SOME NEW IMPROVEMENTS OF YOUNG'S INEQUALITIES

CHANGSEN YANG AND ZHENQUAN WANG

(Communicated by J. Pečarić)

Abstract. In this paper, we obtain some improvements and generalizations of Young's inequalities as the following:

(1) If $b \ge a$, we can get

$$\frac{(a\nabla_{\boldsymbol{v}}b)^m-(a\sharp_{\boldsymbol{v}}b)^m}{(a\nabla_{\boldsymbol{\tau}}b)^m-(a\sharp_{\boldsymbol{\tau}}b)^m}\leqslant \frac{\boldsymbol{v}(1-\boldsymbol{v})}{\boldsymbol{\tau}(1-\boldsymbol{\tau})};$$

(2) If $b \leq a$, we can get

$$\frac{(a\nabla_{v}b)^{m} - (a\sharp_{v}b)^{m}}{(a\nabla_{\tau}b)^{m} - (a\sharp_{\tau}b)^{m}} \ge \frac{v(1-v)}{\tau(1-\tau)}$$

for $m \in N_+$ and $0 < v \le \tau < 1$. In addition, we obtain new result of Young's inequality by using the expansions of the functions $(1 - v) + vx - x^v$ with 0 < x < 2.

1. Introduction

The Young's inequality [8] is well known as the following: If a, b > 0 and $0 \le v \le 1$, then

$$a\sharp_{\nu}b = a^{1-\nu}b^{\nu} \leqslant (1-\nu)a + \nu b = a\nabla_{\nu}b \tag{1.1}$$

where equality holds if and only if a = b. Let $\frac{b}{a} = x$ in inequality (1.1), then we can obtain the equivalent inequality

$$0 \le (1 - v) + vx - x^{v}. \tag{1.2}$$

Liao, Wu and Zhao [7] showed the reverse inequality of the above Young's inequality with Kantorovich constant

$$(1-v)a + vb \leqslant K(h,2)^{R}a^{1-v}b^{v}$$
(1.3)

where $a, b \ge 0$, $R = \max\{v, 1 - v\}$ and $K(h, 2) = \frac{(h+1)^2}{4h}$ with $h = \frac{b}{a}$. He [2] and Hirzallah [3] refined Young's inequality so that

$$r^{2}(a-b)^{2} \leq [(1-v)a+vb]^{2} - (a^{1-v}b^{v})^{2} \leq R^{2}(a-b)^{2}$$
(1.4)

© CENN, Zagreb Paper JMI-17-15

Mathematics subject classification (2020): 26D07, 15A15, 15A42, 15A60.

Keywords and phrases: Young's inequalities, Kantorovich constant, Newton's binomial expansion.

where $a, b \ge 0, r = \min\{v, 1 - v\}$ and $R = \max\{v, 1 - v\}$.

Alzer, Fonseca and Kovačec [1] presented the following Young's inequalities

$$\frac{\nu^m}{\tau^m} \leqslant \frac{(a\nabla_{\nu}b)^m - (a\sharp_{\nu}b)^m}{(a\nabla_{\tau}b)^m - (a\sharp_{\tau}b)^m} \leqslant \frac{(1-\nu)^m}{(1-\tau)^m}$$
(1.5)

for $0 < v \leq \tau < 1$ and $m \in N_+$.

Liao and Wu [5] replicated the above result as follows:

$$\frac{v^m}{\tau^m} \leqslant \frac{(a\nabla_v b)^m - (a!_v b)^m}{(a\nabla_\tau b)^m - (a!_\tau b)^m} \leqslant \frac{(1-v)^m}{(1-\tau)^m}$$
(1.6)

for $0 < v \leqslant \tau < 1$ and $m \in N_+$.

Sababheh [10] obtained by convexity of function f

$$\frac{v^m}{\tau^m} \leqslant \frac{[(1-\nu)f(0) + \nu f(1)]^m - f^m(\nu)}{[(1-\tau)f(0) + \tau f(1)]^m - f^m(\tau)} \leqslant \frac{(1-\nu)^m}{(1-\tau)^m}$$
(1.7)

for $0 < v \leq \tau < 1$ and $m \in N_+$.

Ren [9] obtained the following inequalities:

$$\begin{cases} \frac{a\nabla_{\nu}b - a\sharp_{\nu}b}{a\nabla_{\tau}b - a\sharp_{\tau}b} \leqslant \frac{\nu(1-\nu)}{\tau(1-\tau)}, & b-a \geqslant 0\\ \frac{a\nabla_{\nu}b - a\sharp_{\nu}b}{a\nabla_{\tau}b - a\sharp_{\tau}b} \geqslant \frac{\nu(1-\nu)}{\tau(1-\tau)}, & b-a \leqslant 0 \end{cases}$$
(1.8)

and

$$\begin{cases} \frac{(a\nabla_{\nu}b)^{2} - (a\sharp_{\nu}b)^{2}}{(a\nabla_{\tau}b)^{2} - (a\sharp_{\tau}b)^{2}} \leqslant \frac{\nu(1-\nu)}{\tau(1-\tau)}, & b-a \geqslant 0\\ \frac{(a\nabla_{\nu}b)^{2} - (a\sharp_{\nu}b)^{2}}{(a\nabla_{\tau}b)^{2} - (a\sharp_{\tau}b)^{2}} \geqslant \frac{\nu(1-\nu)}{\tau(1-\tau)}, & b-a \leqslant 0 \end{cases}$$
(1.9)

for $0 < v \leq \tau < 1$ and a, b > 0.

In addition, Zhu [11] obtained new Young's inequalities by using the expansions of the functions $\frac{(1-\nu)+\nu x}{\nu^{\nu}}$.

