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CHANGSEN YANG AND ZHENQUAN WANG
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Abstract. In this paper, we obtain some improvements and generalizations of Young’s inequali-
ties as the following:

(1) If b � a , we can get

(a∇vb)m − (a�vb)m

(a∇τ b)m − (a�τb)m � v(1− v)
τ(1− τ)

;

(2) If b � a , we can get

(a∇vb)m − (a�vb)m

(a∇τ b)m − (a�τb)m � v(1− v)
τ(1− τ)

for m ∈ N+ and 0 < v � τ < 1 . In addition, we obtain new result of Young’s inequality by
using the expansions of the functions (1− v)+ vx− xv with 0 < x < 2.

1. Introduction

The Young’s inequality [8] is well known as the following: If a,b > 0 and 0 �
v � 1, then

a�vb = a1−vbv � (1− v)a+ vb = a∇vb (1.1)

where equality holds if and only if a = b . Let b
a = x in inequality (1.1), then we can

obtain the equivalent inequality

0 � (1− v)+ vx− xv. (1.2)

Liao, Wu and Zhao [7] showed the reverse inequality of the above Young’s in-
equality with Kantorovich constant

(1− v)a+ vb � K(h,2)Ra1−vbv (1.3)

where a , b � 0, R = max{v,1− v} and K(h,2) = (h+1)2
4h with h = b

a .
He [2] and Hirzallah [3] refined Young’s inequality so that

r2(a−b)2 � [(1− v)a+ vb]2− (a1−vbv)2 � R2(a−b)2 (1.4)
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where a , b � 0, r = min{v,1− v} and R = max{v,1− v} .
Alzer, Fonseca and Kovačec [1] presented the following Young’s inequalities

vm

τm � (a∇vb)m− (a�vb)m

(a∇τb)m− (a�τb)m � (1− v)m

(1− τ)m (1.5)

for 0 < v � τ < 1 and m ∈ N+ .
Liao and Wu [5] replicated the above result as follows:

vm

τm � (a∇vb)m − (a!vb)m

(a∇τb)m − (a!τb)m � (1− v)m

(1− τ)m (1.6)

for 0 < v � τ < 1 and m ∈ N+ .
Sababheh [10] obtained by convexity of function f

vm

τm � [(1− v) f (0)+ v f (1)]m− f m(v)
[(1− τ) f (0)+ τ f (1)]m− f m(τ)

� (1− v)m

(1− τ)m (1.7)

for 0 < v � τ < 1 and m ∈ N+ .
Ren [9] obtained the following inequalities:⎧⎪⎪⎨

⎪⎪⎩
a∇vb−a�vb
a∇τb−a�τb

� v(1− v)
τ(1− τ)

, b−a � 0

a∇vb−a�vb
a∇τb−a�τb

� v(1− v)
τ(1− τ)

, b−a � 0
(1.8)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(a∇vb)2− (a�vb)2

(a∇τb)2− (a�τb)2 � v(1− v)
τ(1− τ)

, b−a � 0

(a∇vb)2− (a�vb)2

(a∇τb)2− (a�τb)2 � v(1− v)
τ(1− τ)

, b−a � 0

(1.9)

for 0 < v � τ < 1 and a, b > 0.
In addition, Zhu [11] obtained new Young’s inequalities by using the expansions

of the functions (1−v)+vx
xv .

In this paper, we generalize a part of above results in section 2. In section 3 we
obtain following results through using the expansions of the functions (1−v)+vx−xv

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1− v)+ vx− xv �
2m

∑
k=2

αk(v)(x−1)k, x ∈ (0,1]

(1− v)+ vx− xv �
2m

∑
k=2

αk(v)(x−1)k, x ∈ [1,∞)

and

(1− v)+ vx− xv �
2m+1

∑
k=2

αk(v)(x−1)k
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for 0 � v � 1, m ∈ N+ and x > 0 where αk(v) = (−1)kv(1−v)(2−v)···((k−1)−v)
k! . And our

result is the improvement of [11, Corollary 1] when m = 1. Finally, we present trace
norm, Hilbert-Schmidt norm and determinant version of results in section 2.

2. Generalized improments of Young’s inequalities

We firstly show the generalization of Young’s inequality [9] for scalars under some
conditions.

