THE SHARP BOUND OF THE THIRD HANKEL DETERMINANT FOR CONVEX FUNCTIONS OF ORDER $-1 / 2$

BogumiŁa Kowalczyk, Adam Lecko* and Derek K. Thomas

(Communicated by V. Rao Allu)

Abstract. We prove the sharp inequality $\left|H_{3,1}(f)\right| \leqslant 1 / 16$ for the third Hankel determinant $H_{3,1}(f)$ for convex functions of order $-1 / 2$ i.e., functions f analytic in $z \in \mathbb{D}:=\{z \in \mathbb{C}$: $|z|<1\}$ with $a_{n}:=f^{(n)}(0) / n!, n \in \mathbb{N}, a_{1}:=1$, such that

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>-\frac{1}{2}, \quad z \in \mathbb{D}
$$

thus proving a recent conjecture.

1. Introduction

Let \mathscr{H} be the class of all analytic functions in $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$ and let \mathscr{A} denote the subclass of \mathscr{H} with functions $f \in \mathscr{A}$ having Taylor series

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{1}:=1 \tag{1}
\end{equation*}
$$

Let \mathscr{S} be the subfamily of \mathscr{A}, consisting of univalent functions, and $\mathscr{S}^{*}(\alpha)$ and $\mathscr{C}(\alpha)$ for $0 \leqslant \alpha<1$ denote respectively the classes of starlike and convex functions of order α. Then it is well-known that a function $f \in \mathscr{A}$ belongs to $\mathscr{S}^{*}(\alpha)$ if, and only if,

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, \quad z \in \mathbb{D}
$$

and that $f \in \mathscr{C}(\alpha)$ if, and only if,

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, \quad z \in \mathbb{D}
$$

We write $\mathscr{S}^{*}(0)=: \mathscr{S}^{*}$, and $\mathscr{C}(0)=: \mathscr{C}$ to denote the classes of starlike and convex functions respectively.

[^0]A function $f \in \mathscr{A}$ belongs to \mathscr{K}, the class of close-to-convex functions if, and only if, there exist $g \in \mathscr{S}^{*}$ and $\tau \in(-\pi / 2, \pi / 2)$ such that $\operatorname{Re}\left[\mathrm{e}^{\mathrm{i} \tau}\left(z f^{\prime}(z) / g(z)\right)\right]>0$ for $z \in \mathbb{D}$. The class \mathscr{K} was first formally introduced by Kaplan in 1952 [7], who showed that $\mathscr{K} \subset \mathscr{S}$, so that $\mathscr{C} \subset \mathscr{S}^{*} \subset \mathscr{K} \subset \mathscr{S}$.

Little attention has been given to $\mathscr{C}(\alpha)$ for $\alpha<0$. However in 1941, Ozaki [18] showed that functions in \mathscr{A} are univalent if they satisfy the condition

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>-\frac{1}{2}, \quad z \in \mathbb{D} \tag{2}
\end{equation*}
$$

and we denote by $\mathscr{C}(-1 / 2)$ the class of functions f satisfying (2).
We also note that $\mathscr{C}(-1 / 2) \subset \mathscr{K}$ follows from the original definition of Kaplan [7], and that Umezawa [23] subsequently proved that functions in $\mathscr{C}(-1 / 2)$ are not necessarily starlike, but are convex in one direction.

For $q, n \in \mathbb{N}$, the Hankel determinant $H_{q, n}(f)$ of functions $f \in \mathscr{A}$ given by (1) is defined as

$$
H_{q, n}(f):=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \cdots & a_{n+q-1} \\
a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n+q-1} & a_{n+q} & \cdots & a_{n+2(q-1)}
\end{array}\right|
$$

General results for Hankel determinants with applications can be found in [2], [22], [19] and [20]. For subclasses of \mathscr{A}, finding bounds of $\left|H_{q, n}(f)\right|$ for $q, n \in \mathbb{N}$, is an interesting and significant area of study. Hayman [6] examined the second Hankel determinant $H_{2,2}(f)=a_{2} a_{4}-a_{3}^{2}$ for areally mean univalent functions, and recently many other authors have also examined the second Hankel determinant for a variety of subclasses of \mathscr{A}, (see e.g., [3], [4] for further references), often obtaining sharp bounds for $\left|H_{2,2}(f)\right|$. The problem of finding sharp bounds for the third Hankel determinant

$$
H_{3,1}(f)=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \tag{3}\\
a_{2} & a_{3} & a_{4} \\
a_{3} & a_{4} & a_{5}
\end{array}\right|=a_{3}\left(a_{2} a_{4}-a_{3}^{2}\right)-a_{4}\left(a_{4}-a_{2} a_{3}\right)+a_{5}\left(a_{3}-a_{2}^{2}\right)
$$

is technically much more difficult.
Finding sharp bounds for Hankel determinants when $f \in \mathscr{K}$ also presents a difficult problem, and even the sharp bound for $\left|H_{2,2}(f)\right|$ is not known. Thus finding the sharp bound for $\left|H_{3,1}(f)\right|$ when f belongs to a subclass of \mathscr{K} represents a significant advance.

Some sharp bounds for $\left|H_{3,1}(f)\right|$ have been found e.g. for convex functions [10], starlike functions [11], starlike functions of order $1 / 2$ [13], functions $f \in \mathscr{A}$ which satisfy the condition $\operatorname{Re} f(z) / z>\alpha, z \in \mathbb{D}$, when $\alpha=0$ and $\alpha=1 / 2$ [9], and functions $f \in \mathscr{A}$ such that $\left|(z / f(z))^{2}-1\right|<1$ for $z \in \mathbb{D}$ [16]. The sharp bound for $\left|H_{3,1}(f)\right|$ has also been found when the associate starlike function $g(z)=z$ for $z \in \mathbb{D}$, in the definition of \mathscr{K} which represents perhaps the simplest subclass of \mathscr{K} [8].

We note now that using standard techniques, it is a relatively simple exercise to show that if $f \in \mathscr{C}(-1 / 2)$, then $\left|H_{2,2}(f)\right| \leqslant 21 / 64$ and that this inequality is sharp, and
in a recent unpublished paper, Obradović and Tuneski [17] gave the non-sharp bound $\left|H_{3,1}(f)\right|<(13 / 8)^{2} / 30$ for $f \in \mathscr{C}(-1 / 2)$, and conjectured that the sharp bound is $\left|H_{3,1}(f)\right| \leqslant 1 / 16$.

In this paper, we prove that $\left|H_{3,1}(f)\right| \leqslant 1 / 16$ for $f \in \mathscr{C}(-1 / 2)$, thus confirming this conjecture, and so giving the sharp bound for $\left|H_{3,1}(f)\right|$ for a significant subclass of \mathscr{K}.