In this paper, we generalize a part of above results in section 2. In section 3 we obtain following results through using the expansions of the functions $(1-v) + vx - x^{v}$

$$\begin{cases} (1-v) + vx - x^{v} \ge \sum_{k=2}^{2m} \alpha_{k}(v)(x-1)^{k}, & x \in (0,1] \\ (1-v) + vx - x^{v} \le \sum_{k=2}^{2m} \alpha_{k}(v)(x-1)^{k}, & x \in [1,\infty) \end{cases}$$

and

$$(1-v) + vx - x^{v} \ge \sum_{k=2}^{2m+1} \alpha_{k}(v)(x-1)^{k}$$

for $0 \le v \le 1$, $m \in N_+$ and x > 0 where $\alpha_k(v) = \frac{(-1)^k v(1-v)(2-v) \cdots ((k-1)-v)}{k!}$. And our result is the improvement of [11, Corollary 1] when m = 1. Finally, we present trace norm, Hilbert-Schmidt norm and determinant version of results in section 2.

2. Generalized improments of Young's inequalities

We firstly show the generalization of Young's inequality [9] for scalars under some conditions.

THEOREM 2.1. Let $0 < v \le \tau < 1$, $m \in N_+$ and a, b are real positive numbers. Then

(1) If $b \ge a$, we can get

$$\frac{(a\nabla_{\nu}b)^m - (a\sharp_{\nu}b)^m}{(a\nabla_{\tau}b)^m - (a\sharp_{\tau}b)^m} \leqslant \frac{\nu(1-\nu)}{\tau(1-\tau)};$$
(2.1)

(2) If $b \leq a$, we can get

$$\frac{(a\nabla_{\nu}b)^m - (a\sharp_{\nu}b)^m}{(a\nabla_{\tau}b)^m - (a\sharp_{\tau}b)^m} \ge \frac{\nu(1-\nu)}{\tau(1-\tau)}.$$
(2.2)

Proof. Firstly, we have

$$(1 - v + vx)^m - x^{mv}$$

= $(1 - v + vx - x^v)[(1 - v + vx)^{m-1} + (1 - v + vx)^{m-2}x^v + \cdots + (1 - v + vx)x^{(m-2)v} + x^{(m-1)v}].$

Then let $f(v) = (1 - v + vx)^{m-1} + (1 - v + vx)^{m-2}x^{v} + \dots + (1 - v + vx)x^{(m-2)v} + x^{(m-1)v}$, we can get

$$\begin{split} f'(v) &= (m-1)(x-1)(1-v+vx)^{m-2} + (m-2)(x-1)(1-v+vx)^{m-3}x^{v} \\ &+ (1-v+vx)^{m-2}x^{v}\ln x + \dots + (x-1)x^{(m-2)v} + (1-v+vx)(m-2)x^{(m-2)v}\ln x \\ &+ (m-1)x^{(m-1)v}\ln x \\ &= (x-1)[(m-1)(1-v+vx)^{m-2} + (m-2)(1-v+vx)^{m-3}x^{v} + \dots + x^{(m-2)v}] \\ &+ \ln x[(1-v+vx)^{m-2}x^{v} + (1-v+vx)^{m-3}2x^{2v} + \dots \\ &+ (1-v+vx)(m-2)x^{(m-2)v} + (m-1)x^{(m-1)v}]. \end{split}$$

(1) If $x \ge 1$, we have $1 - v + vx = 1 + (x - 1)v \ge 1$. So it's obvious that $f'(v) \ge 0$, it means that f(v) is increasing on $[1,\infty)$, that is to say $\frac{f(v)}{f(\tau)} \le 1$. Therefore

$$\frac{(1-v+vx)^m - x^{mv}}{(1-\tau+\tau x)^m - x^{m\tau}} = \frac{((1-v+vx) - x^v)f(v)}{((1-\tau+\tau x) - x^\tau)f(\tau)} \\ \leqslant \frac{(1-v+vx) - x^\tau}{(1-\tau+\tau x) - x^\tau} \\ \leqslant \frac{v(1-v)}{\tau(1-\tau)} \quad (\text{by 1.8}).$$

(2) If $0 < x \le 1$, we have $1 - v + vx = 1 + (x - 1)v \ge 0$ and $\ln x \le 0$. So it's obvious that $f'(v) \le 0$, it means that f(v) is decreasing on (0, 1], that is to say $\frac{f(v)}{f(\tau)} \ge 1$. Therefore

$$\frac{(1-v+vx)^m - x^{mv}}{(1-\tau+\tau x)^m - x^{m\tau}} = \frac{((1-v+vx) - x^v)f(v)}{((1-\tau+\tau x) - x^\tau)f(\tau)} \\ \ge \frac{(1-v+vx) - x^\tau}{(1-\tau+\tau x) - x^\tau} \\ \ge \frac{v(1-v)}{\tau(1-\tau)} \quad (by \ 1.8).$$

Taking $x = \frac{b}{a}$, we can get our desired results directly. \Box

REMARK 2.1. (1) Let m = 2, we can get [9, Theorem 2.3].

(2) Let a = b, b = a, $v = 1 - \tau$, $\tau = 1 - v$ in inequality (2.1), we can also get inequality (2.2) directly.