THEOREM 2.1. Let 0 < v � τ < 1 , m ∈ N+ and a, b are real positive numbers.
Then

(1) If b � a, we can get

(a∇vb)m − (a�vb)m

(a∇τb)m − (a�τb)m � v(1− v)
τ(1− τ)

; (2.1)

(2) If b � a, we can get

(a∇vb)m − (a�vb)m

(a∇τb)m − (a�τb)m � v(1− v)
τ(1− τ)

. (2.2)

Proof. Firstly, we have

(1− v+ vx)m− xmv

= (1− v+ vx− xv)[(1− v+ vx)m−1 +(1− v+ vx)m−2xv + · · ·
+(1− v+ vx)x(m−2)v+ x(m−1)v].

Then let f (v)= (1−v+vx)m−1+(1−v+vx)m−2xv+ · · ·+(1−v+vx)x(m−2)v+x(m−1)v ,
we can get

f ′(v) = (m−1)(x−1)(1− v+ vx)m−2+(m−2)(x−1)(1− v+ vx)m−3xv

+(1− v+ vx)m−2xv lnx+ · · ·+(x−1)x(m−2)v +(1− v+ vx)(m−2)x(m−2)v lnx

+(m−1)x(m−1)v lnx

= (x−1)[(m−1)(1− v+ vx)m−2+(m−2)(1− v+ vx)m−3xv + · · ·+ x(m−2)v]
+ lnx[(1− v+ vx)m−2xv +(1− v+ vx)m−32x2v + · · ·
+(1− v+ vx)(m−2)x(m−2)v+(m−1)x(m−1)v].

(1) If x � 1, we have 1−v+vx= 1+(x−1)v� 1. So it’s obvious that f ′(v) � 0,

it means that f (v) is increasing on [1,∞) , that is to say f (v)
f (τ) � 1. Therefore

(1− v+ vx)m− xmv

(1− τ + τx)m − xmτ =
((1− v+ vx)− xv) f (v)
((1− τ + τx)− xτ) f (τ)

� (1− v+ vx)− xv

(1− τ + τx)− xτ

� v(1− v)
τ(1− τ)

(by 1.8).
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(2) If 0 < x � 1, we have 1− v + vx = 1 + (x− 1)v � 0 and lnx � 0. So it’s

obvious that f ′(v)� 0, it means that f (v) is decreasing on (0,1] , that is to say f (v)
f (τ) � 1.

Therefore

(1− v+ vx)m− xmv

(1− τ + τx)m − xmτ =
((1− v+ vx)− xv) f (v)
((1− τ + τx)− xτ) f (τ)

� (1− v+ vx)− xv

(1− τ + τx)− xτ

� v(1− v)
τ(1− τ)

(by 1.8).

Taking x = b
a , we can get our desired results directly. �

REMARK 2.1. (1) Let m = 2, we can get [9, Theorem 2.3].
(2) Let a = b , b = a , v = 1− τ , τ = 1− v in inequality (2.1), we can also get

inequality (2.2) directly.
(3) Let 0 < v � τ < 1, so 1−v

1−τ � 1, therefore
(i) If b � a , we can get

(a∇vb)m− (a�vb)m

(a∇τb)m− (a�τb)m � v(1− v)
τ(1− τ)

� v(1− v)m

τ(1− τ)m � (1− v)m

(1− τ)m ;

(ii) If b � a , we can get

(a∇vb)m − (a�vb)m

(a∇τb)m − (a�τb)m � v(1− v)
τ(1− τ)

� vm(1− v)
τm(1− τ)

� vm

τm .

It is not difficult to see that Theorem 2.1 is the improvements of [1].

THEOREM 2.2. Let 1
2 < v � τ � 1 and a, b are real positive numbers. Then

K(h,2)va�vb−a∇vb
K(h,2)τa�τb−a∇τb

� v
τ

(2.3)

where K(h,2) = (h+1)2
4h and h = b

a .

Proof. Firstly, we let

f (v) =
Kv(x,2)(xv)− (1− v+ vx)

v

=

(
x+1
2

)2v − (1− v+ vx)
v

.