Since functions in $\mathscr{C}(-1 / 2)$ can be represented using the Carathéodory class \mathscr{P}, [1] i.e., the class of functions $p \in \mathscr{H}$ of the form

$$
\begin{equation*}
p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}, \quad z \in \mathbb{D} \tag{4}
\end{equation*}
$$

having a positive real part in \mathbb{D}, the coefficients of functions in $\mathscr{C}(-1 / 2)$ can be expressed in terms of coefficients of functions in \mathscr{P}. We therefore base our analysis on the well-known formula for c_{2} (e.g., [21, p. 166]), the formula c_{3} due to Libera and Zlotkiewicz [14, 15] and the formula for c_{4} recently found in [12], all of which can be conveniently be expressed in the following lemma [12].

Lemma 1.1. If $p \in \mathscr{P}$ and is given by (4) with $c_{1} \geqslant 0$, then

$$
\begin{gather*}
c_{1}=2 \zeta_{1} \tag{5}\\
c_{2}=2 \zeta_{1}^{2}+2\left(1-\zeta_{1}^{2}\right) \zeta_{2} \tag{6}\\
c_{3}=2 \zeta_{1}^{3}+4\left(1-\zeta_{1}^{2}\right) \zeta_{1} \zeta_{2}-2\left(1-\zeta_{1}^{2}\right) \zeta_{1} \zeta_{2}^{2}+2\left(1-\zeta_{1}^{2}\right)\left(1-\left|\zeta_{2}\right|^{2}\right) \zeta_{3} \tag{7}
\end{gather*}
$$

and

$$
\begin{align*}
c_{4}= & 2 \zeta_{1}^{4}+2\left(1-\zeta_{1}^{2}\right) \zeta_{2}\left(\zeta_{1}^{2} \zeta_{2}^{2}-3 \zeta_{1}^{2} \zeta_{2}+3 \zeta_{1}^{2}+\zeta_{2}\right) \\
& +2\left(1-\zeta_{1}^{2}\right)\left(1-\left|\zeta_{2}\right|^{2}\right) \zeta_{3}\left(2 \zeta_{1}-2 \zeta_{1} \zeta_{2}-\overline{\zeta_{2}} \zeta_{3}\right) \tag{8}\\
& +2\left(1-\zeta_{1}^{2}\right)\left(1-\left|\zeta_{2}\right|^{2}\right)\left(1-\left|\zeta_{3}\right|^{2}\right) \zeta_{4}
\end{align*}
$$

for some $\zeta_{1} \in[0,1]$ and $\zeta_{2}, \zeta_{3}, \zeta_{4} \in \overline{\mathbb{D}}:=\{z \in \mathbb{C}:|z| \leqslant 1\}$.

2. Main result

THEOREM 2.1. If $f \in \mathscr{C}(-1 / 2)$, then

$$
\begin{equation*}
\left|H_{3,1}(f)\right| \leqslant \frac{1}{16} \tag{9}
\end{equation*}
$$

The inequality is sharp.

Proof. Let $f \in \mathscr{C}(-1 / 2)$ and be given by (1). Then by (2),

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{3}{2} p(z)-\frac{1}{2}, \quad z \in \mathbb{D} \tag{10}
\end{equation*}
$$

for some function $p \in \mathscr{P}$ given by (4). Substituting (1) and (4) into (10) and equating coefficients we obtain

$$
\begin{align*}
& a_{2}=\frac{3}{4} c_{1}, \quad a_{3}=\frac{1}{8}\left(3 c_{1}^{2}+2 c_{2}\right), \quad a_{4}=\frac{1}{64}\left(9 c_{1}^{3}+18 c_{1} c_{2}+8 c_{3}\right) \\
& a_{5}=\frac{3}{640}\left(9 c_{1}^{4}+36 c_{1}^{2} c_{2}+32 c_{1} c_{3}+12 c_{2}^{2}+16 c_{4}\right) \tag{11}
\end{align*}
$$

Hence from (3) we have

$$
\begin{align*}
H_{3,1}(f)= & \frac{1}{20480}\left[96 c_{4}\left(4 c_{2}-3 c_{1}^{2}\right)-320 c_{3}^{2}+288 c_{1} c_{2} c_{3}+144 c_{1}^{3} c_{3}\right. \tag{12}\\
& \left.-252 c_{1}^{2} c_{2}^{2}+108 c_{1}^{4} c_{2}-32 c_{2}^{3}-27 c_{1}^{6}\right]
\end{align*}
$$

Since the class $\mathscr{C}(-1 / 2)$ and the functional $H_{3,1}(f)$ are rotationally invariant, we may assume that $a_{2} \geqslant 0$, i.e., by (11) that $c_{1} \in[0,2]$ ([1], see also [5, Vol. I, p. 80, Theorem 3]). Thus in view of (5) we assume that $\zeta_{1} \in[0,1]$. Using (5)-(8) by straightforward algebraic computation we obtain

$$
\begin{aligned}
& 96 c_{4}\left(4 c_{2}-3 c_{1}^{2}\right)= 768\left[-\zeta_{1}^{6}-\left(1-\zeta_{1}^{2}\right) \zeta_{1}^{4} \zeta_{2}-\left(1-\zeta_{1}^{2}\right) \zeta_{1}^{4} \zeta_{2}^{3}+3\left(1-\zeta_{1}^{2}\right) \zeta_{1}^{4} \zeta_{2}^{2}\right. \\
&-\left(1-\zeta_{1}^{2}\right) \zeta_{1}^{2} \zeta_{2}^{2}+2\left(1-\zeta_{1}^{2}\right)^{2}\left(3 \zeta_{1}^{2} \zeta_{2}^{2}+\zeta_{1}^{2} \zeta_{2}^{4}-3 \zeta_{1}^{2} \zeta_{2}^{3}+\zeta_{2}^{3}\right) \\
&-\left(1-\zeta_{1}^{2}\right)\left(1-\left|\zeta_{2}\right|^{2}\right)\left(2 \zeta_{1}^{3} \zeta_{3}-2 \zeta_{1}^{3} \zeta_{2} \zeta_{3}-\zeta_{1}^{2} \zeta_{2} \zeta_{3}^{2}\right) \\
&+2\left(1-\zeta_{1}^{2}\right)^{2}\left(1-\left|\zeta_{2}\right|^{2}\right)\left(2 \zeta_{1} \zeta_{2} \zeta_{3}-2 \zeta_{1} \zeta_{2}^{2} \zeta_{3}-\left|\zeta_{2}\right|^{2} \zeta_{3}^{2}\right) \\
&-\left(1-\zeta_{1}^{2}\right)\left(1-\left|\zeta_{2}^{2}\right|^{2}\right)\left(1-\left|\zeta_{3}\right|^{2}\right) \zeta_{1}^{2} \zeta_{4} \\
&\left.+2\left(1-\zeta_{1}^{2}\right)\left(1-\left|\zeta_{2}\right|^{2}\right)\left(1-\left|\zeta_{3}\right|^{2}\right) \zeta_{2} \zeta_{4}\right] \\
& 320 c_{3}^{2}=1280\left[\zeta_{1}^{6}+4\left(1-\zeta_{1}^{2}\right)^{2} \zeta_{1}^{2} \zeta_{2}^{2}-4\left(1-\zeta_{1}^{2}\right)^{2} \zeta_{1}^{2} \zeta_{2}^{3}+\left(1-\zeta_{1}^{2}\right)^{2} \zeta_{1}^{2} \zeta_{2}^{4}\right. \\
&+ 4\left(1-\zeta_{1}^{2}\right) \zeta_{1}^{4} \zeta_{2}-2\left(1-\zeta_{1}^{2}\right) \zeta_{1}^{4} \zeta_{2}^{2}+2\left(1-\zeta_{1}^{2}\right)\left(1-\mid \zeta_{2}^{2}\right) \zeta_{1}^{3} \zeta_{3} \\
&+\left(1-\zeta_{1}^{2}\right)^{2}\left(1-\left|\zeta_{2}\right|^{2}\right)^{2} \zeta_{3}^{2}+4\left(1-\zeta_{1}^{2}\right)^{2}\left(1-\left|\zeta_{2}\right|^{2}\right) \zeta_{1} \zeta_{2} \zeta_{3} \\
&-2(1-\left.\left.\zeta_{1}^{2}\right)^{2}\left(1-\left|\zeta_{2}\right|^{2}\right) \zeta_{1} \zeta_{2}^{2} \zeta_{3}\right], \\
& 288 c_{1} c_{2} c_{3}= 2304\left[\zeta_{1}^{6}+3\left(1-\zeta_{1}^{2}\right) \zeta_{1}^{4} \zeta_{2}-\left(1-\zeta_{1}^{2}\right) \zeta_{1}^{4} \zeta_{2}^{2}\right. \\
&+2\left(1-\zeta_{1}^{2}\right)^{2} \zeta_{1}^{2} \zeta_{2}^{2}-\left(1-\zeta_{1}^{2}\right)^{2} \zeta_{1}^{2} \zeta_{2}^{3} \\
&\left.+\left(1-\zeta_{1}^{2}\right)\left(1-\mid \zeta_{2}^{2}\right) \zeta_{1}^{3} \zeta_{3}+\left(1-\zeta_{1}^{2}\right)^{2}\left(1-\left|\zeta_{2}\right|^{2}\right)^{2} \zeta_{1} \zeta_{2} \zeta_{3}\right] \\
& 144 c_{1}^{3} c_{3}= 2304\left[\zeta_{1}^{6}+2\left(1-\zeta_{1}^{2}\right) \zeta_{1}^{4} \zeta_{2}-\left(1-\zeta_{1}^{2}\right) \zeta_{1}^{4} \zeta_{2}^{2}\right. \\
&\left.+\left(1-\zeta_{1}^{2}\right)\left(1-\left|\zeta_{2}^{2}\right|^{2}\right) \zeta_{1}^{3} \zeta_{3}\right]
\end{aligned}
$$