(3) Let $0 < v \le \tau < 1$, so $\frac{1-v}{1-\tau} \ge 1$, therefore (i) If $b \ge a$, we can get

$$\frac{(a\nabla_{\mathbf{v}}b)^m - (a\sharp_{\mathbf{v}}b)^m}{(a\nabla_{\tau}b)^m - (a\sharp_{\tau}b)^m} \leqslant \frac{\mathbf{v}(1-\mathbf{v})}{\tau(1-\tau)} \leqslant \frac{\mathbf{v}(1-\mathbf{v})^m}{\tau(1-\tau)^m} \leqslant \frac{(1-\mathbf{v})^m}{(1-\tau)^m};$$

(ii) If $b \leq a$, we can get

$$\frac{(a\nabla_{\mathbf{v}}b)^m - (a\sharp_{\mathbf{v}}b)^m}{(a\nabla_{\tau}b)^m - (a\sharp_{\tau}b)^m} \ge \frac{v(1-v)}{\tau(1-\tau)} \ge \frac{v^m(1-v)}{\tau^m(1-\tau)} \ge \frac{v^m}{\tau^m}.$$

It is not difficult to see that Theorem 2.1 is the improvements of [1].

THEOREM 2.2. Let $\frac{1}{2} < v \leq \tau \leq 1$ and *a*, *b* are real positive numbers. Then

$$\frac{K(h,2)^{\nu}a\sharp_{\nu}b - a\nabla_{\nu}b}{K(h,2)^{\tau}a\sharp_{\tau}b - a\nabla_{\tau}b} \leqslant \frac{\nu}{\tau}$$
(2.3)

where $K(h,2) = \frac{(h+1)^2}{4h}$ and $h = \frac{b}{a}$.

Proof. Firstly, we let

$$f(v) = \frac{K^{\nu}(x,2)(x^{\nu}) - (1-v+vx)}{v}$$
$$= \frac{\left(\frac{x+1}{2}\right)^{2\nu} - (1-v+vx)}{v}.$$

Then we can get

$$f'(v) = \frac{v \left[2 \left(\frac{x+1}{2}\right)^{2v} \ln \left(\frac{x+1}{2}\right) - (x-1)\right] - \left[\left(\frac{x+1}{2}\right)^{2v} - (1-v+vx)\right]}{v^2}$$
$$= \frac{\left(\frac{x+1}{2}\right)^{2v} \left[2v \ln \left(\frac{x+1}{2}\right) - 1\right] + 1}{v^2}$$
$$= \frac{h(x)}{v^2}$$

and

$$h'(x) = v \left(\frac{x+1}{2}\right)^{2\nu-1} \left[2\nu \ln\left(\frac{x+1}{2}\right) - 1\right] + v \left(\frac{x+1}{2}\right)^{2\nu-1}$$
$$= 2\nu^2 \left(\frac{x+1}{2}\right)^{2\nu-1} \ln\left(\frac{x+1}{2}\right).$$

It means that $x \in (0,1]$, $h'(x) \leq 0$; $x \in [1,\infty)$, $h'(x) \geq 0$. So $h(x) \geq h(1) = 0$ and $f'(v) \geq 0$. Therefore f(v) is increasing on $(0, +\infty)$.

Taking $x = \frac{b}{a}$, we can get our desired results directly. \Box

THEOREM 2.3. Let $0 < v \leq \tau \leq \frac{1}{2}$ and a, b are real positive numbers. Then

$$\frac{(a\nabla_{\nu}b)^2 - (a\sharp_{\nu}b)^2 - \nu^2(a-b)^2}{(a\nabla_{\tau}b)^2 - (a\sharp_{\tau}b)^2 - \tau^2(a-b)^2} \ge \frac{\nu}{\tau}.$$
(2.4)

Proof. Firstly, we let $f(v) = \frac{(1-v+vx)^2 - x^{2v} - v^2(x-1)^2}{v}$. Then

$$f'(v) = \frac{v \left[2(x-1)(1-v+vx) - 2x^{2v} \ln x - 2v(x-1)^2 \right] - \left[(1-v+vx)^2 - x^{2v} - v^2(x-1)^2 \right]}{v^2}$$
$$= \frac{(1-v+vx)(vx-v-1) + x^{2v} - 2vx^{2v} \ln x - v^2(x-1)^2}{v^2}$$
$$= \frac{h(x)}{v^2}$$

and

$$h'(x) = v(vx - v - 1) + v(1 - v + vx) + 2vx^{2\nu - 1} - 4v^2x^{2\nu - 1}\ln x - 2vx^{2\nu - 1} - 2v^2(x - 1)$$

= $-4v^2x^{2\nu - 1}\ln x$.

It means that $x \in (0,1]$, $h'(x) \ge 0$; $x \in [1,\infty)$, $h'(x) \le 0$. So $h(x) \le h(1) = 0$ and $f'(v) \le 0$. Therefore f(v) is decreasing on $(0, +\infty)$.

Taking $x = \frac{b}{a}$, we can get our desired results directly. \Box

THEOREM 2.4. Let $\frac{1}{2} < v \leq \tau \leq 1$ and *a*, *b* are real positive numbers. Then

$$\frac{(a\sharp_{\nu}b)^{2} + \nu^{2}(a-b)^{2} - (a\nabla_{\nu}b)^{2}}{(a\sharp_{\tau}b)^{2} + \tau^{2}(a-b)^{2} - (a\nabla_{\tau}b)^{2}} \leqslant \frac{\nu}{\tau}.$$
(2.5)

Proof. Firstly, we let $f(v) = \frac{x^{2\nu} + v^2(x-1)^2 - (1-\nu+\nu x)^2}{v}$. Then

$$f'(v) = \frac{v \left[2x^{2v}\ln x + 2v(x-1)^2 - 2(x-1)(1-v+vx)\right]}{v^2}$$
$$-\frac{\left[x^{2v} + v^2(x-1)^2 - (1-v+vx)^2\right]}{v^2}$$
$$= \frac{2vx^{2v}\ln x + v^2(x-1)^2 - x^{2v} - (1-v+vx)(vx-v-1)}{v^2}$$
$$= \frac{h(x)}{v^2}$$

and

$$h'(x) = 4v^2 x^{2\nu-1} \ln x + 2v^2 (x-1) - [v(\nu x - \nu - 1) + \nu(1 - \nu + \nu x)]$$

= 4v^2 x^{2\nu-1} \ln x.