Then we can get

f ′(v) =
v
[
2
(

x+1
2

)2v
ln
(

x+1
2

)− (x−1)
]
−
[(

x+1
2

)2v − (1− v+ vx)
]

v2

=

(
x+1
2

)2v [
2v ln

(
x+1
2

)−1
]
+1

v2

=
h(x)
v2
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and

h′(x) = v

(
x+1

2

)2v−1 [
2v ln

(
x+1

2

)
−1

]
+ v

(
x+1

2

)2v−1

= 2v2
(

x+1
2

)2v−1

ln

(
x+1

2

)
.

It means that x ∈ (0,1] , h′(x) � 0; x ∈ [1,∞), h′(x) � 0. So h(x) � h(1) = 0 and
f ′(v) � 0. Therefore f (v) is increasing on (0,+∞) .

Taking x = b
a , we can get our desired results directly. �

THEOREM 2.3. Let 0 < v � τ � 1
2 and a, b are real positive numbers. Then

(a∇vb)2− (a�vb)2− v2(a−b)2

(a∇τb)2− (a�τb)2− τ2(a−b)2 � v
τ
. (2.4)

Proof. Firstly, we let f (v) = (1−v+vx)2−x2v−v2(x−1)2
v . Then

f ′(v) =
v
[
2(x−1)(1−v+vx)−2x2v lnx−2v(x−1)2

]−[(1−v+vx)2−x2v−v2(x−1)2
]

v2

=
(1− v+ vx)(vx− v−1)+ x2v−2vx2v lnx− v2(x−1)2

v2

=
h(x)
v2

and

h′(x) = v(vx− v−1)+ v(1− v+ vx)+2vx2v−1−4v2x2v−1 lnx−2vx2v−1−2v2(x−1)
= −4v2x2v−1 lnx.

It means that x ∈ (0,1] , h′(x) � 0; x ∈ [1,∞), h′(x) � 0. So h(x) � h(1) = 0 and
f ′(v) � 0. Therefore f (v) is decreasing on (0,+∞) .

Taking x = b
a , we can get our desired results directly. �

THEOREM 2.4. Let 1
2 < v � τ � 1 and a, b are real positive numbers. Then

(a�vb)2 + v2(a−b)2− (a∇vb)2

(a�τb)2 + τ2(a−b)2− (a∇τb)2 � v
τ
. (2.5)
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Proof. Firstly, we let f (v) = x2v+v2(x−1)2−(1−v+vx)2
v . Then

f ′(v) =
v
[
2x2v lnx+2v(x−1)2−2(x−1)(1− v+ vx)

]
v2

−
[
x2v + v2(x−1)2− (1− v+ vx)2

]
v2

=
2vx2v lnx+ v2(x−1)2− x2v− (1− v+ vx)(vx− v−1)

v2

=
h(x)
v2

and

h′(x) = 4v2x2v−1 lnx+2v2(x−1)− [v(vx− v−1)+ v(1− v+ vx)]
= 4v2x2v−1 lnx.

It means that x ∈ (0,1] , h′(x) � 0; x ∈ [1,∞), h′(x) � 0. So h(x) � h(1) = 0 and
f ′(v) � 0. Therefore f (v) is increasing on (0,+∞) .

Taking x = b
a , we can get our desired results directly. �

3. Some new results of Young-type inequalities

According to Newton’s binomial expansion for x ∈ (−1,1) ,

(1+ x)v = 1+ vx+
v(v−1)

2!
x2 +

v(v−1)(v−2)
3!

x3 + · · ·

+
v(v−1)(v−2) · · ·[v− (k−1)]

k!
xk + · · · .

We can have if 0 � v � 1 and 0 < x < 2,

(1− v)+ vx− xv =
∞

∑
k=2

αk(v)(x−1)k (3.1)

where αk(v) = (−1)kv(1−v)(2−v)···((k−1)−v)
k! . And then we can get some new results of

inequality (1− v)+ vx− xv based on (3.1).

THEOREM 3.1. Let 0 � v � 1 , m ∈ N+ and x > 0 . Then⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1− v)+ vx− xv �
2m

∑
k=2

αk(v)(x−1)k, x ∈ (0,1],

(1− v)+ vx− xv �
2m

∑
k=2

αk(v)(x−1)k, x ∈ [1,∞).