$$
\begin{gathered}
32 c_{2}^{2}=256\left[\zeta_{1}^{6}+3\left(1-\zeta_{1}^{2}\right) \zeta_{1}^{4} \zeta_{2}+3\left(1-\zeta_{1}^{2}\right)^{2} \zeta_{1}^{2} \zeta_{2}^{2}+\left(1-\zeta_{1}^{2}\right)^{3} \zeta_{2}^{3}\right] \\
27 c_{1}^{6}=1728 \zeta_{1}^{6}
\end{gathered}
$$

Substituting the above expression into (12) we obtain

$$
\begin{align*}
H_{3,1}(f)= & \frac{1}{320}\left(1-\zeta_{1}^{2}\right)\left\{4 \zeta_{1}^{4} \zeta_{2}-\left(1+5 \zeta_{1}^{2}\right) \zeta_{1}^{2} \zeta_{2}^{2}+4\left(3 \zeta_{1}^{4}-11 \zeta_{1}^{2}+5\right) \zeta_{2}^{3}\right. \\
& +4\left(1-\zeta_{1}^{2}\right) \zeta_{1}^{2} \zeta_{2}^{4}+4\left(1-\left|\zeta_{2}\right|^{2}\right)\left[2 \zeta_{1}^{2}+\left(1+5 \zeta_{1}^{2}\right) \zeta_{2}-2\left(1-\zeta_{1}^{2}\right) \zeta_{2}^{2}\right] \zeta_{1} \zeta_{3} \\
& +4\left(1-\left|\zeta_{2}\right|^{2}\right)\left[3 \zeta_{1}^{2} \zeta_{2}-\left(1-\zeta_{1}^{2}\right)\left(5+\left|\zeta_{2}\right|^{2}\right)\right] \zeta_{3}^{2} \\
& \left.-12\left(1-\left|\zeta_{2}\right|^{2}\right)\left(1-\left|\zeta_{3}\right|^{2}\right)\left[\zeta_{1}^{2}-2\left(1-\zeta_{1}^{2}\right) \zeta_{2}\right] \zeta_{4}\right\} \tag{13}
\end{align*}
$$

for some $\zeta_{1} \in[0,1]$ and $\zeta_{2}, \zeta_{3}, \zeta_{4} \in \overline{\mathbb{D}}$.
Since $\left|\zeta_{4}\right| \leqslant 1$, from (13) we obtain

$$
\begin{aligned}
\left|H_{3,1}(f)\right| \leqslant & \frac{1-\zeta_{1}^{2}}{320}\left\{\mid 4 \zeta_{1}^{4} \zeta_{2}-\left(1+5 \zeta_{1}^{2}\right) \zeta_{1}^{2} \zeta_{2}^{2}\right. \\
& +4\left(3 \zeta_{1}^{4}-11 \zeta_{1}^{2}+5\right) \zeta_{2}^{3}+4\left(1-\zeta_{1}^{2}\right) \zeta_{1}^{2} \zeta_{2}^{4} \mid \\
& +4\left(1-\left|\zeta_{2}\right|^{2}\right)\left|2 \zeta_{1}^{3}+\left(1+5 \zeta_{1}^{2}\right) \zeta_{1} \zeta_{2}-2\left(1-\zeta_{1}^{2}\right) \zeta_{1} \zeta_{2}^{2}\right|\left|\zeta_{3}\right| \\
& +4\left(1-\left|\zeta_{2}\right|^{2}\right)\left[\left|3 \zeta_{1}^{2} \overline{\zeta_{2}}-\left(1-\zeta_{1}^{2}\right)\left(5+\left|\zeta_{2}\right|^{2}\right)\right|\right. \\
& \left.\left.-3\left|\zeta_{1}^{2}-2\left(1-\zeta_{1}^{2}\right) \zeta_{2}\right|\right]\left|\zeta_{3}\right|^{2}+12\left(1-\left|\zeta_{2}\right|^{2}\right)\left|\zeta_{1}^{2}-2\left(1-\zeta_{1}^{2}\right) \zeta_{2}\right|\right\}
\end{aligned}
$$

A. Suppose that

$$
\left|3 \zeta_{1}^{2} \overline{\zeta_{2}}-\left(1-\zeta_{1}^{2}\right)\left(5+\left|\zeta_{2}\right|^{2}\right)\right|-3\left|\zeta_{1}^{2}-2\left(1-\zeta_{1}^{2}\right) \zeta_{2}\right| \geqslant 0
$$

