NORM-PARALLELISM OF HILBERT SPACE OPERATORS AND THE DAVIS-WIELANDT BEREZIN NUMBER

Mohammad W. Alomari, Monire Hajmohamadi
and Mojtaba Bakherad*

(Communicated by M. Krnić)

Abstract

In this work, the concept of the Davis-Wielandt Berezin number is introduced. Some upper and lower bounds for the Davis-Wielandt Berezin number are introduced. A connection between norm-parallelism to the identity operator and an equality condition for the DavisWielandt Berezin number are also discussed. Some bounds for the Davis-Wielandt Berezin number for $n \times n$ operator matrices are established.

1. Introduction

Let $\mathscr{B}(\mathscr{H})$ be the Banach algebra of all bounded linear operators defined on a complex Hilbert space $(\mathscr{H} ;\langle\cdot, \cdot\rangle)$ with the identity operator $1_{\mathscr{H}}$ in $\mathscr{B}(\mathscr{H})$. When $\mathscr{H}=\mathbb{C}^{n}$, we identify $\mathscr{B}(\mathscr{H})$ with the algebra $\mathscr{M}_{n}(\mathbb{C})$ of n-by- n complex matrices.

A functional Hilbert space is the Hilbert space of complex-valued functions on some set $\Omega \subset \mathbb{C}$ that the evaluation functionals $\varphi_{\lambda}(f)=f(\lambda), \lambda \in \Omega$ are continuous on \mathscr{H}. Then, by the Riesz representation theorem there is a unique element $k_{\lambda} \in \mathscr{H}$ such that $f(\lambda)=\left\langle f, k_{\lambda}\right\rangle$ for all $f \in \mathscr{H}$ and every $\lambda \in \Omega$. The function k on $\Omega \times \Omega$ defined by $k(z, \lambda)=k_{\lambda}(z)$ is called the reproducing kernel of \mathscr{H}, see [7]. It was shown that $k_{\lambda}(z)$ can be represented by

$$
k_{\lambda}(z)=\sum_{n=1}^{\infty} \overline{e_{n}(\lambda)} e_{n}(z)
$$

for any orthonormal basis $\left\{e_{n}\right\}_{n \geqslant 1}$ of \mathscr{H}, see [52]. For example, for the Hardy-Hilbert space $H^{2}=H^{2}(\mathbb{D})$ over the unit disc $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\},\left\{z^{n}\right\}_{n \geqslant 1}$ is an orthonormal basis, therefore the reproducing kernel of H^{2} is the function $k_{\lambda}(z)=\sum_{n=1}^{\infty} \bar{\lambda}_{n} z^{n}=$ $(1-\bar{\lambda} z)^{-1}, \lambda \in \mathbb{D}$. Let $\widehat{k}_{\lambda}=\frac{k_{\lambda}}{\left\|k_{\lambda}\right\|}$ be the normalized reproducing kernel of the space

[^0]\mathscr{H}. For a given a bounded linear operator T on \mathscr{H}, the Berezin symbol (or Berezin transform) of T is the bounded function \widetilde{T} on Ω defined by
$$
\widetilde{T}(\lambda)=\left\langle T \widehat{k}_{\lambda}(z), \widehat{k}_{\lambda}(z)\right\rangle, \lambda \in \Omega
$$

An important property of the Berezin symbol is that for all $T, S \in \mathscr{B}(\mathscr{H})$ if $\widetilde{T}(\lambda)=$ $\widetilde{S}(\lambda)$ for all $\lambda \in \Omega$, then $T=S$ (at least when \mathscr{H} consists from analytic functions, see Zhu [57]). For more details, see [11, 15, 16, 23]-[33]. So, the map $T \rightarrow \widetilde{T}$ is injective [18]. The Berezin set and the Berezin number of an operator T are defined, respectively, by

$$
\operatorname{Ber}(T)=\{\widetilde{T}(\lambda): \lambda \in \Omega\}=\operatorname{Range}(\widetilde{T})
$$

and

$$
\operatorname{ber}(T)=\sup \{|\gamma|: \gamma \in \operatorname{Ber}(T)\}=\sup _{\lambda \in \Omega}|\widetilde{T}(\lambda)|
$$

The Crawford Berezin number and the minimum Berezin modulus of the operator T are defined by

$$
C_{\mathrm{Ber}}(T):=\inf \{|\widetilde{T}(\lambda)|: \lambda \in \Omega\} \quad \text { and } \quad m_{\operatorname{Ber}}(T):=\inf \left\{\left\|T \widehat{k_{\lambda}}\right\|: \lambda \in \Omega\right\}
$$

respectively (see [24]).
The Berezin norm of an operator $T \in \mathscr{B}(\mathscr{H})$ is defined by

$$
\|T\|_{\mathrm{Ber}}:=\sup _{\lambda \in \Omega}\left\|T \widehat{k}_{\lambda}\right\|
$$

Recall that the numerical range, the numerical radius and the Crawford number of $T \in \mathscr{B}(\mathscr{H})$ are defined respectively, by

$$
\begin{aligned}
& W(T):=\{\langle T x, x\rangle: x \in \mathscr{H} \text { and }\|x\|=1\}, \\
& w(T):=\sup \{|\langle T x, x\rangle|:\langle T x, x\rangle \in W(T)\},
\end{aligned}
$$

and

$$
C(T):=\inf \{|\langle T x, x\rangle|:\langle T x, x\rangle \in W(T)\} .
$$

It is well known that $w(\cdot)$ defines a norm on $\mathscr{B}(\mathscr{H})$, which is equivalent to the usual operator norm $\|\cdot\|$. In fact, for any $T \in \mathscr{B}(\mathscr{H}), \frac{1}{2}\|T\| \leqslant w(T) \leqslant\|T\|$; see [17].

Clearly, $\operatorname{Ber}(T) \subset W(T)$ and $\operatorname{ber}(A) \leqslant w(T)$. For example, Karaev [33] showed that if we consider $T=\langle\cdot, z\rangle z$ in H^{2}, simple calculation then gives that $\widetilde{T}(\lambda)=$ $|\lambda|^{2}(1-|\lambda|)$. Moreover, we have $\operatorname{Ber}(T)=\left[0, \frac{1}{4}\right] \subset[0,1]=W(T)$ and $\operatorname{ber}(T)=$ $\frac{1}{4}<1=w(T)$. For other results concerning the Berezin symbol the reader may refer to [14], [19], [20], [42]-[49] and the references therein.

One of the most less common celebrated generalization of the numerical range and the numerical radius is the Davis-Wielandt shell and its radius of $T \in \mathscr{B}(\mathscr{H})$, which are defined as:

$$
D W(T):=\{(\langle T x, x\rangle,\langle T x, T x\rangle), x \in \mathscr{H},\|x\|=1\}
$$

and

$$
\begin{equation*}
d w(T)=\sup _{x \in \mathscr{H},\|x\|=1}\left\{\sqrt{|\langle T x, x\rangle|^{2}+\|T x\|^{4}}\right\} \tag{1}
\end{equation*}
$$

It is easy to see that the Davis-Wielandt radius is not a norm. It has many properties that you can refer to reference [55]. The following inequality immediately comes from (1):

$$
\max \left(w(T),\|T\|^{2}\right) \leqslant d w(T) \leqslant \sqrt{w^{2}(T)+\|T\|^{4}}
$$

for any $T \in \mathscr{B}(\mathscr{H})$. Clearly, the projection of the set $D W(T)$ on the first co-ordinate is $W(T)$. One can easily check that $d w(T)$ is unitarily invariant but it does not define a norm on $\mathscr{B}(\mathscr{H})$.

The Davis-Wielandt shell and its radius were introduced and described firstly by Davis in [12] and [13] and Wielandt [51]. In fact, the Davis-Wielandt shell $D W(T)$ gives more information about the operator T and $W(T)$. For instance, in the finite dimensional case, Li and Poon proved [37] (see also [38]) that the normal property of Hilbert space operators can be completely determined by the geometrical shape of their Davis-Wielandt shells, namely, $T \in \mathscr{M}_{n}(\mathbb{C})$ is normal if and only if $D W(T)$ is a polyhedron in $\mathbb{C} \times \mathbb{R}$ identified with \mathbb{R}^{3}. Moreover, in finite dimensional case, the spectrum of an operator $T ; \operatorname{sp}(T)$ is finite and $D W(T)$ is always closed, cf [37, Theorem 2.3]. These conditions are no longer equivalent for an infinite-dimensional operator T, cf [37, Example 2.5].

In [41], Lins et al. proved that, if $T \in \mathscr{M}_{n}(\mathbb{C})$ is normal, then $D W(T)$ is the convex hull of the points $\left(\operatorname{Re}\left(\lambda_{j}\right), \operatorname{Im}\left(\lambda_{j}\right),\left|\lambda_{j}\right|^{2}\right)(j=1, \cdots, n)$, for $\lambda_{j} \in \operatorname{sp}(T)$. Moreover, each point $\left(\operatorname{Re}\left(\lambda_{j}\right), \operatorname{Im}\left(\lambda_{j}\right),\left|\lambda_{j}\right|^{2}\right)$ is an extreme point of $D W(T)$. In particular case, if $n=2$ i.e., $T=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ has eigenvalues λ_{1}, λ_{2}, then $D W(T)$ degenerates to the line segment joining the points $\left(\lambda_{1},\left|\lambda_{1}\right|^{2}\right)$ and $\left(\lambda_{2},\left|\lambda_{2}\right|^{2}\right)$. So that $\operatorname{dim} D W(T) \leqslant 1$. In fact, the condition $\operatorname{dim}(D W(T)) \leqslant 1$ holds if and only if T is normal, with at most two distinct eigenvalues. Otherwise, $D W(T)$ is an ellipsoid (without its interior) centered at $\left(\frac{\lambda_{1}+\lambda_{2}}{2}, \frac{1}{2} \operatorname{tr}\left(|T|^{2}\right)\right)$. Also, it was proved that if $\operatorname{dim}(D W(T)) \geqslant 2$, then $D W(T)$ is always convex. A complete description of $D W(T)$ for a quadratic operator T was given in [38]. For more details see also [3], [39], [40] and [41].