(3.2)
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Proof. Suppose

f (x) = (1− v)+ vx− xv−
2m

∑
k=2

αk(v)(x−1)k.

Then

f ′(x) = v− vxv−1−
2m

∑
k=2

kαk(v)(x−1)k−1,

f ′′(x) = v(1− v)xv−2− v(1− v)−
2m

∑
k=3

k(k−1)αk(v)(x−1)k−2,

...

f (2m−1)(x) = (−1)2m−1v(1− v)(2− v) · · ·((2m−2)− v)xv−(2m−1)

− (2m−1)!α2m−1(v)− (2m)!α2m(v)(x−1),

f (2m)(x) = (−1)2mv(1− v)(2− v) · · ·[(2m−1)− v]xv−2m− (2m)!α2m(v).

Finally, we can get

f (2m)(x) = (−1)2mv(1− v)(2− v) · · ·[(2m−1)− v])xv−2m− (2m)!α2m(v)
= v(1− v)(2− v) · · ·[(2m−1)− v]xv−2m− v(1− v)(2− v) · · ·[(2m−1)− v]
= v(1− v)(2− v) · · ·[(2m−1)− v](xv−2m−1).

It means that f (2m)(x) � 0 on (0,1] and f (2m)(x) � 0 on [1,+∞) , so that f (2m−1)(x) �
f (2m−1)(1) = 0. Therefore f (2m−2)(x) is decreasing on (0,+∞) , f (2m−2)(x) � 0 on
(0,1] and f (2m−2)(x) � 0 on [1,+∞) obviously. By that analogy, f ′′(x) is decreasing
on (0,+∞) . It means that f ′′(x) � 0 on (0,1] and f ′′(x) � 0 on [1,+∞) . So f ′(x) �
f ′(1) = 0, that is, f (x) is decreasing on (0,+∞) . According to f (1) = 0, we can get
desired results. �

THEOREM 3.2. Let 0 � v � 1 , m ∈ N+ and x > 0 . Then

(1− v)+ vx− xv �
2m+1

∑
k=2

αk(v)(x−1)k. (3.3)

Proof. Suppose

f (x) = (1− v)+ vx− xv−
2m+1

∑
k=2

αk(v)(x−1)k.

Then

f ′(x) = v− vxv−1−
2m+1

∑
k=2

kαk(v)(x−1)k−1,

f ′′(x) = v(1− v)xv−2− v(1− v)−
2m+1

∑
k=3

k(k−1)αk(v)(x−1)k−2,

...
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f (2m)(x) = (−1)2mv(1− v)(2− v) · · ·[(2m−1)− v]xv−2m− (2m)!α2m(v)
− (2m+1)!α2m+1(v)(x−1),

f (2m+1)(x) = (−1)2m+1v(1− v)(2− v) · · ·(2m− v)xv−(2m+1)− (2m+1)!α2m+1(v).

Finally, we can get

f (2m+1)(x) = (−1)2m+1v(1− v)(2− v) · · ·(2m− v)xv−(2m+1)− (2m+1)!α2m+1(v)

= −v(1− v)(2− v) · · ·(2m− v)xv−(2m+1) + v(1− v)(2− v) · · ·(2m− v)

= v(1− v)(2− v) · · ·(2m− v)(1− xv−(2m+1)).

It’s obvious that f (2m+1)(x) � 0 on (0,1] and f (2m+1)(x) � 0 on [1,+∞) , so that
f (2m)(x)� f (2m)(1)= 0. Therefore f (2m−1)(x) is increasing on (0,+∞) , so f (2m−1)(x)�
0 on (0,1] and f (2m−1)(x) � 0 on [1,+∞) . By that analogy, f ′(x) is increasing on
(0,+∞) . It means that f ′(x) � 0 on (0,1] and f ′(x) � 0 on [1,+∞) . So f (x) �
f (1) = 0. By simple shift, we can get final result. �

COROLLARY 3.1. Let 0 � v � 1 and x > 0 . Then⎧⎪⎨
⎪⎩

(1− v)+ vx− xv � v(1− v)
2

(x−1)2, x ∈ (0,1],

(1− v)+ vx− xv � v(1− v)
2

(x−1)2, x ∈ [1,∞).
(3.4)

Proof. Let m = 1 in Theorem 3.2, we can get desired results. �

REMARK 3.1. Because xv � 1 on [1,∞) and 0 < xv � 1 on (0,1] , so

(1− v)+ vx− xv � v(1− v)
2

(x−1)2 � xv v(1− v)
2

(x−1)2, x ∈ (0,1],

(1− v)+ vx− xv � v(1− v)
2

(x−1)2 � xv v(1− v)
2

(x−1)2. x ∈ [1,∞).