Then

$$
\left|H_{3,1}(f)\right| \leqslant \frac{1}{320} h\left(\zeta_{1},\left|\zeta_{2}\right|\right)
$$

where $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by

$$
\begin{aligned}
h(x, y):= & \left(1-x^{2}\right)\left\{4\left(2 x^{3}-5 x^{2}+5\right)+4\left(x^{4}+5 x^{3}+3 x^{2}+x\right) y\right. \\
& +\left(5 x^{4}-16 x^{3}+17 x^{2}+8 x-16\right) y^{2}+4\left[\left|3 x^{4}-11 x^{2}+5\right|\right. \\
& \left.\left.-5 x^{3}-3 x^{2}-x\right] y^{3}-4\left(x^{4}-2 x^{3}-2 x^{2}+2 x+1\right) y^{4}\right\}
\end{aligned}
$$

We show that $|h(x, y)| \leqslant 20$ for $(x, y) \in[0,1] \times[0,1]$.
A1. Suppose that $3 x^{4}-11 x^{2}+5 \geqslant 0$, which holds if, and only if, $x \in\left[0, x_{0}\right]$, where $x_{0}:=\sqrt{(11-\sqrt{61}) / 6} \approx 0.729$. Then

$$
\begin{aligned}
h(x, y)= & \left(1-x^{2}\right)\left[4\left(2 x^{3}-5 x^{2}+5\right)+4\left(x^{4}+5 x^{3}+3 x^{2}+x\right) y\right. \\
& +\left(5 x^{4}-16 x^{3}+17 x^{2}+8 x-16\right) y^{2} \\
& +4\left(3 x^{4}-5 x^{3}-14 x^{2}-x+5\right) y^{3} \\
& \left.-4\left(x^{4}-2 x^{3}-2 x^{2}+2 x+1\right) y^{4}\right], \quad x \in\left[0, x_{0}\right], y \in[0,1] .
\end{aligned}
$$

I. On the vertices of $\left[0, x_{0}\right] \times[0,1]$ we have

$$
\begin{gathered}
h(0,0)=20, \quad h(0,1)=16 \\
h\left(x_{0}, 0\right)=\frac{\sqrt{61}-5}{6}\left[8\left(\frac{11-\sqrt{61}}{6}\right)^{\frac{3}{2}}+\frac{10 \sqrt{61}}{3}-\frac{50}{3}\right] \approx 5.839920<20 \\
h\left(x_{0}, 1\right)=\frac{485 \sqrt{61}-3685}{54} \approx 1.906872<20 .
\end{gathered}
$$

II. On the sides of $\left[0, x_{0}\right] \times[0,1]$ we have
(a) If $x=0, y \in(0,1)$, then

$$
h(0, y)=-4 y^{4}+20 y^{3}-16 y^{2}+20 \leqslant 20, \quad y \in(0,1)
$$

since the above inequality is equivalent to the obviously true inequality

$$
-y^{2}(4-y)(1-y) \leqslant 0, \quad y \in(0,1)
$$

(b) If $y=0, x \in\left(0, x_{0}\right)$, then for $x \in\left(0, x_{0}\right)$,

$$
h(x, 0)=4\left(1-x^{2}\right)\left(2 x^{3}-5 x^{2}+5\right)=4\left(-2 x^{5}+5 x^{4}+2 x^{3}-10 x^{2}+5\right) \leqslant 20
$$

since the last inequality is equivalent to the obviously true inequality

$$
-x^{2}(5-x)\left(2-x^{2}\right) \leqslant 0, \quad x \in\left(0, x_{0}\right)
$$

(c) If $y=1, x \in\left(0, x_{0}\right)$, then

$$
h(x, 1)=-17 x^{6}+56 x^{4}-59 x^{2}+20 \leqslant 20, \quad x \in\left(0, x_{0}\right)
$$

since the last inequality is equivalent to the obviously true inequality

$$
-x^{2}\left(17 x^{4}-56 x^{2}+59\right) \leqslant 0, \quad x \in\left(0, x_{0}\right)
$$

(d) If $x=x_{0}, y \in(0,1)$, then

$$
\begin{aligned}
h\left(x_{0}, y\right)= & \frac{\sqrt{61}-5}{6}\left\{\left[8\left(\frac{11-\sqrt{61}}{6}\right)^{\frac{3}{2}}-8 \sqrt{\frac{11-\sqrt{61}}{6}}+\frac{10 \sqrt{61}}{9}-\frac{86}{9}\right] y^{4}\right. \\
& -\left[20\left(\frac{11-\sqrt{61}}{6}\right)^{\frac{3}{2}}+4 \sqrt{\frac{11-\sqrt{61}}{6}}-2 \sqrt{61}+22\right] y^{3} \\
& -\left[16\left(\frac{11-\sqrt{61}}{6}\right)^{\frac{3}{2}}-8 \sqrt{\frac{11-\sqrt{61}}{6}}+\frac{53 \sqrt{61}}{9}-\frac{364}{9}\right] y^{2} \\
& +\left[20\left(\frac{11-\sqrt{61}}{6}\right)^{\frac{3}{2}}+4 \sqrt{\frac{11-\sqrt{61}}{6}}-\frac{40 \sqrt{61}}{9}+\frac{380}{9}\right] y \\
& \left.+8\left(\frac{11-\sqrt{61}}{6}\right)^{\frac{3}{2}}+\frac{10 \sqrt{61}}{3}-\frac{50}{3}\right\}=: h_{1}(y), \quad y \in(0,1) .
\end{aligned}
$$

Since $h_{1}^{\prime}(y)=0$ only for $y=y_{0} \approx 0.467385$, and at y_{0} the function h_{1} attains its maximum value $h_{1}\left(y_{0}\right) \approx 8.318$, we have

$$
h\left(x_{0}, y\right)=h_{1}(y) \leqslant h_{1}\left(y_{0}\right)<20, \quad y \in(0,1)
$$

III. It remains to consider the set $\left(0, x_{0}\right) \times(0,1)$. Then all the real solutions of the system of equations

$$
\begin{aligned}
\frac{\partial h}{\partial x}= & -40 x^{4}+80 x^{3}+24 x^{2}-80 x \\
& -\left(24 x^{5}+100 x^{4}+32 x^{3}-48 x^{2}-24 x-4\right) y \\
& -\left(30 x^{5}-80 x^{4}+48 x^{3}+72 x^{2}-66 x-8\right) y^{2} \\
& -\left(72 x^{5}-100 x^{4}-272 x^{3}+48 x^{2}+152 x+4\right) y^{3} \\
& +\left(24 x^{5}-40 x^{4}-48 x^{3}+48 x^{2}+24 x-8\right) y^{4}=0 \\
\frac{\partial h}{\partial y}= & \left(1-x^{2}\right)\left[4\left(x^{4}+5 x^{3}+3 x^{2}+x\right)\right. \\
& +2\left(5 x^{4}-16 x^{3}+17 x^{2}+8 x-16\right) y \\
& +12\left(3 x^{4}-5 x^{3}-14 x^{2}-x+5\right) y^{2} \\
& \left.-16\left(x^{4}-2 x^{3}-2 x^{2}+2 x+1\right) y^{3}\right]=0
\end{aligned}
$$

by a numerical computation are the following

$$
\begin{aligned}
& \left\{\begin{array}{l}
x_{1} \approx-1.355145 \\
y_{1} \approx-1.340102
\end{array}\right. \\
& \left\{\begin{array}{l}
x_{2} \approx-0.794482 \\
y_{4} \approx-0.849773
\end{array}\right. \\
& y_{4} \approx 6.825166
\end{aligned} \quad\left\{\begin{array}{l}
x_{5} \approx 0.047594 \\
y_{5} \approx 0.645015
\end{array} \quad\left\{\begin{array}{l}
x_{3} \approx-0.919818 \\
y_{3} \approx 0,405793
\end{array}\right\}\right.
$$