In [51], Wielandt showed that the Davis-Wielandt shell is a useful tool for characterizing the eigenvalues of matrices in the set

$$
\left\{P^{*} T P+Q^{*} S Q: P, Q \in \mathscr{M}_{n}(\mathbb{C}) \text { are unitary }\right\}
$$

for given $S, T \in \mathscr{M}_{n}(\mathbb{C})$.
Now, we want to introduce the concepts of the Davis-Wielandt Berezin set and the Davis-Wielandt Berezin number as follows:

$$
\operatorname{Ber}_{d w}(T)=\left\{\left(\left\langle T \widehat{k_{\lambda}}, \widehat{k_{\lambda}}\right\rangle,\left\langle T \widehat{k_{\lambda}}, T \widehat{k_{\lambda}}\right\rangle\right), \lambda \in \Omega\right\}
$$

and

$$
\operatorname{ber}_{d w}(T)=\sup _{\lambda \in \Omega}\left\{\sqrt{\left|\left\langle T \widehat{k_{\lambda}}, \widehat{k_{\lambda}}\right\rangle\right|^{2}+\left\|T \widehat{k_{\lambda}}\right\|^{4}}\right\}
$$

We can clearly see that $\operatorname{ber}_{d w}(T)$ is an generalization of $\operatorname{ber}(T)$, moreover $\operatorname{ber}_{d w}(T) \leqslant$ $d w(T)$. It is easy to see that the Davis-Wielandt Berezin number of $T \in \mathscr{B}(\mathscr{H}(\Omega))$ satisfying the following inequality:

$$
\begin{equation*}
\max \left(\operatorname{ber}(T),\|T\|_{\text {Ber }}^{2}\right) \leqslant \operatorname{ber}_{d w}(T) \leqslant \sqrt{\operatorname{ber}^{2}(T)+\|T\|_{\text {Ber }}^{4}} \tag{2}
\end{equation*}
$$

In this work, the concept of the Davis-Wielandt Berezin number is introduced. Some upper and lower bounds for the Davis-Wielandt Berezin number are introduced. A connection between norm-parallelism to the identity operator and an equality condition for the Davis-Wielandt Berezin number are also discussed. Some bounds for the Davis-Wielandt Berezin number for $n \times n$ operator matrices are established.

2. The Norm-parallelism and the Davis-Wielandt Berezin number

For $T \in \mathscr{B}(\mathscr{H})$, let \mathbb{M}_{T} be the set of all unit vectors for which T attains its norm; i.e.,

$$
\mathbb{M}_{T}:=\{x \in H:\|x\|=1,\|T x\|=\|T\|\}
$$

The concept of the norm-parallelism in $\mathscr{B}(\mathscr{H})$ has been introduced by Saddik [47] and recently discussed by Zamani and Moslehian in [54]-[56]. Let $S, T \in \mathscr{B}(\mathscr{H})$, we say that T is norm-parallel to S (see [54]), in symbol $T \| S$, if there exists $\lambda \in$ $\{\alpha \in \mathbb{C}:|\alpha|=1\}$ such that

$$
\|T+\lambda S\|=\|T\|+\|S\|
$$

Such property is a useful tool in solving some problems in approximation theory, as pointed out in [54]. Equivalently, it has been shown in [54] that, $T \| S$ if and only if there exists a sequence of unit vectors x_{n} in \mathscr{H} such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\left\langle T x_{n}, S x_{n}\right\rangle\right|=\|T\|\|S\| \tag{3}
\end{equation*}
$$

From the norm properties of vectors in \mathscr{H}, it can be shown that [53]

$$
\|b\|^{2} \inf _{\gamma \in C}\|a+\gamma b\|^{2}=\|a\|^{2}\|b\|^{2}-|\langle a, b\rangle|^{2}, \quad \forall a, b \in \mathscr{H}
$$

In particular, two vectors a and b in \mathscr{H} are linearly dependent if and only if

$$
\inf _{\gamma \in C}\|a+\gamma b\|^{2}=0
$$

Employing this property, a necessary and sufficient condition for $T \in \mathscr{B}(\mathscr{H})$ to be norm-parallel to $S \in \mathscr{B}(\mathscr{H})$ was proved in [53], as elaborated in the following result.

THEOREM 1. Let $S, T \in \mathscr{B}(\mathscr{H})$ be compact operators. Then the following conditions are equivalent:
(1) $T \| S$.
(2) There exists $x \in \mathbb{M}_{T} \cap \mathbb{M}_{S}$ such that for every $\xi \in \mathbb{C}$ the vectors $T x+\xi$ Sx and Sx are linearly dependent.

Let us begin with the following primary result.
Lemma 1. Let $S \in \mathscr{B}(\mathscr{H}(\Omega))$.
(1) If $\Omega \subseteq \mathbb{C}$ is closed set, then the Berezin set $\operatorname{Ber}(S)$ is a closed subset of the numerical range $W(S)$.
(2) If $\Omega=\mathbb{C}$, then $\operatorname{Ber}(S)=W(S)$ and so $\operatorname{ber}(S)=\omega(S)$.
(3) In particular, the restriction of the numerical range $\left.W\right|_{\Omega}(S)$ onto Ω is exactly the Berezin set $\operatorname{Ber}(S)$, and hence $\left.\omega\right|_{\Omega}(S)=\operatorname{ber}(S)$, where by $\left.W\right|_{\Omega}(S)$ i.e.
$\left.W\right|_{\Omega}(S)=\left\{\langle S x, x\rangle: x \in \mathscr{H}(\Omega)\right.$ such that for some $\left.\lambda \in \Omega, x=\hat{k_{\lambda}}\right\}=\operatorname{Ber}(S)$.

Proof. (1) Let $S \in \mathscr{B}(\mathscr{H}(\Omega))$. It is well known that $\operatorname{Ber}(S) \subseteq W(S)$. So that for any sequence of points λ_{n} in Ω, the normalized reproducing kernel of $\mathscr{H}(\Omega)$ is $\underset{\sim}{\text { given by }} \widehat{k}_{\lambda_{n}}$. For $\widetilde{S}\left(\lambda_{n}\right) \in \operatorname{Ber}(S)$, we have $\widehat{k}_{\lambda_{n}} \longrightarrow \widehat{k}_{\lambda}$ which implies that $\widetilde{S}\left(\lambda_{n}\right) \longrightarrow$ $\widetilde{S}(\lambda) \in \operatorname{Ber}(S)$, as $n \rightarrow \infty$; whenever $\lambda_{n} \longrightarrow \lambda$.
(2) This case follows clearly by noting that for each $x \in \mathscr{H}$ with $\|x\|=1$, there exists an associated $\lambda \in \Omega=\mathbb{C}$ such that $x_{\lambda}=\widehat{k}_{\lambda}$. Hence, $\operatorname{ber}(S)=\omega(S)$.
(3) For the restriction onto Ω we get $\left.W\right|_{\Omega}(S)=\operatorname{Ber}(S)$, and hence $\left.\omega\right|_{\Omega}(S)=$ $\operatorname{ber}(S)$.

It's convenient to note that, in the restriction case the inequality ber $(S) \leqslant \omega(S)$ still holds. So that, the reader shouldn't mix up or confuse between the $\left.\omega\right|_{\Omega}(S)$ and $\omega(S)$.

Corollary 1. Let Ω be a closed subset of \mathbb{C} and $S \in \mathscr{B}(\mathscr{H}(\Omega))$. If $W(S) \subset$ Ω, then we have ber $(S)=\omega(S)$.

Proof. Follows from Lemma 1.

In the sequel, a norm-parallelism of Hilbert space operators and an equality condition for the Davis-Wielandt Berezin number is established.

THEOREM 2. Let Ω be any closed subset of \mathbb{C} and $S \in \mathscr{B}(\mathscr{H}(\Omega))$. Then the following conditions are equivalent:
(1) $S \| 1_{\mathscr{H}}$.
(2) $\operatorname{ber}_{d w}(S)=\sqrt{\operatorname{ber}^{2}(S)+\|S\|_{\mathrm{Ber}}^{4}}$.

Proof. (1) \Rightarrow (2) Assume $S \| 1_{\mathscr{H}}$, by (3), $S \| 1_{\mathscr{H}}$ if and only if there exists a sequence of unit vectors $\left\{\widehat{k}_{\lambda}^{(n)}\right\}$ in $\mathscr{H}(\Omega)$ for some $\lambda \in \Omega$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\left\langle S \widehat{k}_{\lambda}^{(n)}, \widehat{k}_{\lambda}^{(n)}\right\rangle\right|=\|S\|_{\mathrm{Ber}} \tag{4}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
\left|\left\langle S \widehat{k}_{\lambda}^{(n)}, \widehat{k}_{\lambda}^{(n)}\right\rangle\right| \leqslant\left\|\widehat{S k}_{\lambda}^{(n)}\right\| \leqslant\|S\|_{\text {Ber }} \quad \text { and } \quad\left|\left\langle S \widehat{k}_{\lambda}^{(n)}, \widehat{k}_{\lambda}^{(n)}\right\rangle\right| \leqslant \operatorname{ber}(S) \leqslant\|S\|_{\text {Ber }} \tag{5}
\end{equation*}
$$

Hence by (4) and (5) we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|S \widehat{k}_{\lambda}^{(n)}\right\|=\|S\|_{\text {Ber }} \quad \lim _{n \rightarrow \infty}\left|\left\langle S \widehat{k}_{\lambda}^{(n)}, \widehat{k}_{\lambda}^{(n)}\right\rangle\right|=\operatorname{ber}(S) \tag{6}
\end{equation*}
$$

Now, by the definition of $\operatorname{ber}_{d w}(S)$ we have

$$
\begin{equation*}
\sqrt{\left|\left\langle S \widehat{k}_{\lambda}^{(n)}, \widehat{k}_{\lambda}^{(n)}\right\rangle\right|^{2}+\left\|S \widehat{k}_{\lambda}^{(n)}\right\|^{4}} \leqslant \operatorname{ber}_{d w}(S) \leqslant \sqrt{\operatorname{ber}^{2}(S)+\|S\|_{\mathrm{Ber}}^{4}} \tag{7}
\end{equation*}
$$

whence (6) and (7) imply that

$$
\operatorname{ber}_{d w}(S)=\sqrt{\operatorname{ber}^{2}(S)+\|S\|_{\mathrm{Ber}}^{4}}
$$