It’s not hard to see that the inequality 3.4 is the improvement of [11, Corollary 1].

REMARK 3.2. Let x = b
a in Theorem 3.1 and Theorem 3.2, we can get⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
(1− v)a+ vb−a1−vbv �

2m

∑
k=2

αk(v)a1−k(b−a)k, a � b > 0

(1− v)a+ vb−a1−vbv �
2m

∑
k=2

αk(v)a1−k(b−a)k, b � a > 0

and

(1− v)a+ vb−a1−vbv �
2m+1

∑
k=2

αk(v)a1−k(b−a)k.

It’s obvious that ∑n
k=2 αk(v)a1−k(b−a)k is greater than 0 where a � b > 0.
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COROLLARY 3.2. Let 0 � v � τ � 1 and a � b > 0 . Then

(a∇vb)− (a�vb)−∑n
k=2 αk(v)a1−k(b−a)k

(a∇τb)− (a�τb)−∑n
k=2 αk(τ)a1−k(b−a)k � v(1− v)(2− v) · · ·(n− v)

τ(1− τ)(2− τ) · · ·(n− τ)
. (3.5)

Proof. Firstly, we let x ∈ (0,2) and

f (v) = (1− v)+ vx− xv−
n

∑
k=2

αk(v)(x−1)k.

According to (3.1), we have

f (v) =
∞

∑
k=n+1

αk(v)(x−1)k,

so

(1− v)+ vx− xv−∑n
k=2 αk(v)(x−1)k

(1− τ)+ τx− xτ −∑n
k=2 αk(τ)(x−1)k =

∑∞
k=n+1(−1)kαk(v)(1− x)k

∑∞
k=n+1(−1)kαk(τ)(1− x)k .

Let

βk(v) = (−1)kαk(v) =
v(1− v)(2− v) · · ·(k−1− v)

k
.

When k � n+1, we can get

βk(v)
βk(τ)

=
v(1− v)(2− v) · · ·(k−1− v)
τ(1− τ)(2− τ) · · ·(k−1− τ)

� v(1− v)(2− v) · · ·(n− v)
τ(1− τ)(2− τ) · · ·(n− τ)

.

Therefore

(1− v)+ vx− xv−∑n
k=2 αk(v)(x−1)k

(1− τ)+ τx− xτ −∑n
k=2 αk(τ)(x−1)k

=
∑∞

k=n+1 βk(v)(1− x)k

∑∞
k=n+1 βk(τ)(1− x)k

� v(1− v)(2− v) · · ·(n− v)
τ(1− τ)(2− τ) · · ·(n− τ)

.

Taking x = b
a , we can get our desired results directly. �

4. Applications

Let Mn(C) denotes the space of all n×n complex matrices and M+
n (C) denotes

the space of all n×n positive semidefinite matrices in Mn(C) . A norm |||.||| is called
unitarily invariant norm if |||UAV ||| = |||A||| for all A ∈ Mn(C) and for all unitary
matrices U,V ∈ Mn(C) . For A = [ai j] ∈ Mn(C) , the trace norm and Hilbert-Schmidt
norm of A are defined by

‖A‖1 = tr|A| =
n

∑
i=1

si(A), ‖A‖2 =

√
n

∑
i=1

s2
i (A) =

√
n

∑
i, j=1

|ai j|2
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where s1(A) � s2(A) � · · · � sn(A) are the singular values of A , that is, the eigen-

values of the positive matrix |A| = (A∗A)
1
2 , arranged in decreasing order and repeated

according to multiplicity and tr is the usual trace function. As is known to all, the
Hilbert-Schmidt norm is unitarily invariant.

