theorem 4.1, we can get the following corollaries.

COROLLARY 4.2. If Laplace-Stieltjes transform (1) satisfies

limsup
r→+∞

log |α(t)|
t

= +∞(−∞),

then σF
c = −∞(+∞) .

COROLLARY 4.3. If the abscissa σF
c of convergence of Laplace-Stieltjes trans-

form (1) satisfies σF
c � 0 , then

σF
c = − limsup

t→+∞

log |α(t)|
t

.

Proof. From the assumption of Corollary 4.3, it follows that σF
c � 0. Set

A = limsup
t→+∞

log |α(t)|
t

.

For σF
c = 0. If A �= 0, thus it follows in view of Theorem 4.1 that σF

c = −A �= 0,
a contradiction.

For σF
c < 0. If −A �= σF

c and A �= 0, thus it follows from Theorem 4.1 that
σF

c = −A , this is also a contradiction. If A = 0, thus it follows from Theorem 4.1 that
σF

c � 0, a contradiction. Hence, this completes the proof of Corollary 4.3. �

COROLLARY 4.4. If Laplace-Stieltjes transform (1) satisfies that α(t) has no
limit as t → +∞ , and

limsup
t→+∞

log |α(t)|
t

= 0,

then σF
c = 0 .

REMARK 4.5. The following example shows that the condition “α(t) has no limit
as t → +∞” in Corollary 4.4 can not be removed. For example, the abscissa of conver-
gence of the integral

∫ +∞
0 estd(1−e−t) is σF

c =−1, but this shows that α(t) = 1−e−t ,

limsup
t→+∞

log |α(t)|
t

= limsup
t→+∞

log |1− e−t|
t

= 0.
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Proof. Here we use reduction to absurdity. Suppose that σF
c �= 0. If σF

c > 0,

it follows from Theorem 4.1 that σF
c = − limsup

t→+∞

log |α(t)|
t , which is a contradiction

with the assumption of Corollary 4.4. If σF
c < 0, in view of Corollary 4.3, we have

σF
c = − limsup

t→+∞

log |α(t)|
t = 0, this is also a contradiction. Hence, we have σF

c = 0. �

COROLLARY 4.5. For Laplace-Stieltjes transform (1), if α(+∞) exists and

limsup
t→+∞

log |α(t)−α(+∞)|
t

= A � 0,

then σF
c = −A.

COROLLARY 4.6. If the abscissa of convergence of Laplace-Stieltjes transform
(1) satisfies σF

c > 0 , then we have that α(+∞) exists and

σF
c = − limsup

t→+∞

log |α(t)−α(+∞)|
t

.

Now, we give an application of Theorem 4.1 for Dirichlet series as follows.

THEOREM 4.2. If Dirichlet series (6) satisfies

limsup
n→+∞

log

∣∣∣∣ n
∑

k=1
ak

∣∣∣∣
λn

= A �= 0, (42)

then we have σ f
c = −A.

Proof. In view of Theorem 4.1, we only need to prove that α(t) satisfies (27) .

Denote sn =
n
∑

k=1
ak = a1 + a2 + · · ·+ an , For λn < t < λn+1 , and combining with the

definition of α(t) , we have

log |α(t)|
t

=
log |sn|

t
<

log |sn|
λn

. (43)

Thus, it follows

γ := limsup
t→+∞

log |α(t)|
t

� limsup
n→+∞

log |sn|
λn

= A. (44)

Next, we prove that γ < A in (44) does not hold. We use reduction to absurdity.
Suppose that γ < A , then there exists γ < γ1 < A such that for sufficient large t ,

log |α(t)|
t

< γ1,
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thus for sufficient large n , it follows

log |sn|
t

< γ1.

Let t → λn , the above inequality leads to

A = limsup
n→+∞

log

∣∣∣∣ n
∑

k=1
ak

∣∣∣∣
λn

� γ1,

this can yield a contradiction with γ < A . Hence, we have

limsup
t→+∞

log |α(t)|
t

= A.

Thus, by combining with Theorem 4.1, one can prove Theorem 4.2 easily. �

5. The abscissa of absolute convergence of (1)

In this section, we will give the formula of the abscissa of absolute convergence of
Laplace-Stieltjes transform (1) as follows.