Thus $\left(x_{5}, y_{5}\right)$ is the unique critical point of h in $\left(0, x_{0}\right) \times(0,1)$ with

$$
h\left(x_{5}, y_{5}\right) \approx 18.099624<20
$$

A2. Suppose now that $3 x^{4}-11 x^{2}+5<0$, which holds if, and only if, $x \in\left(x_{0}, 1\right]$. Then

$$
\begin{aligned}
h(x, y)= & \left(1-x^{2}\right)\left[4\left(2 x^{3}-5 x^{2}+5\right)+4\left(x^{4}+5 x^{3}+3 x^{2}+x\right) y\right. \\
& +\left(5 x^{4}-16 x^{3}+17 x^{2}+8 x-16\right) y^{2} \\
& -4\left(3 x^{4}+5 x^{3}-8 x^{2}+x+5\right) y^{3} \\
& \left.-4\left(x^{4}-2 x^{3}-2 x^{2}+2 x+1\right) y^{4}\right], \quad x \in\left(x_{0}, 1\right], y \in[0,1] .
\end{aligned}
$$

I. On the vertices of $\left(x_{0}, 1\right] \times[0,1]$, we have

$$
h(1,0)=h(1,1)=0
$$

II. On the sides of $\left(x_{0}, 1\right] \times[0,1]$ we have
(a) If $x=1, y \in(0,1)$ then

$$
h(1, y)=0, \quad y \in(0,1)
$$

(b) If $y=0, x \in\left(x_{0}, 1\right)$, then for $x \in\left(0, x_{0}\right)$,

$$
h(x, 0)=4\left(1-x^{2}\right)\left(2 x^{3}-5 x^{2}+5\right)=4\left(-2 x^{5}+5 x^{4}+2 x^{3}-10 x^{2}+5\right) \leqslant 20
$$

since the last inequality is equivalent to the obviously true inequality

$$
-x^{2}(5-x)\left(2-x^{2}\right) \leqslant 0, \quad x \in\left(x_{0}, 1\right]
$$

(c) If $y=1, x \in\left(x_{0}, 1\right)$, then

$$
h(x, 1)=\left(1-x^{2}\right)\left(-7 x^{4}+49 x^{2}-20\right)=7 x^{6}-56 x^{4}+69 x^{2}-20=: h_{2}(x), \quad x \in[0,1] .
$$

Since $h_{2}^{\prime}(x)=42 x^{5}-224 x^{3}+138 x<0$ for $x \in(0,1)$, the function h_{2} decreases and

$$
h(x, 1)=h_{2}(x) \leqslant h_{2}\left(x_{0}\right)<h_{2}(0)=16, \quad x \in\left(x_{0}, 1\right)
$$

III. It remains to consider the set $\left(x_{0}, 1\right) \times(0,1)$. Then all real solutions of the system of equations

$$
\begin{aligned}
\frac{\partial h}{\partial x}= & -40 x^{4}+80 x^{3}+24 x^{2}-80 x \\
& -\left(24 x^{5}+100 x^{4}+32 x^{3}-48 x^{2}-24 x-4\right) y \\
& -\left(30 x^{5}-80 x^{4}+48 x^{3}+72 x^{2}-66 x-8\right) y^{2} \\
& +\left(72 x^{5}+100 x^{4}-176 x^{3}-48 x^{2}+104 x-4\right) y^{3} \\
& +\left(24 x^{5}-40 x^{4}-48 x^{3}+48 x^{2}+24 x-8\right) y^{4}=0
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial h}{\partial y}= & \left(1-x^{2}\right)\left[4\left(x^{4}+5 x^{3}+3 x^{2}+x\right)\right. \\
& +2\left(5 x^{4}-16 x^{3}+17 x^{2}+8 x-16\right) y \\
& -12\left(3 x^{4}+5 x^{3}-8 x^{2}+x+5\right) y^{2} \\
& \left.-16\left(x^{4}-2 x^{3}-2 x^{2}+2 x+1\right) y^{3}\right]=0
\end{aligned}
$$

by a numerical computation are the following

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ x _ { 1 } \approx - 7 . 0 3 1 1 2 8 } \\
{ y _ { 1 } \approx 0 . 5 0 4 7 4 0 }
\end{array} \quad \left\{\begin{array} { l }
{ x _ { 2 } \approx - 1 . 6 6 9 2 6 0 } \\
{ y _ { 2 } \approx - 0 . 8 5 9 6 4 2 }
\end{array} \quad \left\{\begin{array}{l}
x_{3} \approx-0.954646 \\
y_{3} \approx-0.545208
\end{array}\right.\right.\right. \\
& \left\{\begin{array} { l }
{ x _ { 4 } \approx - 0 . 9 2 6 5 7 1 } \\
{ y _ { 4 } \approx 0 . 2 2 8 2 5 9 }
\end{array} \quad \left\{\begin{array} { l }
{ x _ { 5 } \approx - 0 . 7 2 8 0 0 5 } \\
{ y _ { 5 } \approx 0 . 7 8 4 2 2 8 }
\end{array} \quad \left\{\begin{array}{l}
x_{6} \approx 0.004713 \\
y_{6} \approx-0.643402
\end{array}\right.\right.\right. \\
& \left\{\begin{array} { l }
{ x _ { 7 } \approx 0 . 5 6 4 8 2 7 } \\
{ y _ { 7 } \approx - 2 . 0 1 6 4 5 0 }
\end{array} \quad \left\{\begin{array} { l }
{ x _ { 8 } \approx 0 . 8 8 6 3 4 9 } \\
{ y _ { 8 } \approx - 0 . 8 0 9 8 0 9 }
\end{array} \quad \left\{\begin{array}{l}
x_{9} \approx 1.216558 \\
y_{9} \approx 7.870078
\end{array}\right.\right.\right. \\
& \left\{\begin{array} { l }
{ x _ { 1 0 } \approx 3 . 6 9 1 0 0 2 } \\
{ y _ { 1 0 } \approx - 8 . 0 8 2 6 7 7 }
\end{array} \quad \left\{\begin{array} { l }
{ x _ { 1 1 } = 0 } \\
{ y _ { 1 1 } = 0 }
\end{array} \quad \left\{\begin{array}{l}
x_{12}=-1 \\
y_{12}=2 / 3
\end{array}\right.\right.\right. \\
& \left\{\begin{array} { l }
{ x _ { 1 3 } = 1 } \\
{ y _ { 1 3 } \approx - 1 . 2 2 3 1 4 0 }
\end{array} \left\{\begin{array} { l }
{ x _ { 1 4 } = 1 } \\
{ y _ { 1 4 } = - 0 . 2 0 2 9 5 6 }
\end{array} \left\{\begin{array}{l}
x_{15}=1 \\
y_{15}=1.342763
\end{array} .\right.\right.\right.
\end{aligned}
$$