It means that $x \in (0,1]$, $h'(x) \leq 0$; $x \in [1,\infty)$, $h'(x) \geq 0$. So $h(x) \geq h(1) = 0$ and $f'(v) \geq 0$. Therefore f(v) is increasing on $(0, +\infty)$.

Taking $x = \frac{b}{a}$, we can get our desired results directly. \Box

3. Some new results of Young-type inequalities

According to Newton's binomial expansion for $x \in (-1, 1)$,

$$(1+x)^{\nu} = 1 + \nu x + \frac{\nu(\nu-1)}{2!} x^2 + \frac{\nu(\nu-1)(\nu-2)}{3!} x^3 + \dots + \frac{\nu(\nu-1)(\nu-2)\cdots[\nu-(k-1)]}{k!} x^k + \dots$$

We can have if $0 \le v \le 1$ and 0 < x < 2,

$$(1-v) + vx - x^{v} = \sum_{k=2}^{\infty} \alpha_{k}(v)(x-1)^{k}$$
(3.1)

where $\alpha_k(v) = \frac{(-1)^k v(1-v)(2-v)\cdots((k-1)-v)}{k!}$. And then we can get some new results of inequality $(1-v) + vx - x^v$ based on (3.1).

THEOREM 3.1. Let $0 \leq v \leq 1$, $m \in N_+$ and x > 0. Then

$$\begin{cases} (1-v) + vx - x^{v} \ge \sum_{k=2}^{2m} \alpha_{k}(v)(x-1)^{k}, & x \in (0,1], \\ (1-v) + vx - x^{v} \le \sum_{k=2}^{2m} \alpha_{k}(v)(x-1)^{k}, & x \in [1,\infty). \end{cases}$$
(3.2)

Proof. Suppose

$$f(x) = (1 - v) + vx - x^{v} - \sum_{k=2}^{2m} \alpha_{k}(v)(x - 1)^{k}.$$

Then

$$f'(x) = v - vx^{\nu-1} - \sum_{k=2}^{2m} k\alpha_k(v)(x-1)^{k-1},$$

$$f''(x) = v(1-v)x^{\nu-2} - v(1-v) - \sum_{k=3}^{2m} k(k-1)\alpha_k(v)(x-1)^{k-2},$$

$$\vdots$$

$$f^{(2m-1)}(x) = (-1)^{2m-1}v(1-v)(2-v)\cdots((2m-2)-v)x^{\nu-(2m-1)} - (2m-1)!\alpha_{2m-1}(v) - (2m)!\alpha_{2m}(v)(x-1),$$

$$f^{(2m)}(x) = (-1)^{2m}v(1-v)(2-v)\cdots[(2m-1)-v]x^{\nu-2m} - (2m)!\alpha_{2m}(v).$$

Finally, we can get

$$f^{(2m)}(x) = (-1)^{2m}v(1-v)(2-v)\cdots[(2m-1)-v]x^{v-2m} - (2m)!\alpha_{2m}(v)$$

= $v(1-v)(2-v)\cdots[(2m-1)-v]x^{v-2m} - v(1-v)(2-v)\cdots[(2m-1)-v]$
= $v(1-v)(2-v)\cdots[(2m-1)-v](x^{v-2m}-1).$

It means that $f^{(2m)}(x) \ge 0$ on (0,1] and $f^{(2m)}(x) \le 0$ on $[1,+\infty)$, so that $f^{(2m-1)}(x) \le f^{(2m-1)}(1) = 0$. Therefore $f^{(2m-2)}(x)$ is decreasing on $(0,+\infty)$, $f^{(2m-2)}(x) \ge 0$ on (0,1] and $f^{(2m-2)}(x) \le 0$ on $[1,+\infty)$ obviously. By that analogy, f''(x) is decreasing on $(0,+\infty)$. It means that $f''(x) \ge 0$ on (0,1] and $f''(x) \le 0$ on $[1,+\infty)$. So $f'(x) \le f'(1) = 0$, that is, f(x) is decreasing on $(0,+\infty)$. According to f(1) = 0, we can get desired results. \Box

THEOREM 3.2. Let $0 \leq v \leq 1$, $m \in N_+$ and x > 0. Then

$$(1-v) + vx - x^{\nu} \ge \sum_{k=2}^{2m+1} \alpha_k(\nu)(x-1)^k.$$
(3.3)

Proof. Suppose

$$f(x) = (1 - v) + vx - x^{v} - \sum_{k=2}^{2m+1} \alpha_{k}(v)(x - 1)^{k}.$$

Then

$$f'(x) = v - vx^{v-1} - \sum_{k=2}^{2m+1} k\alpha_k(v)(x-1)^{k-1},$$

$$f''(x) = v(1-v)x^{v-2} - v(1-v) - \sum_{k=3}^{2m+1} k(k-1)\alpha_k(v)(x-1)^{k-2},$$

$$\vdots$$

$$f^{(2m)}(x) = (-1)^{2m} v(1-v)(2-v) \cdots [(2m-1)-v] x^{\nu-2m} - (2m)! \alpha_{2m}(v) - (2m+1)! \alpha_{2m+1}(v)(x-1),$$

$$f^{(2m+1)}(x) = (-1)^{2m+1} v(1-v)(2-v) \cdots (2m-v) x^{\nu-(2m+1)} - (2m+1)! \alpha_{2m+1}(v).$$