$(2) \Rightarrow(1)$ Assume $\operatorname{ber}_{d w}(S)=\sqrt{\operatorname{ber}^{2}(S)+\|S\|_{\text {Ber }}^{4}}$. So, by the definition of $\operatorname{ber}_{d w}(S)$, there exists a sequence of unit vectors $\left\{\widehat{k}_{\lambda}^{(n)}\right\}$ in $\mathscr{H}(\Omega)$, for some $\lambda \in \Omega$, such that

$$
\lim _{n \rightarrow \infty} \sqrt{\left|\left\langle S \widehat{k}_{\lambda}^{(n)}, \widehat{k}_{\lambda}^{(n)}\right\rangle\right|^{2}+\left\|S \widehat{k}_{\lambda}^{(n)}\right\|^{4}}=\sqrt{\operatorname{ber}^{2}(S)+\|S\|_{\mathrm{Ber}}^{4}}
$$

Then we have (6) holds. So that let us
Claim: $\operatorname{ber}(S)=\|S\|_{\text {Ber }}$. Hence by (6) we have

$$
\lim _{n \rightarrow \infty}\left|\left\langle S \widehat{k}_{\lambda}^{(n)}, \widehat{k}_{\lambda}^{(n)}\right\rangle\right|=\|S\|_{\mathrm{Ber}} .
$$

or equivalently, $S \| 1_{\mathscr{H}}$. Setting

$$
\begin{equation*}
\widehat{S k}_{\lambda}^{(n)}=\alpha_{n} \widehat{k}_{\lambda_{1}}^{(n)}+\beta_{n} \widehat{k}_{\lambda_{2}}^{(n)} \quad \text { for some } \lambda_{1}, \lambda_{2} \in \Omega \tag{8}
\end{equation*}
$$

such that $\left\langle\widehat{k}_{\lambda_{1}}^{(n)}, \widehat{k}_{\lambda_{2}}^{(n)}\right\rangle=0,\left\|\widehat{k}_{\lambda_{2}}^{(n)}\right\|=1$, and for some $\alpha_{n}, \beta_{n} \in \mathbb{C}$. Thus, from (6) and (8) we have $\alpha_{n}=\left\langle S \widehat{k}_{\lambda_{1}}^{(n)}, \widehat{k}_{\lambda_{1}}^{(n)}\right\rangle, \beta_{n}=\left\langle S \widehat{k}_{\lambda_{1}}^{(n)}, \widehat{k}_{\lambda_{2}}^{(n)}\right\rangle, \lim _{n \rightarrow \infty}\left|\alpha_{n}\right|=\operatorname{ber}(S)$, and

$$
\lim _{n \rightarrow \infty}\left|\alpha_{n}\right|^{2}+\left|\beta_{n}\right|^{2}=\|S\|_{\mathrm{Ber}}^{2}
$$

Let $\eta_{n}=\left\langle S \widehat{k}_{\lambda_{2}}^{(n)}, \widehat{k}_{\lambda_{1}}^{(n)}\right\rangle, \zeta_{n}=\left\langle S \widehat{k}_{\lambda_{2}}^{(n)}, \widehat{k}_{\lambda_{2}}^{(n)}\right\rangle$, and

$$
S_{n}=\left[\begin{array}{cc}
\alpha_{n} & \eta_{n} \\
\beta_{n} & \zeta_{n}
\end{array}\right]
$$

Since $\left|\alpha_{n}\right| \leqslant \operatorname{ber}\left(S_{n}\right) \leqslant \operatorname{ber}(S)$, then

$$
\lim _{n \rightarrow \infty} \operatorname{ber}\left(S_{n}\right)=\operatorname{ber}(S)
$$

Moreover, we have

$$
\left|\alpha_{n}\right|^{2} \leqslant \operatorname{ber}\left(\left[\begin{array}{cc}
\left|\alpha_{n}\right| & \overline{\alpha_{n}} \eta_{n}+\alpha_{n} \overline{\beta_{n}} \\
\frac{\alpha_{n}}{\beta_{n}+\alpha_{n} \bar{\eta}_{n}} & \frac{\overline{\alpha_{n}} \zeta_{n}+\alpha_{n} \overline{\zeta_{n}}}{2}
\end{array}\right]\right)=\operatorname{ber}\left(\operatorname{Re}\left(\overline{\alpha_{n}} S_{n}\right)\right) \leqslant \operatorname{ber}\left(\overline{\alpha_{n}} S_{n}\right) \leqslant \operatorname{ber}^{2}\left(S_{n}\right)
$$

Thus, $\lim _{n \rightarrow \infty} \operatorname{ber}\left(\operatorname{Re}\left(\overline{\alpha_{n}} S_{n}\right)\right)=\operatorname{ber}^{2}\left(S_{n}\right)$ and $\lim _{n \rightarrow \infty} \frac{\overline{\alpha_{n}} \eta_{n}+\alpha_{n} \overline{\beta_{n}}}{2}=0$. It follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\eta_{n}\right|=\lim _{n \rightarrow \infty}\left|\beta_{n}\right| \tag{9}
\end{equation*}
$$

On the other hand, we have

$$
S_{n}^{*} S_{n}=\left[\begin{array}{l}
\left|\alpha_{n}\right|^{2}+\left|\beta_{n}\right|^{2} \overline{\alpha_{n}} \eta_{n}+\overline{\beta_{n}} \zeta_{n} \\
\alpha_{n} \overline{\eta_{n}}+\beta_{n} \overline{\zeta_{n}}\left|\eta_{n}\right|^{2}+\left|\zeta_{n}\right|^{2}
\end{array}\right]
$$

and this allows us to obtain that

$$
\left|\alpha_{n}\right|^{2}+\left|\beta_{n}\right|^{2} \leqslant\left\|S_{n}^{*} S_{n}\right\|_{\text {Ber }} \leqslant\left\|S_{n}\right\|_{\text {Ber }}^{2} \leqslant\|S\|_{\text {Ber }}^{2}
$$

The above inequality implies that $\lim _{n \rightarrow \infty}\left\|S_{n}^{*} S_{n}\right\|_{\text {Ber }}=\|S\|_{\text {Ber }}^{2}$, and so we get $\lim _{n \rightarrow \infty} \overline{\alpha_{n}} \eta_{n}+$ $\overline{\beta_{n}} \zeta_{n}=0$. This yields that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\alpha_{n}\right|=\lim _{n \rightarrow \infty}\left|\zeta_{n}\right| \tag{10}
\end{equation*}
$$

By (9) and (10) we find that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\alpha_{n}\right|^{2}+\left|\beta_{n}\right|^{2}=\lim _{n \rightarrow \infty}\left|\eta_{n}\right|^{2}+\left|\zeta_{n}\right|^{2}=\|S\|_{\text {Ber }}^{2} \tag{11}
\end{equation*}
$$

from that we get

$$
\lim _{n \rightarrow \infty} S_{n}^{*} S_{n}=\left[\begin{array}{cc}
\|S\|_{\text {Ber }}^{2} & 0 \\
0 & \|S\|_{\text {Ber }}^{2}
\end{array}\right]
$$

It follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{ber}\left(S_{n}\right)=\|S\|_{\text {Ber }} . \tag{12}
\end{equation*}
$$

From (11) and (12), we conclude that ber $(S)=\|S\|_{\text {Ber }}$, and this proves our claim. Hence, the proof of the theorem is completely established.

As a consequence of Theorem 2, we have the following result [53].

Corollary 2. Let Ω be any closed subset of \mathbb{C} and $S \in \mathscr{B}(\mathscr{H}(\Omega))$. The following conditions are equivalent:
(1) $\operatorname{ber}_{d w}(S)=\sqrt{\operatorname{ber}^{2}(S)+\|S\|_{\mathrm{Ber}}^{4}}$.
(2) $\operatorname{ber}(S)=\|S\|_{\text {Ber }}$.
(3) $\operatorname{ber}_{d w}(S)=\|S\|_{\text {Ber }} \sqrt{1+\|S\|_{\text {Ber }}^{2}}$.
(4) $S^{*} S \leqslant \operatorname{ber}^{2}(S) 1_{\mathscr{H}}$.

Proof. The equivalence (1) $\Leftrightarrow(2)$ follows from the proof of Theorem 2.
$(1) \Rightarrow(3)$ This implication follows from the equivalence $(1) \Leftrightarrow(2)$.
$(3) \Rightarrow(1)$ Assume $\operatorname{ber}_{d w}(S)=\|S\|_{\text {Ber }} \sqrt{1+\|S\|_{\text {Ber }}^{2}}$ for any operator $S \in \mathscr{B}(\mathscr{H}(\Omega))$. Since ber $(S) \leqslant\|S\|_{\text {Ber }}$, we have

$$
\|S\|_{\text {Ber }} \sqrt{1+\|S\|_{\mathrm{Ber}}^{2}}=\operatorname{ber}_{d w}(S) \leqslant \sqrt{\operatorname{ber}^{2}(S)+\|S\|_{\mathrm{Ber}}^{4}} \leqslant\|S\|_{\text {Ber }} \sqrt{1+\|S\|_{\mathrm{Ber}}^{2}}
$$

and so that $\operatorname{ber}_{d w}(S)=\sqrt{\operatorname{ber}^{2}(S)+\|S\|_{\mathrm{Ber}}^{4}}$.
(1) \Leftrightarrow (4) By the first equivalence $\operatorname{ber}_{d w}(S)=\sqrt{\operatorname{ber}^{2}(S)+\|S\|_{\text {Ber }}^{4}}$ if and only if $\operatorname{ber}(S)=\|S\|_{\text {Ber }}$, that is $\left\|\widehat{S k}_{\lambda}\right\| \leqslant \operatorname{ber}(S)\left\|\widehat{k}_{\lambda}\right\|$ for all $\widehat{k}_{\lambda} \in \mathscr{H}(\Omega), \lambda \in \Omega$. This is equivalent to say that $\left\|S \widehat{k}_{\lambda}\right\|^{2} \leqslant \operatorname{ber}^{2}(S)\left\|\widehat{k}_{\lambda}\right\|^{2}$, that is $\left\langle\widehat{k}_{\lambda}, S \widehat{k}_{\lambda}\right\rangle \leqslant\left\langle\operatorname{ber}^{2}(S) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle$ for all $\widehat{k}_{\lambda} \in \mathscr{H}(\Omega)$, i.e., $\left\langle\left(S^{*} S-\operatorname{ber}^{2}(S) 1_{\mathscr{H}}\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle \leqslant 0$ for all $\widehat{k}_{\lambda} \in \mathscr{H}(\Omega)$, or equivalently $S^{*} S \leqslant \operatorname{ber}^{2}(S) 1_{\mathscr{H}}$.