THEOREM 5.1. If Laplace-Stieltjes transform (1) satisies

limsup
t→+∞

logV (t)
t

= A �= 0, (45)

where V (x) is the total variation of α(x) in [0,x] . Then σF
a = −A.

Proof. By using the same argument as in the proof of Theorem 4.1, one can prove
the conclusion of Theorem 5.1 easily. �

The following result reveals the relationship on the abscissa of between conver-
gence and absolute convergence of Laplace-Stieltjes transform (1).

THEOREM 5.2. If Laplace-Stieltjes transform (1) satisfies that α(t) is monotonic
in (λn,λn+1) (n = 0,1, . . . ,) , where the sequence {λn}+∞

n=1 satisfy (5), then

σF
a −σF

c � − limsup
n→+∞

logn
λn

.

Proof. Let

limsup
n→+∞

logn
λn

= D < +∞. (46)

If D = ∞ , the conclusion of Theorem 5.2 holds clearly.
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Since D is a non-negative number, we consider the following auxiliary series

∞

∑
n=1

eλns.

By observing this series, it follows that an = 1, n = 1,2, . . . . If D �= 0, in view of
Theorem 4.2, the abscissa of convergence of the above series is −D , and since this
series diverges at the point s = 0, so the abscissa of convergence of this series is −D .

Assume that (1) converges at the point s0 = σ0 + iτ0 , then there exists r0 > 0 such
that for any r′′,r′ > r0 , ∣∣∣∣

∫ r′′

r′
es0t dα(t)

∣∣∣∣ � 1.

In particular, there exists a positive integer N ∈ N+ such that for n � N ,∣∣∣∣
∫ t

λn+
es0t dα(t)

∣∣∣∣ � 1, t > λn > r0. (47)

By applying Lemma 1.2 for (47), it leads to∣∣∣R′′
ne

s0λn

∣∣∣ � 1,
∣∣∣R′

n+1e
s0λn

∣∣∣ � 1, (48)

where
R′′

n = α(λn+)−α(λn), R′
n+1 = α(λn+1)−α(λn+1−).

Now, we only prove that
∫ +∞
0 estdV (t) converges for all s = σ + iτ with σ <

σ0−D , or the following series

+∞

∑
n=0

∫ λn+1

λn

eσtdV (t)

converges.
For λn < t < λn+1 , in view of the monotonicity of α(t) , we have

∫ λn+1

λn

eσtdV (t) =
∣∣∣∣
∫ λn+1−

λn+1

eσtdα(t)
∣∣∣∣+ |R′′

n|eλnσ + |R′
n+1|eλn+1σ , (49)

where

+∞

∑
n=1

|R′′
n |eλnσ =

+∞

∑
n=1

e(σ−σ0)λn ,
+∞

∑
n=1

|R′
n+1|eλnσ =

+∞

∑
n=1

e(σ−σ0)λn+1 .

In view of 0 � limsup
n→+∞

logn
λn

= D < σ0−σ , for any ε (0 < ε < σ0−σ −D) , there

exists a positive integer N1 such that

λn >
logn
D+ ε

, n > N1. (50)
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and combining with (50), we have

e(σ−σ0)λn � e
σ−σ0
D+ε logn =

1

n
σ0−σ
D+ε

, n > N1. (51)

Due to ε < σ0 −σ −D , that is, σ0−σ
D+ε > 1, thus the series

+∞
∑

n=1

1

n
σ0−σ
D+ε

converges, this

leads to
+∞
∑

n=1
|R′′

n |eλnσ converges. Similarly, we can get that the series
+∞
∑

n=1
|R′

n+1|eλnσ

converges.

Next, we will discuss the convergence of the series
+∞
∑

n=1

∣∣∣∫ λn+1−
λn+1

eσt dα(t)
∣∣∣ . Set

βn(t) =
∫ t

λn+
es0udα(u), r0 < λn < t.