LEMMA 4.1. Let A,B ∈ M+
n (C) , then

det(A+B)
1
n � detA

1
n +detB

1
n .

LEMMA 4.2. ([5]) Let A,B,X ∈ Mn(C) and A,B ∈ M+
n (C) . If 0 � v � 1 , then

for any unitarily invariant norm ||| · |||

|||AvXB1−v||| � |||AX |||v|||XB|||1−v.

THEOREM 4.1. Let A,B ∈ M+
n (C) , m ∈ N+ and 0 < v � τ < 1 . Then

(1) If B � A � 0 , we can get

‖(1− v)A+ vB‖m
1 − (‖A‖1−v

1 ‖B‖v
1)

m

v(1− v)
� ‖(1− τ)A+ τB‖m

1 − (‖A‖1−τ
1 ‖B‖τ

1)
m

τ(1− τ)
;

(2) If A � B � 0 , we can get

‖(1− v)A+ vB‖m
1 − (‖A‖1−v

1 ‖B‖v
1)

m

v(1− v)
� ‖(1− τ)A+ τB‖m

1 − (‖A‖1−τ
1 ‖B‖τ

1)
m

τ(1− τ)
.

Proof. Suppose B � A and by Theorem 2.1, we have

‖(1− v)A+ vB‖m
1

= (tr((1− v)A)+ tr(vB))m

= ((1− v)tr(A)+ vtr(B))m

� (tr(A)1−vtr(B)v)m +
v(1− v)
τ(1− τ)

[((1− τ)tr(A)+ τtr(B))m− (tr(A)1−τtr(B)τ)m]

= (‖A‖1−v
1 ‖B‖v

1)
m +

v(1− v)
τ(1− τ)

[‖(1− τ)A+ τB‖m
1 − (‖A‖1−τ

1 ‖B‖τ
1)

m].

Using the same method we can get (2) similarly, so we omit it. �

THEOREM 4.2. Let A,B ∈ M+
n (C) , m ∈ N+ and 0 < v � τ < 1 . Then

(1) If B � A � 0 , we can get

det((1− τ)A+ τB)m

� τ(1− τ)
v(1− v)

[
[(1− v)detA

1
n + vdetB

1
n ]mn −det(A1−vBv)m

]
+det

(
A1−τBτ)m ;
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(2) If A � B � 0 , we can get

det((1− v)A+ vB)m

� det(A1−vBv)m +
v(1− v)
τ(1− τ)

[
[(1− τ)detA

1
n + τ detB

1
n ]mn−det(A1−τBτ)m

]
.

Proof. Suppose B � A and by Theorem 2.1 and Lemma 4.1, we have

det((1− τ)A+ τB)m

=
[
det((1− τ)A+ τB)

1
n

]mn

�
[
(1− τ)detA

1
n + τ detB

1
n

]mn

� τ(1− τ)
v(1− v)

[
[(1− v)detA

1
n + vdetB

1
n ]mn− [detA

1−v
n detB

v
n ]mn

]
+
[
detA

1−τ
n detB

τ
n

]mn

=
τ(1− τ)
v(1− v)

[
[(1− v)detA

1
n + vdetB

1
n ]mn−det(A1−vBv)m

]
+det

(
A1−τBτ)m .

Using the same method we can get (2) similarly, so we omit it. �

THEOREM 4.3. Let A,B,X ∈ Mn(C) with A,B ∈ M+
n (C) , m ∈ N+ and 0 < v �

τ < 1 , then for any unitarily invariant norm ||| · ||| , we have
(1) If B � A � 0 , we can get

[(1− τ)|||AX |||+ τ|||XB|||]m

� τ(1− τ)
v(1− v)

[
[(1− v)|||AX |||+ v|||XB|||]m− (|||AX |||1−v|||XB|||v)m]+ |||A1−τXBτ |||m;

(2) If A � B � 0 , we can get

[(1− v)|||AX |||+ v|||XB|||]m

� v(1− v)
τ(1− τ)

[
[(1− τ)|||AX |||+ τ|||XB|||]m− (|||AX |||1−τ |||XB|||τ)m]+ |||A1−vXBv|||m.