3. Some inequalities of the Davis-Wielandt Berezin number

In order to prove our results we need a sequence of lemmas.
LEMMA 2. Let $a, b \geqslant 0$ and $p, q>1$ such that $\frac{1}{p}+\frac{1}{q}=1$. Then

- $a b \leqslant \frac{a^{p}}{p}+\frac{b^{q}}{q} \leqslant\left(\frac{a^{p r}}{p}+\frac{b^{q r}}{q}\right)^{\frac{1}{r}}$ for $r \geqslant 1$.
- For $r=1$ we recapture the Power-Mean inequality, which reads

$$
a^{\alpha} b^{1-\alpha} \leqslant \alpha a+(1-\alpha) b \leqslant\left(\alpha a^{p}+(1-\alpha) b^{p}\right)^{\frac{1}{p}}
$$

for all $\alpha \in[0,1], a, b \geqslant 0$ and $p \geqslant 1$.
The next lemma follows from the spectral theorem for positive operators and Jensen inequality see [36].

Lemma 3. (McCarty inequality) Let $T \in \mathscr{B}(\mathscr{H}), T \geqslant 0$ and $x \in \mathscr{H}$ be a unit vector. Then

- $\langle T x, x\rangle^{r} \leqslant\left\langle T^{r} x, x\right\rangle$ for $r \geqslant 1$;
- $\left\langle T^{r} x, x\right\rangle \leqslant\langle T x, x\rangle^{r}$ for $0<r \leqslant 1$.

The generalized mixed Schwarz inequality was introduced in [22], as follows:
Lemma 4. [36, Theorem 1] Let $T \in \mathscr{B}(\mathscr{H})$ and $x, y \in \mathscr{H}$ be any vectors.

- If f, g are non-negative continuous functions on $[0, \infty)$ which are satisfying the relation $f(t) g(t)=t(t \in[0, \infty))$, then

$$
|\langle T x, y\rangle| \leqslant\|f(|T|) x\|\left\|g\left(\left|T^{*}\right|\right) y\right\| ;
$$

- If $0 \leqslant \alpha \leqslant 1$, then

$$
\left.\left.|\langle T x, y\rangle|^{2} \leqslant\left.\langle | T\right|^{2 \alpha} x, x\right\rangle\left.\langle | T^{*}\right|^{2(1-\alpha)} y, y\right\rangle
$$

We note that, the McCarthy inequality was extended for general Hilbert space operators in [5] and [6]. Also, the corresponding Cartesian decomposition version of Lemma 4 recently was proved in [4].

In some of our results we need the following two fundamental norm estimates, which are:

$$
\begin{equation*}
\|S+T\| \leqslant \frac{1}{2}\left(\|S\|+\|T\|+\sqrt{(\|S\|-\|T\|)^{2}+4\left\|S^{1 / 2} T^{1 / 2}\right\|^{2}}\right) \tag{13}
\end{equation*}
$$

and

$$
\left\|S^{1 / 2} T^{1 / 2}\right\| \leqslant\|S T\|^{1 / 2}
$$

Both estimates are valid for all positive operators $S, T \in \mathscr{B}(\mathscr{H})$. Also, it should be noted that (13) is sharper than the triangle inequality as pointed out by Kittaneh in [34].

Now, we obtain lower bounds for the Davis-Wielandt Berezin number in $\mathscr{B}(\mathscr{H}(\Omega))$.

Theorem 3. Let $T \in \mathscr{B}(\mathscr{H}(\Omega))$. Then
(i) $\operatorname{ber}_{d w}^{2}(T) \geqslant \max \left(\operatorname{ber}^{2}(T)+C_{\operatorname{Ber}}^{2}\left(|T|^{2}\right),\|T\|_{\operatorname{Ber}}^{4}+C_{\operatorname{Ber}}^{2}(T)\right)$;
(ii) $\operatorname{ber}_{d w}^{2}(T) \geqslant \max \left(\operatorname{ber}(T) C_{\operatorname{Ber}}\left(|T|^{2}\right),\|T\|_{\operatorname{Ber}}^{2} C_{\mathrm{Ber}}(T)\right)$.

Proof. If $\widehat{k}_{\lambda} \in \mathscr{H}(\Omega)$ be a normalized reproducing kernel, then

$$
\begin{aligned}
\operatorname{ber}_{d w}^{2}(T) & \geqslant\left|\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2}+\left\|T \widehat{k}_{\lambda}\right\|^{4} \\
& \left.=\left|\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2}+\left.\langle | T\right|^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{2} \\
& \geqslant\left|\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2}+C_{\operatorname{Ber}}^{2}\left(|T|^{2}\right) .
\end{aligned}
$$

Now, by taking the supremum over all $\lambda \in \Omega$, we get

$$
\begin{equation*}
\operatorname{ber}_{d w}^{2}(T) \geqslant \operatorname{ber}^{2}(T)+C_{\operatorname{Ber}}^{2}\left(|T|^{2}\right) . \tag{14}
\end{equation*}
$$

Also, we have

$$
\begin{align*}
\operatorname{ber}_{d w}^{2}(T) & \geqslant\left|\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2}+\left\|T \widehat{k}_{\lambda}\right\|^{4} \\
& \geqslant C_{\operatorname{Ber}}^{2}(T)+\left\|T \widehat{k}_{\lambda}\right\|^{4} . \tag{15}
\end{align*}
$$

From (14) and (15), the pert (i) is hold.
For (ii), by applying arithmetic-geometric mean inequality, we have

$$
\begin{aligned}
\operatorname{ber}_{d w}^{2}(T) & \geqslant\left|\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2}+\left\|T \widehat{k}_{\lambda}\right\|^{4} \\
& \geqslant 2 \mid\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\left\|T \widehat{k}_{\lambda}\right\|^{2} \\
& \left.=\left.2\left|\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|\langle | T\right|^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle \\
& \geqslant 2\left|\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right| C_{\mathrm{Ber}}\left(|T|^{2}\right) .
\end{aligned}
$$

By taking the supremum over $\lambda \in \Omega$, we get

$$
\begin{equation*}
\operatorname{ber}_{d w}^{2}(T) \geqslant 2 \operatorname{ber}(T) C_{\operatorname{Ber}}\left(|T|^{2}\right) \tag{16}
\end{equation*}
$$

Moreover,

$$
\begin{aligned}
\operatorname{ber}_{d w}^{2}(T) & \geqslant 2 \mid\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\left\|T \widehat{k}_{\lambda}\right\|^{2} \\
& \geqslant 2 C_{\operatorname{Ber}}(T)\left\|T \widehat{k}_{\lambda}\right\|^{2} .
\end{aligned}
$$

Now by taking the supremum over $\lambda \in \Omega$, we get

$$
\begin{equation*}
\operatorname{ber}_{d w}^{2}(T) \geqslant 2 C_{\operatorname{Ber}}(T)\|T\|_{\operatorname{Ber}}^{2} . \tag{17}
\end{equation*}
$$

From (16) and (17), the pert (ii) holds.
Remark 1. You can see the inequalities obtained in Theorem 3 (i) is sharper than the lower bound obtained in (2). Because

$$
\begin{aligned}
\max \left(\operatorname{ber}^{2}(T),\|T\|_{\operatorname{Ber}}^{4}\right) & \leqslant \max \left(\operatorname{ber}^{2}(T)+C_{\operatorname{Ber}}^{2}\left(|T|^{2}\right),\|T\|_{\operatorname{Ber}}^{4}+C_{\operatorname{Ber}}^{2}(T)\right) \\
& \leqslant \operatorname{ber}_{d w}^{2}(T) .
\end{aligned}
$$

In the next theorem we obtain lower and upper bounds for $\operatorname{ber}_{d w}^{2}(T)$.
THEOREM 4. Let $T \in \mathscr{B}(\mathscr{H}(\Omega))$. Then $\frac{1}{2}\left(\operatorname{ber}^{2}(T+|T|)+C_{\text {Ber }}^{2}\left(T-|T|^{2}\right)\right) \leqslant \operatorname{ber}_{d w}^{2}(T) \leqslant \frac{1}{2}\left(\operatorname{ber}^{2}(T+|T|)+\operatorname{ber}^{2}\left(T-|T|^{2}\right)\right)$.

Proof. If $\widehat{k}_{\lambda} \in \mathscr{H}(\Omega)$, then

$$
\begin{aligned}
\left|\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2}+\left\|T \widehat{k}_{\lambda}\right\|^{4} & =\frac{1}{2}\left|\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle+\left\langle T \widehat{k}_{\lambda}, T \widehat{k}_{\lambda}\right\rangle\right|^{2}+\frac{1}{2}\left|\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle-\left\langle T \widehat{k}_{\lambda}, T \widehat{k}_{\lambda}\right\rangle\right|^{2} \\
& \left.\left.=\frac{1}{2}\left|\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle+\langle | T\right|^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\left.\right|^{2}+\frac{1}{2}\left|\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle-\langle | T\right|^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\left.\right|^{2} \\
& \left.\left.=\frac{1}{2}|\langle T+| T|^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\left.\right|^{2}+\frac{1}{2}|\langle T-| T|^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\left.\right|^{2} \\
& \left.\geqslant\left.\frac{1}{2}\left(|\langle T+| T|^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2}+C_{\operatorname{Ber}}^{2}\left(T-|T|^{2}\right)\right) .
\end{aligned}
$$

By taking the supremum over all $\lambda \in \Omega$, we get

$$
\operatorname{ber}_{d w}^{2}(T) \geqslant \frac{1}{2}\left(\operatorname{ber}^{2}\left(T+|T|^{2}\right)+C_{\operatorname{Ber}}^{2}\left(T-|T|^{2}\right)\right)
$$

For finding the upper bound, we have

$$
\begin{aligned}
\left|\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2}+\left\|T \widehat{k}_{\lambda}\right\|^{4} & =\frac{1}{2}\left|\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle+\left\langle T \widehat{k}_{\lambda}, T \widehat{k}_{\lambda}\right\rangle\right|^{2}+\frac{1}{2}\left|\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle-\left\langle T \widehat{k}_{\lambda}, T \widehat{k}_{\lambda}\right\rangle\right|^{2} \\
& \left.\left.=\frac{1}{2}\left|\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle+\langle | T\right|^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\left.\right|^{2}+\frac{1}{2}\left|\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle-\langle | T\right|^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\left.\right|^{2} \\
& \left.\left.=\frac{1}{2}|\langle T+| T|^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\left.\right|^{2}+\frac{1}{2}|\langle T-| T|^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\left.\right|^{2} \\
& \leqslant \frac{1}{2}\left(\operatorname{ber}^{2}\left(T+|T|^{2}\right)+\operatorname{ber}^{2}\left(T-|T|^{2}\right)\right) .
\end{aligned}
$$

Again, by taking the supremum over all $\lambda \in \Omega$, we get

$$
\operatorname{ber}_{d w}^{2}(T) \leqslant \frac{1}{2}\left(\operatorname{ber}^{2}\left(T+|T|^{2}\right)+\operatorname{ber}^{2}\left(T-|T|^{2}\right)\right)
$$

These statements complete the proof.
In the following theorem, the authors obtained some relation between the DavisWielandt Berezin number and the Berezin number.