Due to∫ λn+1−

λn+
eσt dα(t) =

∫ λn+1−

λn+
e(σ−s0)tdβn(t)

= βn(λn+1−)e(σ−s0)λn+1−− (σ − s0)
∫ λn+1−

λn+
e(σ−s0)t dt, (52)

and in view of (48), it follows that |βn(λn+1−)| � 1. Thus, for sufficient large n and
any t > λn , we have

+∞

∑
n=1

∣∣∣∣
∫ λn+1−

λn+
eσtdα(t)

∣∣∣∣ �
+∞

∑
n=1

e(σ−σ0)λn+1 +K
+∞

∑
n=1

∫ λn+1

λn

e(σ−σ0)t dt

=
+∞

∑
n=1

e(σ−σ0)λn+1 +K
∫ +∞

0
e(σ−σ0)tdt, (53)

where K is a constant. By making use of σ −σ0 < −D < 0, it follows that∫ +∞

0
e(σ−σ0)tdt =

1
σ0 −σ

.

And by combining with (49), we obtain that
∫ +∞
0 estdV (t) converges for all s = σ + iτ

with σ < σ0−D , which implies that (1) converges for all s = σ + iτ with σ < σ0−D .
Therefore, this completes the proof of Theorem 5.2. �
From Theorem 5.2, one can get the following result on the abscissa of between

convergence and absolute convergence of Dirichlet series.

COROLLARY 5.1. For Dirichlet series f (s) =
+∞
∑

n=1
aneλns , if {λn}+∞

n=1 satisfies (5),

then

σ f
a −σ f

c � − limsup
n→+∞

logn
λn

,

where σ f
a ,σ f

c are the abscissas of convergence and absolute convergence of Dirichlet
series, respectively.
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6. The abscissa of uniform convergence of Laplace-Stieltjes transform

For x � 0, −∞ < τ < +∞ , denote

β (x,τ) =
∫ x

0
eiτtdα(t), A(x) = sup

−∞<τ<+∞
|β (x,τ)| .

Now, the formula of the abscissa of uniform convergence of (1) will be given below.

THEOREM 6.1. If Laplace-Stieltjes transform (1) satisfies

limsup
x→+∞

logA(x)
x

= γ > 0, (54)

then σF
u = −γ .

To prove Theorem 6.1, we first introduce some lemmas as follows.

LEMMA 6.1. Let s = σ + iτ , and for a fixed real number γ ,

A(x) = O(eγx), x → +∞, (55)

then for any ε > 0 , (1) converges uniformly on the left half σ �−γ−ε , −∞ < τ < +∞ .

Proof. Since for any r > 0, −∞ < τ < +∞ , we have

∫ r

0
e(σ+iτ)tdα(t) =

∫ r

0
eσtdtβ (t,τ)

= eσrβ (r,τ)−σ
∫ r

0
β (t,τ)eτt dt. (56)

thus, in view of (56), for any σ � −γ − ε , −∞ < τ < +∞ , we obtain

|eσrβ (r,τ)| � e(−γ−ε)rA(r) = O(e−εr), (57)

and ∣∣∣∣σ
∫ +∞

r
eσtβ (t,τ)dt

∣∣∣∣ � |σ |
∫ +∞

r
eσtA(t)dt � K

(γ + ε)
ε

e−εr, (58)

where K is a bounded quantity independent of σ ,τ .
Let r → +∞ , in view of ε > 0, then for any −∞ < τ < +∞ , it follows

lim
r→+∞

eσrβ (r,τ) = 0, lim
r→+∞

σ
∫ +∞

r
eσtβ (t,τ)dt = 0. (59)

By combining with (56) and (59), we can complete the proof of this lemma. �
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LEMMA 6.2. If the integral

∫ +∞

0
e(γ+iτ)tdα(t)

converges uniformly for any fixed negative number γ and −∞ < τ < +∞ , then

A(x) = O(e−γx), x → +∞.

Proof. From the assumptions of this lemma, there exists a real number r0 inde-
pendent of τ such that for any r � r0 ,∣∣∣∣

∫ r

r0
e(γ+iτ)t dα(t)

∣∣∣∣ � 1. (60)

Let

ξ (x,τ) =
∫ x

0
e(x+iτ)tdα(t), x � 0, −∞ < τ < +∞.