Thus the function h has no critical point in $\left(x_{0}, 1\right) \times(0,1)$.
B. Suppose that

$$
\left|3 \zeta_{1}^{2} \overline{\zeta_{2}}-\left(1-\zeta_{1}^{2}\right)\left(5+\left|\zeta_{2}\right|^{2}\right)\right|-3\left|\zeta_{1}^{2}-2\left(1-\zeta_{1}^{2}\right) \zeta_{2}\right|<0 .
$$

Then

$$
\left|H_{3,1}(f)\right| \leqslant \frac{1}{320} g\left(\zeta_{1},\left|\zeta_{2}\right|\right)
$$

where $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by

$$
\begin{aligned}
g(x, y):= & \left(1-x^{2}\right)\left[4\left(2 x^{3}+3 x^{2}\right)+4\left(x^{4}+5 x^{3}-6 x^{2}+x+6\right) y\right. \\
& +\left(5 x^{4}-16 x^{3}-11 x^{2}+8 x\right) y^{2} \\
& +4\left(\left|3 x^{4}-11 x^{2}+5\right|-5 x^{3}+6 x^{2}-x-6\right) y^{3} \\
& \left.-4\left(x^{4}-2 x^{3}-x^{2}+2 x\right) y^{4}\right] .
\end{aligned}
$$

We show now that $|g(x, y)| \leqslant 20$ for $(x, y) \in[0,1] \times[0,1]$.
B1. Suppose that $3 x^{4}-11 x^{2}+5 \geqslant 0$, which holds if, and only if, $x \in\left[0, x_{0}\right]$, where $x_{0}:=\sqrt{(11-\sqrt{61}) / 6} \approx 0.729$. Then

$$
\begin{aligned}
g(x, y)= & \left(1-x^{2}\right)\left[4\left(2 x^{3}+3 x^{2}\right)+4\left(x^{4}+5 x^{3}-6 x^{2}+x+6\right) y\right. \\
& +\left(5 x^{4}-16 x^{3}-11 x^{2}+8 x\right) y^{2}+4\left(3 x^{4}-5 x^{3}-5 x^{2}-x-1\right) y^{3} \\
& \left.-4\left(x^{4}-2 x^{3}-x^{2}+2 x\right) y^{4}\right], \quad x \in\left[0, x_{0}\right], y \in[0,1] .
\end{aligned}
$$

I. On the vertices of $\left[0, x_{0}\right] \times[0,1]$ we have

$$
\begin{aligned}
& g(0,0)=0, \quad g(0,1)=20 \\
& g\left(x_{0}, 0\right)=\frac{2 \sqrt{61}-10}{3}\left[2\left(\frac{11-\sqrt{61}}{6}\right)^{\frac{3}{2}}-\frac{\sqrt{61}}{6}+\frac{11}{2}\right] \approx 4.440417<20 \\
& g\left(x_{0}, 1\right)=\frac{485 \sqrt{61}-3685}{54} \approx 1.906872<20
\end{aligned}
$$

II. On the sides of $\left[0, x_{0}\right] \times[0,1]$ we have
(a) If $x=0, y \in(0,1)$, then

$$
g(0, y)=24 y-4 y^{3} \leqslant g(0,1)=20, \quad y \in(0,1)
$$

(b) If $y=0, x \in\left(0, x_{0}\right)$, then

$$
g(x, 0)=-8 x^{5}-12 x^{4}+8 x^{3}+12 x^{2}=: g_{1}(x), \quad x \in\left[0, x_{0}\right] .
$$

Since

$$
g_{1}^{\prime}(x)=-40 x^{4}-48 x^{3}+24 x^{2}+24 x>0, \quad x \in\left(0, x_{0}\right)
$$

g increases and so

$$
g(x, y)=g_{1}(x) \leqslant g_{1}\left(x_{0}\right)=\frac{485 \sqrt{61}-3685}{54} \approx 1.906872<20, \quad x \in\left(0, x_{0}\right)
$$

Note that g_{1}^{\prime} has in $(0,1)$ a unique zero at $x \approx 0.7334 \notin\left(0, x_{0}\right)$.
(c) If $y=1, x \in\left(0, x_{0}\right)$, then

$$
h(x, 1)=-17 x^{6}+56 x^{4}-59 x^{2}+20 \leqslant 20, \quad x \in\left(0, x_{0}\right)
$$

since the last inequality is equivalent to the obviously true inequality

$$
-x^{2}\left(17 x^{4}-56 x^{2}+59\right) \leqslant 0, \quad x \in\left(0, x_{0}\right)
$$

(d) If $x=x_{0}, y \in(0,1)$, then

$$
\begin{aligned}
g\left(x_{0}, y\right)= & \frac{\sqrt{61}-5}{6}\left\{\left[8\left(\frac{11-\sqrt{61}}{6}\right)^{\frac{3}{2}}-8 \sqrt{\frac{11-\sqrt{61}}{6}}+\frac{16 \sqrt{61}}{9}-\frac{116}{9}\right]^{4}\right. \\
& -\left[15\left(\frac{11-\sqrt{61}}{6}\right)^{\frac{3}{2}}+4 \sqrt{\frac{11-\sqrt{61}}{6}}+4 \sqrt{61}-20\right] y^{3} \\
& -\left[16\left(\frac{11-\sqrt{61}}{6}\right)^{\frac{3}{2}}-8 \sqrt{\frac{11-\sqrt{61}}{6}}+\frac{11 \sqrt{61}}{9}-\frac{46}{9}\right] y^{2} \\
& +\left[20\left(\frac{11-\sqrt{61}}{6}\right)^{\frac{3}{2}}+4 \sqrt{\frac{11-\sqrt{61}}{6}}+\frac{14 \sqrt{61}}{9}+\frac{2}{9}\right] y \\
& \left.+8\left(\frac{11-\sqrt{61}}{6}\right)^{\frac{3}{2}}-2 \sqrt{61}+22\right\}=: g_{2}(y), \quad y \in(0,1) .
\end{aligned}
$$

Observe that $g_{2}^{\prime}(y)=0$ only for $y=y_{0} \approx 0.320862$ with $g_{2}\left(y_{0}\right) \approx 7.353760$. Thus by Part I we deduce that

$$
g\left(x_{0}, y\right)=g_{2}(x) \leqslant \max \left\{g\left(x_{0}, 0\right), g\left(x_{0}, 1\right), g_{2}\left(y_{0}\right)\right\} \leqslant 7.36<20
$$