THEOREM 5. [50] Let $T \in \mathscr{B}(\mathscr{H}(\Omega))$. Then

$$
\operatorname{ber}_{d w}^{2}(T) \leqslant \operatorname{ber}^{2}\left(|T|^{2}-T\right)+2\|T\|_{\operatorname{Ber}}^{2} \operatorname{ber}(T)
$$

and

$$
\begin{equation*}
\operatorname{ber}_{d w}^{2}(T) \leqslant \frac{1}{2} \operatorname{ber}\left(|T|+2|T|^{4}+\left|T^{*}\right|^{2}\right)-\frac{1}{2} \inf _{\lambda}\left(\left\|T \widehat{k}_{\lambda}\right\|-\left\|T^{*} \widehat{k}_{\lambda}\right\|\right)^{2} \tag{18}
\end{equation*}
$$

In the next theorem, we obtain a lower bound for square of the Davis-Wielandt Berezin number.

THEOREM 6. Let $T \in \mathscr{B}(\mathscr{H}(\Omega))$. If λ is a nonzero complex number, and $r>0$, such that

$$
\begin{equation*}
\|T-\lambda I\|_{\mathrm{Ber}} \leqslant r \tag{19}
\end{equation*}
$$

Then

$$
\begin{equation*}
\operatorname{ber}_{d w}^{2}(T) \geqslant \lambda^{-1}\left(\left\|T \widehat{k}_{\lambda}\right\|^{2}+|\lambda|^{2}-r^{2}\right)\left\|T \widehat{k}_{\lambda}\right\|^{2} \tag{20}
\end{equation*}
$$

Proof. If $\widehat{k}_{\lambda} \in \mathscr{H}(\Omega)$, then

$$
\begin{align*}
\operatorname{ber}_{d w}^{2}(T) & \geqslant\left|\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2}+\left\|T \widehat{k}_{\lambda}\right\|^{4} \\
& \geqslant 2\left|\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle \|\left\langle T \widehat{k}_{\lambda}, T \widehat{k}_{\lambda}\right\rangle\right| \quad \text { (by the arithmetic-geometric mean) } \tag{21}
\end{align*}
$$

On the other hand, from (19), we have

$$
\begin{aligned}
\left\|T \widehat{k}_{\lambda}\right\|^{2}+|\lambda|^{2}-2 \operatorname{Re} \bar{\lambda}\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle & =\left|\left\langle(T-\lambda) \widehat{k}_{\lambda},(T-\lambda) \widehat{k}_{\lambda}\right\rangle\right| \\
& =\left\|T \widehat{k}_{\lambda}-\lambda \widehat{k}_{\lambda}\right\|^{2} \\
& \leqslant\|T-\lambda I\|_{\text {Ber }}^{2} \\
& \leqslant r^{2} .
\end{aligned}
$$

So,

$$
\begin{equation*}
\left\|T \widehat{k}_{\lambda}\right\|^{2}+|\lambda|^{2} \leqslant 2\left|\lambda \|\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|+r^{2} . \tag{22}
\end{equation*}
$$

From (21) and (22), we have

$$
\operatorname{ber}_{d w}^{2}(T) \geqslant \lambda^{-1}\left(\left\|T \widehat{k}_{\lambda}\right\|^{2}+|\lambda|^{2}-r^{2}\right)\left\|T \widehat{k}_{\lambda}\right\|^{2}
$$

REMARK 2. From (22) for any $T \in \mathscr{B}(\mathscr{H}(\Omega))$, nonzero complex number λ, and $r>0$, we have

$$
\begin{aligned}
\operatorname{ber}_{d w}^{2}(T)-\left\|T \widehat{k}_{\lambda}\right\|^{4} & =\left|\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2} \\
& \leqslant\left\|T \widehat{k}_{\lambda}\right\|^{2} \\
& \leqslant 2\left|\lambda \|\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|+r^{2}-|\lambda|^{2} \\
& \leqslant 2|\lambda| \operatorname{ber}(T)+r^{2}-|\lambda|^{2}
\end{aligned}
$$

In the next theorem we obtain upper bound for the Davis-Wielandt Berezin number by stating the minimum Berezin modulus of an operator.

Theorem 7. Let $T \in \mathscr{B}(\mathscr{H}(\Omega))$. Then

$$
\begin{equation*}
\operatorname{ber}_{d w}^{2}(T) \leqslant \sup _{\theta \in \mathbb{R}} \operatorname{ber}^{2}\left(e^{i \theta} T+|T|^{2}\right)-2 C_{\operatorname{Ber}}(T) m_{\operatorname{Ber}}^{2}(T) \tag{23}
\end{equation*}
$$

Proof. Let $\theta \in \mathbb{R}$ such that $\left|\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|=e^{i \theta}\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle$. If $\widehat{k}_{\lambda} \in \mathscr{H}(\Omega)$, then

$$
\begin{aligned}
\left|\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2}+\left\|T \widehat{k}_{\lambda}\right\|^{4} & \left.=\left\langle e^{i \theta} T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{2}+\left.\langle | T\right|^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{2} \\
& \left.\left.=\left(\left\langle e^{i \theta} T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle+\left.\langle | T\right|^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right)^{2}-\left.2\left\langle e^{i \theta} T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\langle | T\right|^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle
\end{aligned}
$$

So,

$$
\begin{aligned}
\left|\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2} & \left.+\left\|T \widehat{k}_{\lambda}\right\|^{4}+\left.2\left|\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|\langle | T\right|^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle \\
& \left.=\left|\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2}+\left\|T \widehat{k}_{\lambda}\right\|^{4}+\left.2\left\langle e^{i \theta} T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\langle | T\right|^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle \\
& \left.=\left(\left\langle e^{i \theta} T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle+\left.\langle | T\right|^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right)^{2} \\
& =\left\langle\left(e^{i \theta} T+|T|^{2}\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{2} \\
& \leqslant \operatorname{ber}^{2}\left(e^{i \theta} T+|T|^{2}\right) \\
& \leqslant \sup _{\theta \in \mathbb{R}} \operatorname{ber}^{2}\left(e^{i \theta} T+|T|^{2}\right) .
\end{aligned}
$$

Therefore by taking the supremum over all $\lambda \in \Omega$, we get

$$
\operatorname{ber}_{d w}^{2}(T)+2 C_{\mathrm{Ber}}(T) m_{\mathrm{Ber}}^{2}(T) \leqslant \sup _{\theta \in \mathbb{R}} \operatorname{ber}^{2}\left(e^{i \theta} T+|T|^{2}\right)
$$

REMARK 3. Note that inequality (23) in Theorem 7 is sharper than inequality (18) in Theorem 5.

THEOREM 8. Let $T \in \mathscr{B}(\mathscr{H}(\Omega))$. If f, g are nonnegative continuous functions on $[0, \infty)$ which are satisfying the relation $f(t) g(t)=t(t \in[0, \infty))$, then

$$
\begin{equation*}
\operatorname{ber}_{d w}^{2}(T) \leqslant \operatorname{ber}\left[\frac{1}{p}\left(f^{2 p}(|T|)+f^{2 p}\left(\left|T^{*} T\right|\right)\right)+\frac{1}{q}\left(g^{2 q}\left(\left|T^{*}\right|\right)+g^{2 q}\left(\left|T^{*} T\right|\right)\right)\right] \tag{24}
\end{equation*}
$$

for any $p \geqslant q>1$ with $\frac{1}{p}+\frac{1}{q}=1$.
Proof. From Lemmas 4, 2 and 3(b), we have

$$
\begin{aligned}
& \left|\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2}+\left\|T \widehat{k}_{\lambda}\right\|^{4} \\
& =\left|\left\langle T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2}+\left\langle T^{*} T \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{2} \\
& \leqslant\left\langle f^{2}(|T|) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\left\langle g^{2}\left(\left|T^{*}\right|\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle+\left\langle f^{2}\left(\left|T^{*} T\right|\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\left\langle g^{2}\left(\left|T^{*} T\right|\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle \\
& \leqslant \frac{1}{p}\left\langle f^{2}(|T|) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{p}+\frac{1}{q}\left\langle g^{2}\left(\left|T^{*}\right|\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{q}+\frac{1}{p}\left\langle f^{2}\left(\left|T^{*} T\right|\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{p} \\
& \quad+\frac{1}{q}\left\langle g^{2}\left(\left|T^{*} T\right|\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{q}
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \frac{1}{p}\left\langle f^{2 p}(|T|) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle+\frac{1}{q}\left\langle g^{2 q}\left(\left|T^{*}\right|\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle+\frac{1}{p}\left\langle f^{2 p}\left(\left|T^{*} T\right|\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle \\
& \quad+\frac{1}{q}\left\langle g^{2 q}\left(\left|T^{*} T\right|\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle \\
& \leqslant\left\langle\frac{1}{p}\left(f^{2 p}(|T|)+f^{2 p}\left(\left|T^{*} T\right|\right)\right)+\frac{1}{q}\left(g^{2 q}\left(\left|T^{*}\right|\right)+g^{2 q}\left(\left|T^{*} T\right|\right)\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle \\
& \leqslant \operatorname{ber}\left[\frac{1}{p}\left(f^{2 p}(|T|)+f^{2 p}\left(\left|T^{*} T\right|\right)\right)+\frac{1}{q}\left(g^{2 q}\left(\left|T^{*}\right|\right)+g^{2 q}\left(\left|T^{*} T\right|\right)\right)\right] .
\end{aligned}
$$

Therefore by taking the supremum over all $\lambda \in \Omega$, we get the desired result.
Corollary 3. Let $T \in \mathscr{B}(\mathscr{H}(\Omega))$. Then for all $p>1$,

$$
\begin{equation*}
\operatorname{ber}_{d w}^{2}(T) \leqslant \operatorname{ber}\left(\frac{1}{2}\left(|T|^{2}+\left|T^{*}\right|^{2}+2|T|^{4}\right)\right) \tag{25}
\end{equation*}
$$

Proof. Inequality (25) immediately comes from inequality (24) by putting $f(t)=$ $g(t)=t^{\frac{1}{2}}$, and $p=q=2$.