Thus, in view of (60), for any x > r0 , we have

|ζ (x,τ)| �
∣∣∣∣
∫ r0

0
e(γ+iτ)tdα(t)

∣∣∣∣+1

�
∫ r0

0
eγt |dα(t)|+1 = K1, (61)

where K1 is a bounded quantity. On the other hand, since

β (x,τ) =
∫ x

0
e−γtdtζ (t,τ) = ζ (x,τ)e−γx + γ

∫ x

0
e−γtζ (t,τ)dt, (62)

in view of (61) and (62), we can deduce that

|β (x,τ)| � K1e
−γx +K1(e−γx −1) � 2K1e

−γx,

that is,
A(x) = O(e−γx), x → +∞.

Therefore, this completes the proof of this lemma. �
Now, we start to prove Theorem 6.1.

The Proof of Theorem 6.1. In view of (54), for any ε > 0, we have

A(x) = O
(
e(γ+ ε

2 )x
)

. x → +∞.

By Lemma 6.1, we obtain that (1) converges uniformly for all s = σ + iτ such that
σ � −(γ + ε

2 )− ε
2 = −γ − ε , −∞ < τ < +∞ .

Now, we only prove that (1) does not converge uniformly for s = σ + iτ such that
σ <−γ +ε , −∞ < τ < +∞ . We use reduction to absurdity. If there exists ϑ satisfying
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−γ < ϑ < −γ + ε < 0, (1) converges uniformly for s = σ + iτ such that σ = ϑ and
−∞ < τ < ∞ . Thus, it follows from Lemma 6.2 that

A(x) = O(e−ϑx), x → +∞,

that is,

limsup
x→+∞

logA(x)
x

� −ϑ .

In view of the above inequality and (54), and combining with the assumption of ϑ , we
obtain γ � −ϑ < γ , this is a contradiction.

Therefore, we complete the proof of Theorem 6.1. �

From Theorem 6.1, we can get the following corollary.

COROLLARY 6.1. If σF
u < 0 , then

σF
u = − limsup

x→+∞

logA(x)
x

.

Proof. If

limsup
x→+∞

logA(x)
x

> 0,

thus the conclusion holds clearly by Theorem 6.1.
If σF

u < 0 and

limsup
x→+∞

logA(x)
x

� 0,

we have

A(x) = O

(
e−

σF
u
2 x

)
, x → +∞.

Taking ε = −σF
u
8 , we can deduce that (1) converges uniformly for

σ � σF
u

2
−

(
−σF

u

8

)
=

5
8

σF
u < σF

u ,

this is a contradiction.
Therefore, this completes the proof of this corollary. �

7. Conclusions

From the above argument, we can see that the convergence abscissa formulas
of Laplace Stieltjes transform (1) given in this paper are consistent with the Valiron-
Knopp-Bohr formulas given by Yu [26] for the cases of Laplace-Stieltjes transform (1)
converging in the whole plane (the conditions (20), (21), (25)) or at the half plane (the
conditions (20), (21), (26)).
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From the foregoing, we discuss the convergence of Laplace-Stieltjes transform (1)
by using a method different from that in [26], and establish some formulas involving
three convergence abscissas of Laplace-Stieltjes transform (1) which is very similar to
Valiron-Knopp-Bohr formula in Ref. [26].
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[4] K. KNOPP, Über die Konvergenzabszisse des Laplace-Integrals, Math. Zeits. 54 (1951), 291–296.
[5] Y. Y. KONG, Y. YONG, On the growth of Laplace-Stieltjes transform and singular direction of com-

plex analysis, Jinan University Press, Guangzhou 2010.
[6] Y. Y. KONG, Y. Y. HUO, On generalized orders and types of Laplace-Stieltjes transformas analytic

in the right half-plane, Acta Math. Sinica, 59A (2016), 91–98.
[7] Y. Y. KONG, D. C. SUN, On the growth of zero order Laplace-Stieltjes transform convergent in the

right half-plane, Acta Math. Sci. 28B (2), (2008), 431–440.
[8] Y. Y. KONG, Y. YANG, On the growth properties of the Laplace-Stieltjes transform, Complex Vari-

ables and Elliptic Equations 59 (2014), 553–563.
[9] X. LUO, X. Z. LIU, Y. Y. KONG, The regular growth of Laplace-Stieltjes transforms, J. of Math.