Proof. Suppose B � A and by Theorem 2.1 and Lemma 4.2, we have

[(1− τ)|||AX |||+ τ|||XB|||]m −|||A1−τXBτ |||m
� [(1− τ)|||AX |||+ τ|||XB|||]m − (|||AX |||1−τ |||XB|||τ)m

� τ(1− τ)
v(1− v)

[
[(1− v)|||AX |||+ v|||XB|||]m− (|||AX |||1−v|||XB|||v)m] .

Using the same method we can get (2) similarly, so we omit it. �
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THEOREM 4.4. Let A,B ∈ M+
n (C) and 1

2 < v � τ � 1 . Then

K(h,2)v‖A‖1−v
1 ‖B‖v

1−‖(1− v)A+ vB‖1

v
� K(h,2)τ‖A‖1−τ

1 ‖B‖τ
1−‖(1− τ)A+ τB‖1

τ

where K(h,2) = (h+1)2
4h and h = tr(B)

tr(A) .

Proof. According to Theorem 2.4, we have

‖(1− v)A+ vB‖1

= (1− v)tr(A)+ vtr(B)

� K(h,2)vtr(A)1−vtr(B)v − v
τ
[K(h,2)τ tr(A)1−τ tr(B)τ − ((1− τ)tr(A)+ τtr(B))]

= K(h,2)v‖A‖1−v
1 ‖B‖v

1−
v
τ
[K(h,2)τ‖A‖1−τ

1 ‖B‖τ
1−‖(1− τ)A+ τB‖1].

This completes the proof. �

THEOREM 4.5. Suppose A,B,X ∈ Mn(C) such that A,B ∈ M+
n (C) . Then

(1) if 0 < v � τ � 1
2 , we have

‖(1− v)AX + vXB‖2
2−‖A1−vXBv‖2

2− v2‖AX −BX‖2
2

v

� ‖(1− τ)AX + τXB‖2
2−‖A1−τXBτ‖2

2− τ2‖AX −XB‖2
2

τ
;

(2) if 1
2 < v � τ � 1 , we have

‖(1− v)AX + vXB‖2
2−‖A1−vXBv‖2

2− v2‖AX −XB‖2
2

v

� ‖(1− τ)AX + τXB‖2
2−‖A1−τXBτ‖2

2− τ2‖AX −XB‖2
2

τ
.

Proof. Since A and B are positive semidefinite, it follows by spectral theorem
that there exist unitary matrices U,V ∈ Mn(C) , such that A = UΛ1U∗ , B = VΛ2V ∗ ,
where Λ1 = diag(λ1,λ2, · · · ,λn) , Λ2 = diag(μ1,μ2, · · · ,μn) for λi,μl are eigenvalues
of A and B respectively, i, l = 1,2, · · · ,n .

For our computations, let Y = U∗XV = [yil ] . Then we have

(1− v)AX + vXB =U [(1− v)Λ1Y + vYΛ2]V ∗ = U [((1− v)λi + vμl)yil]V ∗,

A1−vXBv = U [(λ 1−v
i μv

l )yil]V ∗, AX −XB = U [(λi− μl)yil]V ∗,

So

‖(1− v)AX + vXB‖2
2−‖A1−vXBv‖2

2− v2‖AX −XB‖2
2
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=
n

∑
i,l

[(1− v)λi + vμl]2|yil |2−
n

∑
i,l

(λ 1−v
i μv

l )
2|yil|2− v2

n

∑
i,l

(λi − μl)2|yil |2

=
n

∑
i,l

(
[(1− v)λi + vμl]2− (λ 1−v

i μv
l )

2 − v2(λi− μl)2) |yil|2

� v
τ

n

∑
i,l

(
[(1− τ)λi + τμl]2 − (λ 1−τ

i μτ
l )2 − τ2(λi − μl)2] |yil|2

=
v
τ

(
n

∑
i,l

[(1− τ)λi + τμl]2|yil|2−
n

∑
i,l

(λ 1−τ
i μτ

l )2|yil |2− τ2
n

∑
i,l

(λi− μl)2|yil|2
)

=
v
τ
[‖(1− τ)AX + τXB‖2

2−‖A1−τXBτ‖2
2− τ2‖AX −XB‖2

2

]
.

Using the same method we can get (2) similarly, so we omit it. �

RE F ER EN C ES
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