4. Further refinemented inequalities

In order to establish our main first result concerning the the Euclidean Berezin number, we need to recall the concept of generalized Euclidean Berezin number of an n-tuple operator; which was introduced by Bakherad in [44]. Namely, for an n-tuple $\mathbf{T}=\left(T_{1}, \cdots, T_{n}\right) \in \mathscr{B}(\mathscr{H}(\Omega))^{n}:=\mathscr{B}(\mathscr{H}(\Omega)) \times \cdots \times \mathscr{B}(\mathscr{H}(\Omega)) ;$ i.e., for $T_{1}, \cdots, T_{n} \in$ $\mathscr{B}(\mathscr{H}(\Omega))$. The Euclidean operator radius of T_{1}, \cdots, T_{n} is defined by

$$
\begin{equation*}
\operatorname{ber}_{p}\left(T_{1}, \cdots, T_{n}\right):=\sup _{\lambda \in \Omega}\left(\sum_{i=1}^{n}\left|\left\langle T_{i} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{p}\right)^{1 / p} \quad \text { for all } \widehat{k}_{\lambda} \in \mathscr{H}(\Omega), p \geqslant 1 \tag{26}
\end{equation*}
$$

The following properties of the generalized Euclidean Berezin number could be proved easily.
(1) $\operatorname{ber}_{p}\left(T_{1}, \cdots, T_{n}\right)=0$ if and only if $T_{k}=0$ for each $k=1, \cdots, n$.
(2) $\operatorname{ber}_{p}\left(\lambda T_{1}, \cdots, \lambda T_{n}\right)=|\lambda| \operatorname{ber}_{p}\left(T_{1}, \cdots, T_{n}\right)$.
(3) $\operatorname{ber}_{p}\left(X_{1}+Y_{1}, \cdots, X_{n}+Y_{n}\right) \leqslant \operatorname{ber}_{p}\left(X_{1}, \cdots, X_{n}\right)+\operatorname{ber}_{p}\left(Y_{1}, \cdots, Y_{n}\right)$.
(4) $\operatorname{ber}_{p}\left(X_{1}, \cdots, X_{n}\right)=\operatorname{ber}_{p}\left(X_{1}^{*}, \cdots, X_{n}^{*}\right)$.
(5) $\operatorname{ber}_{p}\left(X_{1}^{*} X_{1}, \cdots, X_{n}^{*} X_{n}\right)=\operatorname{ber}_{p}\left(X_{1} X_{1}^{*}, \cdots, X_{n} X_{n}^{*}\right)$
for every $T_{k}, X_{k}, Y_{k}, C \in \mathscr{B}(\mathscr{H}(\Omega))(1 \leqslant k \leqslant n)$ and every scalar $\lambda \in \mathbb{C}$. In case $p=2$ we refer to the Euclidean Berezin number ber ${ }_{\mathrm{e}}(\cdot, \ldots, \cdot)$.

The following relation between the Euclidean Berezin number ber $_{\mathrm{e}}\left(Y, Y^{*} Y\right)$ and the Davis-Wielandt radius $\operatorname{ber}_{d w}(Y)$ holds for every $Y \in \mathscr{B}(\mathscr{H}(\Omega))$.

Lemma 5. Let $Y \in \mathscr{B}(\mathscr{H}(\Omega))$. Then

$$
\begin{equation*}
\operatorname{ber}_{\mathrm{e}}\left(Y, Y^{*} Y\right)=\operatorname{ber}_{d w}(Y) \tag{27}
\end{equation*}
$$

Proof. Setting $n=2, T_{1}=Y$ and $T_{2}=Y^{*} Y, Y \in \mathscr{B}(\mathscr{H}(\Omega))$ in (5), we have

$$
\begin{aligned}
\operatorname{ber}_{\mathrm{e}}\left(Y, Y^{*} Y\right) & :=\sup _{\lambda \in \Omega}\left(\left|\left\langle Y \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2}+\left|\left\langle Y^{*} Y \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2}\right)^{1 / 2} \\
& =\sup _{\lambda \in \Omega}\left\{\sqrt{\left|\left\langle Y \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2}+\|\left. Y \widehat{k}_{\lambda}\right|^{4}}\right\} \\
& =\operatorname{ber}_{d w}(Y)
\end{aligned}
$$

which gives the Davis-Wielandt radius of Y, as required.
THEOREM 9. Let $Y \in \mathscr{B}(\mathscr{H}(\Omega))$. Then $\operatorname{ber}_{d w}(Y)=\sqrt{2} \cdot \operatorname{ber}(Y)$ if and only if Y is selfadjoint idempotent operator.

Proof. To prove the 'only if part', from Lemma 5, we have $\operatorname{ber}_{\mathrm{e}}\left(Y, Y^{*} Y\right)=\operatorname{ber}_{d w}(Y)$ for any $Y \in \mathscr{B}(\mathscr{H})$. Clearly if Y is selfadjoint idempotent operator, then $\operatorname{ber}_{d w}(Y)=$ $\operatorname{ber}_{\mathrm{e}}\left(Y, Y^{*} Y\right)=\operatorname{ber}_{\mathrm{e}}\left(Y, Y^{2}\right)=\operatorname{ber}_{\mathrm{e}}(Y, Y)$. On the other hand, by setting $n=2$ and $T_{1}=T_{2}=Y$, in (27), we get $\operatorname{ber}_{\mathrm{e}}(Y, Y)=\sqrt{2} \cdot \operatorname{ber}(Y)$. Hence, $\operatorname{ber}_{d w}(Y)=\sqrt{2} \cdot \operatorname{ber}(Y)$. The 'if part' follows by noting that, $Y^{*} Y=Y^{2}$ if and only if Y is selfadjoint and therefore $Y^{*} Y=Y$, when Y is an idempotent operator, i.e., $Y^{2}=Y$.

In 2005, Kittaneh [35] proved that

$$
\begin{equation*}
\frac{1}{4}\left\|S^{*} S+S S^{*}\right\| \leqslant w^{2}(S) \leqslant \frac{1}{2}\left\|S^{*} S+S S^{*}\right\| \tag{28}
\end{equation*}
$$

for a Hilbert space operator $S \in \mathscr{B}(\mathscr{H})$.
The corresponding version of the above inequality in terms of Berezin numbers can be obtained such as:

$$
\begin{equation*}
\frac{1}{4}\left\|R^{*} R+R R^{*}\right\|_{\mathrm{Ber}} \leqslant \operatorname{ber}^{2}(R) \leqslant \frac{1}{2}\left\|R^{*} R+R R^{*}\right\|_{\mathrm{Ber}} \tag{29}
\end{equation*}
$$

for Hilbert space operator $R \in \mathscr{B}(\mathscr{H}(\Omega))$. The following result extends (29) for the Euclidean Berezin number.

Lemma 6. Let $R_{k} \in \mathscr{B}(\mathscr{H}(\Omega))(k=1, \cdots, n)$. Then

$$
\begin{equation*}
\frac{1}{2^{p+1} n^{p-1}}\left\|\sum_{k=1}^{n} R_{k}^{*} R_{k}+R_{k} R_{k}^{*}\right\|_{\mathrm{Ber}}^{p} \leqslant \operatorname{ber}_{2 p}^{2 p}\left(R_{1}, \cdots, R_{n}\right) \leqslant \frac{1}{2^{p}}\left\|\sum_{k=1}^{n}\left(R_{k}^{*} R_{k}+R_{k} R_{k}^{*}\right)^{p}\right\|_{\mathrm{Ber}} \tag{30}
\end{equation*}
$$

for all $p \geqslant 1$.

Proof. Let $G_{k}+i H_{k}$ be the Cartesian decomposition of R_{k} for all $k=1, \cdots, n$. As in the proof of (28) in [35], we have

$$
\begin{aligned}
\left|\left\langle R_{k} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2 p} & =\left(\left\langle G_{k} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{2}+\left\langle H_{k} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{2}\right)^{p} \\
& \geqslant \frac{1}{2^{p}}\left(\left|\left\langle G_{k} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|+\left|\left\langle H_{k} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|\right)^{2 p} \\
& \geqslant \frac{1}{2^{p}}\left|\left\langle G_{k} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle+\left\langle H_{k} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2 p} \\
& =\frac{1}{2^{p}}\left|\left\langle G_{k} \pm H_{k} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2 p}
\end{aligned}
$$