Finally, we can get

$$f^{(2m+1)}(x) = (-1)^{2m+1} v(1-v)(2-v) \cdots (2m-v) x^{v-(2m+1)} - (2m+1)! \alpha_{2m+1}(v)$$

= $-v(1-v)(2-v) \cdots (2m-v) x^{v-(2m+1)} + v(1-v)(2-v) \cdots (2m-v)$
= $v(1-v)(2-v) \cdots (2m-v)(1-x^{v-(2m+1)}).$

It's obvious that $f^{(2m+1)}(x) \leq 0$ on (0,1] and $f^{(2m+1)}(x) \geq 0$ on $[1,+\infty)$, so that $f^{(2m)}(x) \geq f^{(2m)}(1) = 0$. Therefore $f^{(2m-1)}(x)$ is increasing on $(0,+\infty)$, so $f^{(2m-1)}(x) \leq 0$ on (0,1] and $f^{(2m-1)}(x) \geq 0$ on $[1,+\infty)$. By that analogy, f'(x) is increasing on $(0,+\infty)$. It means that $f'(x) \leq 0$ on (0,1] and $f'(x) \geq 0$ on $[1,+\infty)$. So $f(x) \geq f(1) = 0$. By simple shift, we can get final result. \Box

COROLLARY 3.1. Let $0 \le v \le 1$ and x > 0. Then

$$\begin{cases} (1-v) + vx - x^{v} \ge \frac{v(1-v)}{2}(x-1)^{2}, & x \in (0,1], \\ (1-v) + vx - x^{v} \le \frac{v(1-v)}{2}(x-1)^{2}, & x \in [1,\infty). \end{cases}$$
(3.4)

Proof. Let m = 1 in Theorem 3.2, we can get desired results. \Box

REMARK 3.1. Because $x^{\nu} \ge 1$ on $[1,\infty)$ and $0 < x^{\nu} \le 1$ on (0,1], so

$$(1-v) + vx - x^{\nu} \ge \frac{v(1-v)}{2}(x-1)^2 \ge x^{\nu}\frac{v(1-v)}{2}(x-1)^2, \qquad x \in (0,1],$$

$$(1-v) + vx - x^{\nu} \le \frac{v(1-v)}{2}(x-1)^2 \le x^{\nu}\frac{v(1-v)}{2}(x-1)^2. \qquad x \in [1,\infty).$$

It's not hard to see that the inequality 3.4 is the improvement of [11, Corollary 1].

REMARK 3.2. Let $x = \frac{b}{a}$ in Theorem 3.1 and Theorem 3.2, we can get

$$\begin{cases} (1-v)a + vb - a^{1-v}b^v \ge \sum_{k=2}^{2m} \alpha_k(v)a^{1-k}(b-a)^k, & a \ge b > 0\\ (1-v)a + vb - a^{1-v}b^v \le \sum_{k=2}^{2m} \alpha_k(v)a^{1-k}(b-a)^k, & b \ge a > 0 \end{cases}$$

and

$$(1-v)a+vb-a^{1-v}b^{v} \ge \sum_{k=2}^{2m+1} \alpha_{k}(v)a^{1-k}(b-a)^{k}.$$

It's obvious that $\sum_{k=2}^{n} \alpha_k(v) a^{1-k} (b-a)^k$ is greater than 0 where $a \ge b > 0$.

COROLLARY 3.2. Let $0 \le v \le \tau \le 1$ and $a \ge b > 0$. Then

$$\frac{(a\nabla_{v}b) - (a\sharp_{v}b) - \sum_{k=2}^{n} \alpha_{k}(v)a^{1-k}(b-a)^{k}}{(a\nabla_{\tau}b) - (a\sharp_{\tau}b) - \sum_{k=2}^{n} \alpha_{k}(\tau)a^{1-k}(b-a)^{k}} \ge \frac{v(1-v)(2-v)\cdots(n-v)}{\tau(1-\tau)(2-\tau)\cdots(n-\tau)}.$$
(3.5)

Proof. Firstly, we let $x \in (0,2)$ and

$$f(v) = (1 - v) + vx - x^{v} - \sum_{k=2}^{n} \alpha_{k}(v)(x - 1)^{k}.$$

According to (3.1), we have

$$f(v) = \sum_{k=n+1}^{\infty} \alpha_k(v) (x-1)^k$$

so

$$\frac{(1-v)+vx-x^{v}-\sum_{k=2}^{n}\alpha_{k}(v)(x-1)^{k}}{(1-\tau)+\tau x-x^{\tau}-\sum_{k=2}^{n}\alpha_{k}(\tau)(x-1)^{k}}=\frac{\sum_{k=n+1}^{\infty}(-1)^{k}\alpha_{k}(v)(1-x)^{k}}{\sum_{k=n+1}^{\infty}(-1)^{k}\alpha_{k}(\tau)(1-x)^{k}}.$$

Let

$$\beta_k(v) = (-1)^k \alpha_k(v) = \frac{v(1-v)(2-v)\cdots(k-1-v)}{k}.$$

When $k \ge n+1$, we can get

$$\frac{\beta_k(v)}{\beta_k(\tau)} = \frac{v(1-v)(2-v)\cdots(k-1-v)}{\tau(1-\tau)(2-\tau)\cdots(k-1-\tau)} \ge \frac{v(1-v)(2-v)\cdots(n-v)}{\tau(1-\tau)(2-\tau)\cdots(n-\tau)}$$