(PRC) 34 (2014), 1181–1186.
[10] Q. LUO, Y. Y. KONG, On orders and types of Laplace-Stieltjes transforms of slow growth, Acta Math.

Scientia 2012, 32(A): 601–607.
[11] A. MISHKELYAVICHYUS, A Tauberian theorem for the Laplace-Stieltjes integral and the Dirichlet

series (in Russian), Litovsk Mast Sb, 1989, 29 (4): 745–753.
[12] O. POSIKO, M. M. SHEREMETA, Logarithms of Laplace-Stiltjes integral and maximum of the inte-

grand, Integral Transforms and Special Functions 18 (4) (2007), 271–283.
[13] L. N. SHANG AND Z. S. GAO, The growth of entire functions of infinite order represented by Laplace-

Stieltjes transformation (in Chinese), Acta Math. Sci. 27A (6) (2007), 1035–1043.



INEQUALITIES ON THE CONVERGENT ABSCISSAS OF L-S TRANSFORMS 183

[14] L. N. SHANG, Z. S. GAO, The value distribution of analytic functions defined by Laplace-Stieltjes
transforms, Acta Math. Sinica Chinese Series 51 (5) (2008), 993–1000.

[15] M. M. SHEREMETA, Relative growth of series in systems of functions and Laplace-Stieltjes-Type
integrals, Axioms, 10 (2021), Art. 42.

[16] M. M. SHEREMETA, Asymptotical behaviour of Laplace-Stiltjes integrals, In: Mathematical Studies,
15. Lviv, VNTL Publishers, 2010.

[17] C. SINGHAL, G. S. SRIVASTAVA, On the growth and approximation of entire functions represented
by Laplace-Stieltjes transformation, Ann Univ Ferrara, 2017, 63: 365–376.

[18] D. V. WIDDER, The Laplace transform, Princeton, NJ: Princeton University Press, 1946.
[19] J. WU, Exact null R-order and exact null R-type of an entire function defined by the Laplace-Stieltjes

transform, Chinese Quarterly Journal of Mathematics, 1991, 6: 23–29.
[20] H. Y. XU, Y. Y. KONG, The approximation of Laplace-Stieltjes transformations with finite order on

the left half plane, C. R. Acad. Sci. Paris, Ser. I 356 (2018), 63–76.
[21] H. Y. XU, Y. Y. KONG, Entire functions represented by Laplace-Stieltjes transforms concerning the

approximation and generalized order, Acta Math. Sci. Ser. B 41 (2021), 646–656.
[22] H. Y. XU, H. LI, Z. X. XUAN, Some new inequalities on Laplace-Stieltjes transforms involving

logarithmic growth, Fractal Fract. 2022, 6, Art. 233, 1–14.
[23] H. Y. XU, S. Y. LIU, The approximation of Laplace-Stieltjes transforms with slow growth, Acta Math

Sinica, Chinese series, 2019, 62: 457–468.
[24] H. Y. XU, Z. X. XUAN, The growth and value distribution of Laplace-Stieltjes transformations with

infinite order in the right half-plane, Journal of Inequalities and Applications 2013 (2013), Art. 273,
1–15.

[25] H. Y. XU, Z. X. XUAN, The singular points of analytic functions with finite X -order defined by
Laplace-Stieltjes transformations, Journal of Function Spaces 2015 (2015), Art. ID 865069, 9 pages.

[26] J. R. YU, Borel’s line of entire functions represented by Laplace-Stieltjes transformation, Acta Math.
Sinica, 13 A (1963), 471–484.

(Received May 19, 2022) Hong Yan Xu
College of Arts and Sciences

Suqian University
Suqian, Jiangsu 223800, P. R. China

and
School of Mathematics and Computer Science

Shangrao Normal University
Shangrao Jiangxi, 334001, P. R. China

e-mail: xhyhhh@126.com

Zu Xing Xuan
Institute of Fundamental and Interdisciplinary Sciences

Beijing Union University
Beijing 100101, P. R. China

e-mail: zuxingxuan@163.com

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