Summing over j and then taking the supremum over all unit vector $\widehat{k}_{\lambda} \in \mathscr{H}(\Omega)$, we get

$$
\begin{aligned}
\operatorname{ber}_{2 p}^{2 p}\left(R_{1}, \cdots, R_{n}\right) & =\sup _{\lambda \in \Omega} \sum_{j=1}^{n}\left|\left\langle R_{k} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2 p} \\
& \geqslant \frac{1}{2^{p}} \sup _{\lambda \in \Omega} \sum_{k=1}^{n}\left|\left\langle G_{k} \pm H_{k} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2 p} \\
& \geqslant \frac{1}{2^{p}} \frac{1}{n^{p-1}} \sup _{\lambda \in \Omega}\left(\sum_{k=1}^{n}\left|\left\langle G_{k} \pm H_{k} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2}\right)^{p} \\
& =\frac{1}{2^{p}} \frac{1}{n^{p-1}}\left\|\sum_{k=1}^{n}\left(G_{k} \pm H_{k}\right)^{2}\right\|_{\mathrm{Ber}}^{p}
\end{aligned}
$$

where we have used Jensen's inequality in the last inequality. Thus,

$$
\begin{aligned}
2 \operatorname{ber}_{2 p}^{2 p}\left(R_{1}, \cdots, R_{n}\right) & \geqslant \frac{1}{2^{p}} \frac{1}{n^{p-1}}\left\|\sum_{k=1}^{n}\left(G_{k}+H_{k}\right)^{2}\right\|_{\mathrm{Ber}}^{p}+\frac{1}{2^{p}} \frac{1}{n^{p-1}}\left\|\sum_{k=1}^{n}\left(G_{k}-H_{k}\right)^{2}\right\|_{\mathrm{Ber}}^{p} \\
& \geqslant \frac{1}{2^{p}} \frac{1}{n^{p-1}}\left\|\sum_{k=1}^{n}\left(G_{k}+H_{k}\right)^{2}+\sum_{k=1}^{n}\left(G_{k}-H_{k}\right)^{2}\right\|_{\mathrm{Ber}}^{p} \\
& =\frac{1}{2^{p}} \frac{1}{n^{p-1}}\left\|\sum_{k=1}^{n}\left\{\left(G_{k}+H_{k}\right)^{2}+\left(G_{k}-H_{k}\right)^{2}\right\}\right\|_{\mathrm{Ber}}^{p} \\
& =\frac{1}{n^{p-1}}\left\|\sum_{k=1}^{n} G_{k}^{2}+H_{k}^{2}\right\|_{\mathrm{Ber}}^{p} \\
& =\frac{1}{n^{p-1}}\left\|\sum_{k=1}^{n} \frac{R_{k}^{*} R_{k}+R_{k} R_{k}^{*}}{2}\right\|_{\mathrm{Ber}}^{p} \\
& =\frac{1}{2^{p} n^{p-1}}\left\|\sum_{k=1}^{n} R_{k}^{*} R_{k}+R_{k} R_{k}^{*}\right\|_{\mathrm{Ber}}^{p}
\end{aligned}
$$

and hence,

$$
\operatorname{ber}_{2 p}^{2 p}\left(R_{1}, \cdots, R_{n}\right) \geqslant \frac{1}{2^{p+1} n^{p-1}}\left\|\sum_{k=1}^{n} R_{k}^{*} R_{k}+R_{k} R_{k}^{*}\right\|_{\mathrm{Ber}}^{p}
$$

which proves the left hand side of the inequality in (30).
To prove the second inequality, for every unit vector $\widehat{k}_{\lambda} \in \mathscr{H}(\Omega)$ we have

$$
\begin{aligned}
\sum_{k=1}^{n}\left|\left\langle R_{k} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2 p} & =\sum_{k=1}^{n}\left(\left\langle G_{k} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{2}+\left\langle H_{k} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{2}\right)^{p} \\
& \leqslant \sum_{k=1}^{n}\left(\left\langle G_{k}^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle+\left\langle H_{k}^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right)^{p} \\
& =\sum_{k=1}^{n}\left\langle\left(G_{k}^{2}+H_{k}^{2}\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{p}
\end{aligned}
$$

which implies that

$$
\begin{aligned}
\sup _{\lambda \in \Omega} \sum_{k=1}^{n}\left|\left\langle R_{k} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2 p} & =\operatorname{ber}_{2 p}^{2 p}\left(R_{1}, \cdots, R_{1}\right) \\
& \leqslant \sup _{\lambda \in \Omega} \sum_{k=1}^{n}\left\langle\left(G_{k}^{2}+H_{k}^{2}\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{p} \\
& \leqslant \sup _{\lambda \in \Omega}\left\langle\sum_{k=1}^{n}\left(G_{k}^{2}+H_{k}^{2}\right)^{p} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle \\
& =\left\|\sum_{k=1}^{n}\left(G_{k}^{2}+H_{k}^{2}\right)^{p}\right\|_{\mathrm{Ber}}=\frac{1}{2^{p}}\left\|\sum_{k=1}^{n}\left(R_{k}^{*} R_{k}+R_{k} R_{k}^{*}\right)^{p}\right\|_{\mathrm{Ber}},
\end{aligned}
$$

which proves the right hand side of (30).
REMARK 4. In particular, setting $n=2$ and $p=1$ in (30) we get

$$
\begin{aligned}
\frac{1}{4}\left\|R_{1}^{*} R_{1}+R_{1} R_{1}^{*}+R_{2}^{*} R_{2}+R_{2} R_{2}^{*}\right\|_{\mathrm{Ber}} & \leqslant \operatorname{ber}_{\mathrm{e}}^{2}\left(R_{1}, R_{2}\right) \\
& \leqslant \frac{1}{2}\left\|R_{1}^{*} R_{1}+R_{1} R_{1}^{*}+R_{2}^{*} R_{2}+R_{2} R_{2}^{*}\right\|_{\mathrm{Ber}}
\end{aligned}
$$

Moreover, if we choose $R_{1}=R_{2}=R$, then

$$
\frac{1}{2}\left\|R^{*} R+R R^{*}\right\|_{\mathrm{Ber}} \leqslant \operatorname{ber}_{\mathrm{e}}^{2}(R, R) \leqslant\left\|R^{*} R+R R^{*}\right\|_{\mathrm{Ber}}
$$

But $\operatorname{ber}_{\mathrm{e}}(R, R)=\sqrt{2} \operatorname{ber}(R)$, which implies that

$$
\frac{1}{4}\left\|R^{*} R+R R^{*}\right\|_{\mathrm{Ber}} \leqslant \operatorname{ber}^{2}(R) \leqslant \frac{1}{2}\left\|R^{*} R+R R^{*}\right\|_{\mathrm{Ber}}
$$

Now, based on Lemmas 5 and 6, we can introduce our first main result, as follows:
Theorem 10. Let $R \in \mathscr{B}(\mathscr{H}(\Omega))$. Then

$$
\begin{equation*}
\frac{1}{4}\left\||R|^{2}+\left|R^{*}\right|^{2}+2|R|^{4}\right\|_{\mathrm{Ber}} \leqslant \operatorname{ber}_{d w}^{2}(R) \leqslant \frac{1}{2}\left\||R|^{2}+\left|R^{*}\right|^{2}+2|R|^{4}\right\|_{\mathrm{Ber}} \tag{31}
\end{equation*}
$$

Proof. Setting $n=2, p=1, R_{1}=X$ and $R_{2}=Y$ in (30), we get

$$
\begin{aligned}
\frac{1}{4}\left\|X^{*} X+X X^{*}+Y^{*} Y+Y Y^{*}\right\|_{\mathrm{Ber}} & \leqslant \operatorname{ber}_{\mathrm{e}}^{2}(X, Y) \\
& \leqslant \frac{1}{2}\left\|X^{*} X+X X^{*}+Y^{*} Y+Y Y^{*}\right\|_{\mathrm{Ber}}
\end{aligned}
$$

Replacing X by R and Y by $R^{*} R$, we get

$$
\frac{1}{4}\left\|R^{*} R+R R^{*}+2|R|^{4}\right\|_{\mathrm{Ber}} \leqslant \operatorname{ber}_{\mathrm{e}}^{2}\left(R, R^{*} R\right) \leqslant \frac{1}{2}\left\|R^{*} R+R R^{*}+2|R|^{4}\right\|_{\mathrm{Ber}}
$$

But as we have shown in Lemma 5 that, $\operatorname{ber}_{\mathrm{e}}\left(R, R^{*} R\right)=\operatorname{ber}_{d w}(R)$, hence we have

$$
\frac{1}{4}\left\||R|^{2}+\left|R^{*}\right|^{2}+2|R|^{4}\right\|_{\mathrm{Ber}} \leqslant \operatorname{ber}_{d w}^{2}(R) \leqslant \frac{1}{2}\left\||R|^{2}+\left|R^{*}\right|^{2}+2|R|^{4}\right\|_{\mathrm{Ber}},
$$

as desired.
The following result refines sharply the upper bound in (2).
THEOREM 11. If $R \in \mathscr{B}(\mathscr{H}(\Omega))$, then

$$
\begin{align*}
\frac{1}{\sqrt{2}}\left\|R+R^{*} R\right\|_{\mathrm{Ber}} \leqslant \operatorname{ber}_{d w}(R) & \leqslant \sqrt{\left\|\frac{1}{4}\left(|R|+\left|R^{*}\right|\right)^{2}+|R|^{4}\right\|_{\mathrm{Ber}}} \tag{32}\\
& \leqslant \sqrt{\frac{1}{4}\left(\|R\|_{\mathrm{Ber}}+\left\|R^{2}\right\|_{\mathrm{Ber}}^{1 / 2}\right)^{2}+\|R\|_{\mathrm{Ber}}^{4}}
\end{align*}
$$

Proof. Since we have

$$
\begin{aligned}
\operatorname{ber}_{d w}^{2}(R) & =\sup _{\lambda \in \Omega}\left\{\left|\left\langle R \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2}+\left|\left\langle R^{*} R \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2}\right\} \\
& \geqslant \frac{1}{2} \sup _{\lambda \in \Omega}\left\{\left|\left\langle R \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|+\left|\left\langle R^{*} R \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|\right\}^{2} \\
& =\frac{1}{2} \sup _{\lambda \in \Omega}\left\{\left|\left\langle R \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle+\left\langle R^{*} R \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|\right\}^{2} \\
& =\frac{1}{2} \sup _{\lambda \in \Omega}\left\{\left|\left\langle\left(R+R^{*} R\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|\right\}^{2} \\
& =\frac{1}{2}\left\|R+R^{*} R\right\|_{\text {Ber }}^{2}
\end{aligned}
$$