Therefore

$$\frac{(1-v)+vx-x^{v}-\sum_{k=2}^{n}\alpha_{k}(v)(x-1)^{k}}{(1-\tau)+\tau x-x^{\tau}-\sum_{k=2}^{n}\alpha_{k}(\tau)(x-1)^{k}} = \frac{\sum_{k=n+1}^{\infty}\beta_{k}(v)(1-x)^{k}}{\sum_{k=n+1}^{\infty}\beta_{k}(\tau)(1-x)^{k}}$$
$$\geqslant \frac{v(1-v)(2-v)\cdots(n-v)}{\tau(1-\tau)(2-\tau)\cdots(n-\tau)}.$$

Taking $x = \frac{b}{a}$, we can get our desired results directly. \Box

4. Applications

Let $M_n(\mathbb{C})$ denotes the space of all $n \times n$ complex matrices and $M_n^+(\mathbb{C})$ denotes the space of all $n \times n$ positive semidefinite matrices in $M_n(\mathbb{C})$. A norm |||.||| is called unitarily invariant norm if |||UAV||| = |||A||| for all $A \in M_n(\mathbb{C})$ and for all unitary matrices $U, V \in M_n(\mathbb{C})$. For $A = [a_{ij}] \in M_n(\mathbb{C})$, the trace norm and Hilbert-Schmidt norm of A are defined by

$$||A||_1 = tr|A| = \sum_{i=1}^n s_i(A), \quad ||A||_2 = \sqrt{\sum_{i=1}^n s_i^2(A)} = \sqrt{\sum_{i,j=1}^n |a_{ij}|^2}$$

where $s_1(A) \ge s_2(A) \ge \cdots \ge s_n(A)$ are the singular values of A, that is, the eigenvalues of the positive matrix $|A| = (A^*A)^{\frac{1}{2}}$, arranged in decreasing order and repeated according to multiplicity and tr is the usual trace function. As is known to all, the Hilbert-Schmidt norm is unitarily invariant.

LEMMA 4.1. Let $A, B \in M_n^+(\mathbb{C})$, then

$$\det(A+B)^{\frac{1}{n}} \ge \det A^{\frac{1}{n}} + \det B^{\frac{1}{n}}.$$

LEMMA 4.2. ([5]) Let $A, B, X \in M_n(\mathbb{C})$ and $A, B \in M_n^+(\mathbb{C})$. If $0 \leq v \leq 1$, then for any unitarily invariant norm $||| \cdot |||$

$$|||A^{\nu}XB^{1-\nu}||| \leq |||AX|||^{\nu}|||XB|||^{1-\nu}.$$

THEOREM 4.1. Let $A, B \in M_n^+(\mathbb{C})$, $m \in N_+$ and $0 < v \leq \tau < 1$. Then (1) If $B \ge A \ge 0$, we can get

$$\frac{\|(1-\nu)A+\nu B\|_{1}^{m}-(\|A\|_{1}^{1-\nu}\|B\|_{1}^{\nu})^{m}}{\nu(1-\nu)} \leqslant \frac{\|(1-\tau)A+\tau B\|_{1}^{m}-(\|A\|_{1}^{1-\tau}\|B\|_{1}^{\tau})^{m}}{\tau(1-\tau)};$$

(2) If $A \ge B \ge 0$, we can get

$$\frac{\|(1-v)A + vB\|_{1}^{m} - (\|A\|_{1}^{1-v}\|B\|_{1}^{v})^{m}}{v(1-v)} \ge \frac{\|(1-\tau)A + \tauB\|_{1}^{m} - (\|A\|_{1}^{1-\tau}\|B\|_{1}^{\tau})^{m}}{\tau(1-\tau)}$$

Proof. Suppose $B \ge A$ and by Theorem 2.1, we have

$$\begin{split} &\|(1-v)A+vB\|_{1}^{m} \\ &= (tr((1-v)A)+tr(vB))^{m} \\ &= ((1-v)tr(A)+vtr(B))^{m} \\ &\leqslant (tr(A)^{1-v}tr(B)^{v})^{m} + \frac{v(1-v)}{\tau(1-\tau)} [((1-\tau)tr(A)+\tau tr(B))^{m} - (tr(A)^{1-\tau}tr(B)^{\tau})^{m}] \\ &= (\|A\|_{1}^{1-v}\|B\|_{1}^{v})^{m} + \frac{v(1-v)}{\tau(1-\tau)} [\|(1-\tau)A+\tau B\|_{1}^{m} - (\|A\|_{1}^{1-\tau}\|B\|_{1}^{\tau})^{m}]. \end{split}$$

Using the same method we can get (2) similarly, so we omit it. \Box

THEOREM 4.2. Let $A, B \in M_n^+(\mathbb{C})$, $m \in N_+$ and $0 < v \le \tau < 1$. Then (1) If $B \ge A \ge 0$, we can get

$$\det((1-\tau)A+\tau B)^{m} \geq \frac{\tau(1-\tau)}{\nu(1-\nu)} \left[[(1-\nu)\det A^{\frac{1}{n}}+\nu\det B^{\frac{1}{n}}]^{mn} - \det(A^{1-\nu}B^{\nu})^{m} \right] + \det(A^{1-\tau}B^{\tau})^{m};$$

(2) If $A \ge B \ge 0$, we can get

$$\det((1-\nu)A+\nu B)^{m} \geq \det(A^{1-\nu}B^{\nu})^{m} + \frac{\nu(1-\nu)}{\tau(1-\tau)} \left[[(1-\tau)\det A^{\frac{1}{n}} + \tau\det B^{\frac{1}{n}}]^{mn} - \det(A^{1-\tau}B^{\tau})^{m} \right].$$