III. It remains to consider the set $\left(0, x_{0}\right) \times(0,1)$. Then all real solutions of the system of equations

$$
\begin{aligned}
\frac{\partial g}{\partial x}= & -40 x^{4}-48 x^{3}+24 x^{2}+24 x \\
& -\left(24 x^{5}+100 x^{4}-112 x^{3}-48 x^{2}+96 x-4\right) y \\
& -\left(30 x^{5}-80 x^{4}-64 x^{3}+72 x^{2}+22 x-8\right) y^{2} \\
& -\left(72 x^{5}-100 x^{4}-128 x^{3}+48 x^{2}+32 x+4\right) y^{3} \\
& +\left(24 x^{5}-40 x^{4}-32 x^{3}+48 x^{2}+8 x-8\right) y^{4}=0 \\
\frac{\partial g}{\partial y}= & \left(1-x^{2}\right)\left[4\left(x^{4}+5 x^{3}-6 x^{2}+x+6\right)\right. \\
& +2\left(5 x^{4}-16 x^{3}-11 x^{2}+8 x\right) y \\
& +12\left(3 x^{4}-5 x^{3}-5 x^{2}-x-1\right) y^{2} \\
& \left.-16\left(x^{4}-2 x^{3}-x^{2}+2 x\right) y^{3}\right]=0
\end{aligned}
$$

by a numerical computation are the following

$$
\begin{aligned}
& \left\{\begin{array}{l}
x_{1} \approx-3.155561 \\
y_{1} \approx-0.458540
\end{array}\right.
\end{aligned}\left\{\begin{array}{l}
x_{2} \approx-1.158451 \\
y_{2} \approx 4.101246
\end{array} \quad\left\{\begin{array}{l}
x_{3} \approx-0.919613 \\
y_{3} \approx 0.729786
\end{array}\right\}\right.
$$

Thus the function g has no critical point in $\left(x_{0}, 1\right) \times(0,1)$.
B2. Suppose that $3 x^{4}-11 x^{2}+5<0$, which holds if, and only if, $x \in\left(x_{0}, 1\right]$. Then

$$
\begin{aligned}
g(x, y)= & \left(1-x^{2}\right)\left[4\left(2 x^{3}+3 x^{2}\right)+4\left(x^{4}+5 x^{3}-6 x^{2}+x+6\right) y\right. \\
& +\left(5 x^{4}-16 x^{3}-11 x^{2}+8 x\right) y^{2}-4\left(3 x^{4}+5 x^{3}-17 x^{2}+x+11\right) y^{3} \\
& \left.-4\left(x^{4}-2 x^{3}-x^{2}+2 x\right) y^{4}\right], \quad x \in\left(x_{0}, 1\right], y \in[0,1] .
\end{aligned}
$$

I. On the vertices of $\left(x_{0}, 1\right] \times[0,1]$ we have

$$
g(1,0)=g(1,1)=0
$$

II. On the sides of $\left(x_{0}, 1\right] \times[0,1]$ we have
(a) If $x=1, y \in(0,1)$, then

$$
g(1, y)=0, \quad y \in(0,1)
$$

(b) If $y=0, x \in\left(x_{0}, 1\right)$, then

$$
g(x, 0)=g_{1}(x), \quad x \in\left(x_{0}, 1\right)
$$

where g_{1} is defined in Part B1.II(b).
(c) If $y=1, x \in\left(x_{0}, 1\right)$, then

$$
g(x, 1)=7 x^{6}-56 x^{4}+69 x^{2}-20=: g_{3}(x), \quad x \in\left(x_{0}, 1\right)
$$

Since $g_{3}^{\prime}(x)=42 x^{5}-224 x^{3}+138 x=0$ only for $x=\sqrt{8 / 3-\sqrt{1687} / 21} \approx 0.843092$, where g_{3} attains its maximum, we deduce that for $x \in\left(x_{0}, 1\right)$,

$$
g(x, 1)=g_{3}(x) \leqslant g\left(\sqrt{\frac{8}{3}-\frac{\sqrt{1687}}{21}}\right)=\frac{482 \sqrt{1687}}{189}-\frac{2740}{27} \approx 3.265804<20
$$

III. It remains to consider the set $\left(x_{0}, 1\right) \times(0,1)$. Then all real solutions of the system of equations

$$
\begin{aligned}
\frac{\partial g}{\partial x}= & -40 x^{4}-48 x^{3}+24 x^{2}+24 x \\
& -\left(24 x^{5}+100 x^{4}-112 x^{3}-48 x^{2}+96 x-4\right) y \\
& -\left(30 x^{5}-80 x^{4}-64 x^{3}+72 x^{2}+22 x-8\right) y^{2} \\
& +\left(72 x^{5}+100 x^{4}-320 x^{3}-48 x^{2}+224 x-4\right) y^{3} \\
& +\left(24 x^{5}-40 x^{4}-32 x^{3}+48 x^{2}+8 x-8\right) y^{4}=0 \\
\frac{\partial g}{\partial y}= & \left(1-x^{2}\right)\left[4\left(x^{4}+5 x^{3}-6 x^{2}+x+6\right)\right. \\
& +2\left(5 x^{4}-16 x^{3}-11 x^{2}+8 x\right) y \\
& -12\left(3 x^{4}+5 x^{3}-17 x^{2}+x+11\right) y^{2} \\
& \left.-16\left(x^{4}-2 x^{3}-x^{2}+2 x\right) y^{3}\right]=0
\end{aligned}
$$

by a numerical computation are the following

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ x _ { 1 } \approx - 6 . 2 2 4 3 5 5 } \\
{ y _ { 1 } \approx 0 . 4 7 9 1 6 4 }
\end{array} \quad \left\{\begin{array} { l }
{ x _ { 2 } \approx - 0 . 9 6 8 9 6 9 } \\
{ y _ { 2 } \approx 0 . 4 1 4 4 1 1 }
\end{array} \quad \left\{\begin{array}{l}
x_{3} \approx-0.831610 \\
y_{3} \approx-0.338257
\end{array}\right.\right.\right. \\
& \left\{\begin{array} { l }
{ x _ { 4 } \approx - 0 . 7 7 2 4 2 7 } \\
{ y _ { 4 } \approx - 0 . 1 3 6 5 3 7 }
\end{array} \quad \left\{\begin{array} { l }
{ x _ { 5 } \approx - 0 . 7 2 9 8 0 7 } \\
{ y _ { 5 } \approx - 0 . 7 8 1 0 2 6 }
\end{array} \quad \left\{\begin{array}{l}
x_{6} \approx-0.721994 \\
y_{6} \approx 0.753954
\end{array}\right.\right.\right. \\
& \left\{\begin{array} { l }
{ x _ { 7 } \approx 0 . 0 0 4 6 9 4 } \\
{ y _ { 7 } \approx - 0 . 4 2 6 3 0 0 }
\end{array} \quad \left\{\begin{array} { l }
{ x _ { 8 } \approx 0 . 5 9 0 3 9 9 } \\
{ y _ { 8 } \approx 0 . 4 8 4 3 7 6 }
\end{array} \quad \left\{\begin{array}{l}
x_{9} \approx 0.763704 \\
y_{9} \approx-0.752592
\end{array}\right.\right.\right. \\
& \left\{\begin{array} { l }
{ x _ { 1 0 } \approx 0 . 8 3 0 6 6 6 } \\
{ y _ { 1 0 } \approx - 1 0 . 5 3 8 7 0 8 }
\end{array} \left\{\begin{array} { l }
{ x _ { 1 1 } \approx 0 . 8 9 8 7 7 2 } \\
{ y _ { 1 1 } \approx - 1 . 0 5 4 6 4 6 }
\end{array} \quad \left\{\begin{array}{l}
x_{12} \approx 1.233102 \\
y_{12} \approx 5.163931
\end{array}\right.\right.\right. \\
& \left\{\begin{array} { l }
{ x _ { 1 3 } \approx 1 . 5 4 7 8 2 6 } \\
{ y _ { 1 3 } \approx - 1 . 2 8 9 8 8 7 }
\end{array} \left\{\begin{array} { l }
{ x _ { 1 4 } \approx 2 . 7 5 6 3 3 4 } \\
{ y _ { 1 4 } \approx - 8 . 7 1 7 3 2 7 }
\end{array} \quad \left\{\begin{array}{l}
x_{15} \approx 5.779609 \\
y_{15} \approx-0.380734
\end{array}\right.\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
x_{16}=1 \\
y_{16} \approx-1.928459
\end{array}\right. \\
& \left\{\begin{array}{l}
x_{17}=1 \\
y_{17} \approx-0.623757
\end{array}\right.
\end{aligned}\left\{\begin{array}{l}
x_{18}=1 \\
y_{18} \approx 1.38555
\end{array}\right\}
$$