Proof. Suppose $B \ge A$ and by Theorem 2.1 and Lemma 4.1, we have

$$\begin{aligned} \det((1-\tau)A+\tau B)^{m} \\ &= \left[\det((1-\tau)A+\tau B)^{\frac{1}{n}}\right]^{mn} \\ &\geq \left[(1-\tau)\det A^{\frac{1}{n}}+\tau \det B^{\frac{1}{n}}\right]^{mn} \\ &\geq \frac{\tau(1-\tau)}{\nu(1-\nu)} \left[\left[(1-\nu)\det A^{\frac{1}{n}}+\nu \det B^{\frac{1}{n}}\right]^{mn} - \left[\det A^{\frac{1-\nu}{n}}\det B^{\frac{\nu}{n}}\right]^{mn} \right] \\ &+ \left[\det A^{\frac{1-\tau}{n}}\det B^{\frac{\tau}{n}}\right]^{mn} \\ &= \frac{\tau(1-\tau)}{\nu(1-\nu)} \left[\left[(1-\nu)\det A^{\frac{1}{n}}+\nu \det B^{\frac{1}{n}}\right]^{mn} - \det(A^{1-\nu}B^{\nu})^{m} \right] \\ &+ \det \left(A^{1-\tau}B^{\tau}\right)^{m}. \end{aligned}$$

Using the same method we can get (2) similarly, so we omit it. \Box

THEOREM 4.3. Let $A, B, X \in M_n(\mathbb{C})$ with $A, B \in M_n^+(\mathbb{C})$, $m \in N_+$ and $0 < v \leq \tau < 1$, then for any unitarily invariant norm $||| \cdot |||$, we have

(1) If $B \ge A \ge 0$, we can get

$$[(1-\tau)|||AX||| + \tau|||XB|||]^{m} \ge \frac{\tau(1-\tau)}{\nu(1-\nu)} [[(1-\nu)|||AX||| + \nu|||XB|||]^{m} - (|||AX|||^{1-\nu}|||XB|||^{\nu})^{m}] + |||A^{1-\tau}XB^{\tau}|||^{m};$$

(2) If
$$A \ge B \ge 0$$
, we can get

$$\begin{split} & [(1-\nu)|||AX|||+\nu|||XB|||]^m \\ & \ge \frac{\nu(1-\nu)}{\tau(1-\tau)} \left[[(1-\tau)|||AX|||+\tau|||XB|||]^m - (|||AX|||^{1-\tau}|||XB|||^{\tau})^m \right] + |||A^{1-\nu}XB^{\nu}|||^m. \end{split}$$

Proof. Suppose $B \ge A$ and by Theorem 2.1 and Lemma 4.2, we have

$$\begin{split} & [(1-\tau)|||AX|||+\tau|||XB|||]^{m} - |||A^{1-\tau}XB^{\tau}|||^{m} \\ & \ge [(1-\tau)|||AX|||+\tau|||XB|||]^{m} - (|||AX|||^{1-\tau}|||XB|||^{\tau})^{m} \\ & \ge \frac{\tau(1-\tau)}{\nu(1-\nu)} \left[[(1-\nu)|||AX|||+\nu|||XB|||]^{m} - (|||AX|||^{1-\nu}|||XB|||^{\nu})^{m} \right]. \end{split}$$

Using the same method we can get (2) similarly, so we omit it. \Box

THEOREM 4.4. Let $A, B \in M_n^+(\mathbb{C})$ and $\frac{1}{2} < v \leq \tau \leq 1$. Then

$$\frac{K(h,2)^{\nu} \|A\|_{1}^{1-\nu} \|B\|_{1}^{\nu} - \|(1-\nu)A + \nu B\|_{1}}{\nu} \leqslant \frac{K(h,2)^{\tau} \|A\|_{1}^{1-\tau} \|B\|_{1}^{\tau} - \|(1-\tau)A + \tau B\|_{1}}{\tau}$$

where $K(h,2) = \frac{(h+1)^2}{4h}$ and $h = \frac{tr(B)}{tr(A)}$.

Proof. According to Theorem 2.4, we have

$$\begin{split} &\|(1-\nu)A+\nu B\|_{1} \\ &= (1-\nu)tr(A)+\nu tr(B) \\ &\ge K(h,2)^{\nu}tr(A)^{1-\nu}tr(B)^{\nu} - \frac{\nu}{\tau}[K(h,2)^{\tau}tr(A)^{1-\tau}tr(B)^{\tau} - ((1-\tau)tr(A) + \tau tr(B))] \\ &= K(h,2)^{\nu}\|A\|_{1}^{1-\nu}\|B\|_{1}^{\nu} - \frac{\nu}{\tau}[K(h,2)^{\tau}\|A\|_{1}^{1-\tau}\|B\|_{1}^{\tau} - \|(1-\tau)A + \tau B\|_{1}]. \end{split}$$

This completes the proof. \Box

THEOREM 4.5. Suppose $A, B, X \in M_n(\mathbb{C})$ such that $A, B \in M_n^+(\mathbb{C})$. Then (1) if $0 < v \leq \tau \leq \frac{1}{2}$, we have

$$\frac{\|(1-\nu)AX+\nu XB\|_{2}^{2}-\|A^{1-\nu}XB^{\nu}\|_{2}^{2}-\nu^{2}\|AX-BX\|_{2}^{2}}{\nu}$$

$$\geq \frac{\|(1-\tau)AX+\tau XB\|_{2}^{2}-\|A^{1-\tau}XB^{\tau}\|_{2}^{2}-\tau^{2}\|AX-XB\|_{2}^{2}}{\tau};$$

(2) if $\frac{1}{2} < v \leq \tau \leq 1$, we have

$$\frac{\|(1-v)AX+vXB\|_{2}^{2}-\|A^{1-v}XB^{v}\|_{2}^{2}-v^{2}\|AX-XB\|_{2}^{2}}{v} \\ \leqslant \frac{\|(1-\tau)AX+\tau XB\|_{2}^{2}-\|A^{1-\tau}XB^{\tau}\|_{2}^{2}-\tau^{2}\|AX-XB\|_{2}^{2}}{\tau}$$

Proof. Since *A* and *B* are positive semidefinite, it follows by spectral theorem that there exist unitary matrices $U, V \in M_n(\mathbb{C})$, such that $A = U\Lambda_1 U^*$, $B = V\Lambda_2 V^*$, where $\Lambda_1 = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$, $\Lambda_2 = diag(\mu_1, \mu_2, \dots, \mu_n)$ for λ_i, μ_l are eigenvalues of *A* and *B* respectively, $i, l = 1, 2, \dots, n$.