Thus the function g has no critical point in $\left(x_{0}, 1\right) \times(0,1)$.
C. Summarizing, we see that the bounds obtained in Parts A and B give

$$
\left|H_{3,1}(f)\right| \leqslant \frac{1}{320} \cdot 20=\frac{1}{16}
$$

We finally note that equality in (9) holds for the function $f \in \mathscr{C}(-1 / 2)$ satisfying (10) with

$$
p(z):=\frac{1+z^{3}}{1-z^{3}}, \quad z \in \mathbb{D}
$$

for which $a_{2}=a_{3}=a_{5}=0$, and $a_{4}=1 / 4$. This completes the proof of the theorem.

REMARK 2.2. We note that using Lemma 1.1 it is a relatively simple exercise to prove that $\left|H_{2,2}(f)\right| \leqslant 21 / 64$ when $f \in \mathscr{C}(-1 / 2)$, and that this inequality is sharp.

REFERENCES

[1] C. CARATHÉODORY, Über den Variabilitatsbereich der Koeffizienten von Potenzreihen, die gegebene werte nicht annehmen, Math. Ann. 64 (1907), 95-115.
[2] L. CARLITZ, Hankel determinants and Bernoulli numbers, Tohoku Math. J. 5 (1954), 272-276.
[3] N. E. Cho, B. Kowalczyk, O. S. Kwon, A. Lecko, Y. J. Sim, The bounds of some determinants for starlike functions of order alpha, Bull. Malays. Math. Sci. Soc. 41 (2018), 523-535.
[4] N. E. Cho, B. Kowalczyk, O. S. Kwon, A. Lecko, Y. J. Sim, The bound of the Hankel detrminant for strongly starlike functions of order alpha, J. Math. Ineq. 11 (2017), no. 2, 429-439.
[5] A. W. Goodman, Univalent Functions, Mariner, Tampa, Florida, 1983.
[6] W. K. Hayman, On the second Hankel determinant of mean univalent functions, Proc. London Math. Soc. 18 (3) (1968), 77-94.
[7] W. Kaplan, Close to convex schlicht functions, Michigan Math. J. 1 (1952), 169-186.
[8] B. Kowalczyk, A. Lecko, The sharp bound of the third Hankel determinant for functions of bounded turning, Bol. Soc. Mat. Mex. 27 (2021), Art. 69, pp. 13.
[9] B. Kowalczyk, A. Lecko, M. Lecko, Y. J. Sim, The sharp bound of the third Hankel determinant for some classes of analytic functionsn Bull. Korean Math. Soc. 55 (2018), no. 6, 1859-1868.
[10] B. Kowalczyk, A. Lecko, Y. J. Sim, The sharp bound of the Hankel determinant of the third kind for convex functions, Bull. Aust. Math. Soc. 97 (2018), 435-445.
[11] B. Kowalczyk, A. Lecko, D. K. Thomas, The sharp bound of the third Hankel determinant for starlike functions, Forum Math. 34 (2022), no. 5, 1249-1254.
[12] O. S. Kwon, A. Lecko, Y. J. Sim, On the fourth coefficient of functions in the Carathéodory class, Comput. Methods Funct. Theory 18 (2018), 307-314.
[13] A. Lecko, Y. J. Sim, B. Śmiarowska, The Sharp Bound of the Hankel Determinant of the Third Kind for Starlike Functions of Order 1/2, Complex Anal. Oper. Theory 13 (2019), 2231-2238.
[14] R. J. Libera, E. J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85 (1982), no. 2, 225-230.
[15] R. J. Libera, E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivatives in \mathscr{P}, Proc. Amer. Math. Soc. 87 (1983), no. 2, 251-257.
[16] M. Obradović, N. Tuneski, Some properties of the class \mathscr{U}, Ann. Univ. Mariae Curie-Skłodowska Sect. A 73 (2019), 49-56.
[17] M. Obradović, N. Tuneski, Improved upper bound of third order Hankel determinant for Ozaki close-to-convex functions, Preprint, arXiv:2004.10680 [math.CV].
[18] S. Ozaki, On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daigaku Sect. A 4 (1941), 45-87.
[19] C. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. London Math. Soc. 41 (1966), 111-122.
[20] C. Pommerenke, On the Hankel determinants of Univalent functions, Mathematika 14 (1967), 108112.
[21] C. Pommerenke, Univalent Functions, Vandenhoeck \& Ruprecht, Göttingen, 1975.
[22] I. J. Schoenberg, On the maxima of certain Hankel determinants and the zeros of the classical orthogonal polynomials, Indag. Math. 21 (1959), 282-290.
[23] T. UmeZAWA, Analytic functions convex in one direction, J. Math. Soc. Japan 4 (1952), 194-20.

Bogumita Kowalczyk
Department of Complex Analysis, Faculty of Mathematics and Computer Science
University of Warmia and Mazury in Olsztyn ul. Stoneczna 54, 10-710 Olsztyn, Poland
e-mail: b.kowalczyk@matman.uwn.edu.pl
Adam Lecko
Department of Complex Analysis, Faculty of Mathematics and Computer Science
University of Warmia and Mazury in Olsztyn ul. Stoneczna 54, 10-710 Olsztyn, Poland
e-mail: alecko@matman.uwm.edu.pl
Derek K. Thomas
Department of Complex Analysis, Department of Mathematics
Swansea University Bay Campus
Swansea, SA1 8EN, United Kingdom
e-mail: d.k.thomas@swansea.ac.uk

[^0]: Mathematics subject classification (2020): 30C45, 30C50.
 Keywords and phrases: Convex functions, Carathéodory functions, Hankel determinant, coefficients.

 * Corresponding author.