For our computations, let $Y = U^*XV = [y_{il}]$. Then we have

$$(1-\nu)AX + \nu XB = U[(1-\nu)\Lambda_1 Y + \nu Y\Lambda_2]V^* = U[((1-\nu)\lambda_i + \nu\mu_l)y_{il}]V^*,$$
$$A^{1-\nu}XB^{\nu} = U[(\lambda_i^{1-\nu}\mu_l^{\nu})y_{il}]V^*, \quad AX - XB = U[(\lambda_i - \mu_l)y_{il}]V^*,$$

So

$$\|(1-v)AX + vXB\|_{2}^{2} - \|A^{1-v}XB^{v}\|_{2}^{2} - v^{2}\|AX - XB\|_{2}^{2}$$

$$\begin{split} &= \sum_{i,l}^{n} [(1-\nu)\lambda_{i} + \nu\mu_{l}]^{2} |y_{il}|^{2} - \sum_{i,l}^{n} (\lambda_{i}^{1-\nu}\mu_{l}^{\nu})^{2} |y_{il}|^{2} - \nu^{2} \sum_{i,l}^{n} (\lambda_{i} - \mu_{l})^{2} |y_{il}|^{2} \\ &= \sum_{i,l}^{n} \left([(1-\nu)\lambda_{i} + \nu\mu_{l}]^{2} - (\lambda_{i}^{1-\nu}\mu_{l}^{\nu})^{2} - \nu^{2}(\lambda_{i} - \mu_{l})^{2} \right) |y_{il}|^{2} \\ &\geq \frac{\nu}{\tau} \sum_{i,l}^{n} \left([(1-\tau)\lambda_{i} + \tau\mu_{l}]^{2} - (\lambda_{i}^{1-\tau}\mu_{l}^{\tau})^{2} - \tau^{2}(\lambda_{i} - \mu_{l})^{2} \right) |y_{il}|^{2} \\ &= \frac{\nu}{\tau} \left(\sum_{i,l}^{n} [(1-\tau)\lambda_{i} + \tau\mu_{l}]^{2} |y_{il}|^{2} - \sum_{i,l}^{n} (\lambda_{i}^{1-\tau}\mu_{l}^{\tau})^{2} |y_{il}|^{2} - \tau^{2} \sum_{i,l}^{n} (\lambda_{i} - \mu_{l})^{2} |y_{il}|^{2} \right) \\ &= \frac{\nu}{\tau} \left[||(1-\tau)AX + \tau XB||_{2}^{2} - ||A^{1-\tau}XB^{\tau}||_{2}^{2} - \tau^{2} ||AX - XB||_{2}^{2} \right]. \end{split}$$

Using the same method we can get (2) similarly, so we omit it. \Box

REFERENCES

- H. ALZER, M. CARLOS AND A. KOVAČEC, Young-type inequalities and their matrix analogues, Linear and Multilinear Algebra, 63, 3 (2015), 622–635, https://doi.org/10.1080/03081087.2014.891588.
- [2] C. HE, L. ZOU, Some inequalities involoving unitarily invariant norms, Math. Inequal. Appl., 12 (2012), 757–768.
- [3] O. HIRZALLAH, F. KITTANEH, Matrix Young inequalities for the Hilbert-Schmidt norm, Linear Algebra Appl, 308 (2000), 77–84.
- [4] F. KITTANEH, Norm inequalities for fractional powers of positive operators, Lett. Math. Phys., 27 (1993), 279–285.
- [5] W. S. LIAO, J. L. WU, Matrix inequalities for the difference between arithmetic mean and harmonic mean, Ann. Funct. Anal., 6, 3 (2015), 191–202.
- [6] W. S. LIAO, J. L. WU, New version of reverse young and heinz mean inequalities with the kantorovich constant, Taiwanese Journal of Mathematics, 19 (2015), 467–479, https://doi.org/10.11650/tjm.19.2015.4548.
- [7] Y. MANASRAH, F. KITTANEH, A generaliation of two refined Young inequalities, Positivity, 19 (2015), 757–768.
- [8] D. S. MITRINOVIC, Analytic inequalities, Springer-Verlag, Berlin, Heidelberg, New York, 1970.
- [9] Y. H. REN, Some results of Young-type inequalities, RACSAM, 114, 143 (2020), https://doi.org/10.1007/s13398-020-00880-w.
- [10] M. SABABHEH, Convexity and matrix means, Linear Algebra Appl, 506 (2016), 588-602.
- [11] L. ZHU, Natural approachs of Young's inequality, RACSAM, 114, 24 (2020), https://doi.org/10.1007/s13398-019-00770-w.

(Received June 21, 2022)

Changsen Yang College of Mathematics and Information Science Henan Normal University Xinxiang, Henan, 453007, P. R. China e-mail: yangchangsen0991@sina.com

Zhenquan Wang College of Mathematics and Information Science Henan Normal University Xinxiang, Henan, 453007, P. R. China e-mail: wangzhenquan1997@163.com