which proves the first inequality in (32). Also, since we have

$$
\begin{align*}
\operatorname{ber}_{d w}^{2}(R)= & \sup _{\lambda \in \Omega}\left\{\left|\left\langle R \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2}+\|\left. R \widehat{k}_{\lambda}\right|^{4}\right\} \\
= & \sup _{\lambda \in \Omega}\left\{\left|\left\langle R \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2}+\left|\left\langle R^{*} R \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2}\right\} \\
\leqslant & \left.\sup _{\lambda \in \Omega}\left\{\left(\langle | R\left|\widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{\frac{1}{2}}\langle | R^{*}\left|\widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{\frac{1}{2}}\right)^{2}+\left.\langle | R^{*} R\right|^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right\} \\
& (\text { by Lemmas } 3 \text { and } 4) \\
\leqslant & \sup _{\lambda \in \Omega}\left[\left\langle\frac{\left.\left.\left.|R|+\left|R^{*}\right| \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{2}+\left.\langle | R^{*} R\right|^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right]}{2}\right.\right. \\
\leqslant & \left.\sup _{\lambda \in \Omega}\left[\left\langle\left(\frac{|R|+\left|R^{*}\right|}{2}\right)^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle+\left.\langle | R^{*} R\right|^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right] \tag{byLemma3}\\
= & \sup _{\lambda \in \Omega}\left\langle\left(\left(\frac{|R|+\left|R^{*}\right|}{2}\right)^{2}+\left|R^{*} R\right|^{2}\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle \\
= & \frac{1}{4}\left\|\left(|R|+\left|R^{*}\right|\right)^{2}+4\left|R^{*} R\right|^{2}\right\|_{\mathrm{Ber}},
\end{align*}
$$

and this proves the second inequality in (32). Applying the triangle inequality on the above inequality, we get

$$
\begin{aligned}
\operatorname{ber}_{d w}^{2}(R) \leqslant \frac{1}{4}\left\|\left(|R|+\left|R^{*}\right|\right)^{2}+4\left|R^{*} R\right|^{2}\right\|_{\text {Ber }} & \leqslant \frac{1}{4}\left\|\left(|R|+\left|R^{*}\right|\right)^{2}\right\|_{\text {Ber }}+\left\|\left|R^{*} R\right|^{2}\right\|_{\text {Ber }} \\
& =\frac{1}{4}\left\||R|+\left|R^{*}\right|\right\|_{\text {Ber }}^{2}+\left\||R|^{4}\right\|_{\text {Ber }} .
\end{aligned}
$$

Now, applying (13) to the first term in the above inequality, we get $\left\||R|+\left|R^{*}\right|\right\|_{\text {Ber }} \leqslant$ $\|R\|_{\text {Ber }}+\left\|R^{2}\right\|_{\text {Ber }}^{1 / 2}$. Now substituting this inequality in the last inequality above, we get the third inequality in (32), and this completes the proof.

To see that the second inequality in (31) is a refinement of the second inequality in (2), assume $R R^{*} \leqslant R^{*} R \leqslant \operatorname{ber}^{2}(R) 1_{\mathscr{H}}$. Thus, from (31) we have

$$
\begin{aligned}
\operatorname{ber}_{d w}^{2}(R) & \leqslant \frac{1}{2}\left\||R|^{2}+\left|R^{*}\right|^{2}+2|R|^{4}\right\|_{\text {Ber }} \\
& \leqslant \frac{1}{2}\left\|\operatorname{ber}^{2}(R) 1_{\mathscr{H}}+\operatorname{ber}^{2}(R) 1_{\mathscr{H}}+2 \operatorname{ber}^{4}(R) 1_{\mathscr{H}}\right\|_{\text {Ber }} \\
& \leqslant \operatorname{ber}^{2}(R)+\|R\|_{\text {Ber }}^{4}
\end{aligned}
$$

Follows by the assumption, since $\operatorname{ber}(R)=\|R\|_{\text {Ber }}$ (see Corollary 2), which implies that

$$
\begin{aligned}
\operatorname{ber}_{d w}(R) & \leqslant \sqrt{\frac{1}{2}\left\||R|^{2}+\left|R^{*}\right|^{2}+2|R|^{4}\right\|_{\mathrm{Ber}}} \leqslant \sqrt{\operatorname{ber}^{2}(R)+\|R\|_{\text {Ber }}^{4}} \\
& =\|R\|_{\text {Ber }} \sqrt{1+\|R\|_{\mathrm{Ber}}^{2}}
\end{aligned}
$$

which means that the right-hand side of (31) refines the right-hand side of (2).
Example 1. $\Omega=\left\{(x, y):|x|^{2}+|y|^{2} \leqslant 6, x, y \in \mathbb{C}\right\}$. Therefore, Ω is closed subset of \mathbb{C}. Consider Let $R=\left[\begin{array}{ll}0 & 1 \\ 2 & 1\end{array}\right]$. We have $W(R) \subseteq \Omega$ with $\|R\|_{\text {Ber }}=2.28825$ and $\operatorname{ber}(R)=2.08114$. The upper bound of (2) gives $\operatorname{ber}_{d w}(R) \leqslant 5.63449$. However, by applying (31), we have $\operatorname{ber}_{d w}(R) \leqslant 5.61938$, which implies that, the upper bound in (31) is better than the upper bound in (2).

REMARK 5. We note that, a refinement of the inequality (6) could be stated as follows:

$$
\frac{1}{\sqrt{2}}\left\|R+R^{*} R\right\| \leqslant \operatorname{ber}_{d w}(R) \leqslant \sqrt{w\left(\frac{1}{4}\left(|R|+\left|R^{*}\right|\right)^{2}+|R|^{4}\right)}
$$

Consider R as in Example 1. Applying the above inequality, we get $\operatorname{ber}_{d w}(R) \leqslant$ 5.59709 , which is better than the result obtained by (5). Furthermore, (31) gives that

$$
\operatorname{ber}_{d w}(R) \leqslant \sqrt{w\left(\frac{1}{4}\left(|R|+\left|R^{*}\right|\right)^{2}+|R|^{4}\right)} \leqslant \sqrt[4]{\frac{1}{2}\left\|T^{*} T+T T^{*}\right\|},
$$

where $T=\frac{1}{4}\left(|R|+\left|R^{*}\right|\right)^{2}+|R|^{4}$. Employing the previous second upper bound for R in Example 1, we get the same result as those obtained by (31) and (2), even we use (13); which indeed refines (32).

5. The Davis-Wielandt radius inequalities for $n \times n$ matrix operators

Several numerical radius type inequalities improving and refining the inequality

$$
\frac{1}{2}\|S\| \leqslant w(S) \leqslant\|S\| \quad(S \in \mathscr{B}(\mathscr{H}))
$$

have been recently obtained by many other authors; see for example [1]-[10], and [21]. Recently, Bakherad [8] proved the following result concerning the Berezin number of $n \times n$ operator matrices.

Let $\mathbf{S}=\left[S_{i j}\right] \in \mathscr{B}\left(\bigoplus_{i=1}^{n} \mathscr{H}_{i}\left(\Omega_{i}\right)\right)$ such that $S_{i j} \in \mathscr{B}\left(\mathscr{H}_{j}\left(\Omega_{j}\right), \mathscr{H}_{i}\left(\Omega_{i}\right)\right)$. Then

$$
w(\mathbf{S}) \leqslant\left\{\begin{array}{lc}
\operatorname{ber}\left(\left[S_{i j}\right]\right) & i=j, \\
\left\|\left[S_{i j}\right]\right\|_{\mathrm{Ber}}, & i \neq j
\end{array}\right.
$$

In the next result, we present Davis-Wielandt radius inequality for $n \times n$ matrix Operators.

THEOREM 12. Let $\mathbf{T}=\left[T_{i j}\right] \in \mathscr{B}\left(\bigoplus_{i=1}^{n} \mathscr{H}_{i}\left(\Omega_{i}\right)\right)$. Then

$$
\begin{equation*}
\operatorname{ber}_{d w}(\mathbf{T}) \leqslant w\left(\left[t_{i j}\right]\right), \tag{33}
\end{equation*}
$$

where

$$
t_{i j}=\left\{\begin{array}{l}
\operatorname{ber}\left(T_{i i}\right)+\left\|T_{i i}\right\|_{\mathrm{Ber}}^{2}, \quad j=i \\
\left\|T_{i j}\right\|_{\mathrm{Ber}}+\left\|T_{i j}\right\|_{\mathrm{Ber}}^{2}, \quad j \neq i
\end{array}\right.
$$

Proof. Let $\mathscr{H}(\Omega)=\bigoplus_{i=1}^{n} \mathscr{H}_{i}\left(\Omega_{i}\right)$. For every $\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in \Omega_{1} \times \cdots \times \Omega_{n}$, let a unit vector $\widehat{\mathbf{k}}_{\lambda}=\left[k_{\lambda_{1}} \cdots k_{\lambda_{n}}\right]^{T} \in \mathscr{H}(\Omega)$. Then we have

$$
\begin{array}{r}
\operatorname{ber}_{d w}(\mathbf{T})= \\
\sup _{\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in \Omega_{1} \times \cdots \times \Omega_{n}} \sqrt{\left|\left\langle\mathbf{T} \widehat{\mathbf{k}}_{\lambda}, \widehat{\mathbf{k}}_{\lambda}\right\rangle\right|^{2}+\left|\left\langle\mathbf{T}^{*} \mathbf{T} \widehat{\mathbf{k}}_{\lambda}, \widehat{\mathbf{k}}_{\lambda}\right\rangle\right|^{2}} \\
\leqslant \sup _{\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in \Omega_{1} \times \cdots \times \Omega_{n}}\left\{\left|\left\langle\mathbf{T} \widehat{\mathbf{k}}_{\lambda}, \widehat{\mathbf{k}}_{\lambda}\right\rangle\right|+\left|\left\langle\mathbf{T}^{*} \mathbf{T} \widehat{\mathbf{k}}_{\lambda}, \widehat{\mathbf{k}}_{\lambda}\right\rangle\right|\right\} \\
\quad \text { (since } \sqrt{a+b} \leqslant \sqrt{a}+\sqrt{b}) .
\end{array}
$$

But since

$$
\begin{align*}
\left|\left\langle\mathbf{T} \widehat{\mathbf{k}}_{\lambda}, \widehat{\mathbf{k}}_{\lambda}\right\rangle\right| & =\left|\sum_{i, j=1}^{n}\left\langle T_{i j} k_{\lambda_{j}}, k_{\lambda_{i}}\right\rangle\right| \\
& \leqslant \sum_{i, j=1}^{n}\left|\left\langle T_{i j} k_{\lambda_{j}}, k_{\lambda_{i}}\right\rangle\right| \\
& =\sum_{i=1}^{n}\left|\left\langle T_{i i} k_{\lambda_{i}}, k_{\lambda_{i}}\right\rangle\right|+\sum_{\substack{i, j=1 \\
j \neq i}}^{n}\left|\left\langle T_{i j} k_{\lambda_{j}}, k_{\lambda_{i}}\right\rangle\right| \\
& \leqslant \sum_{i=1}^{n} \operatorname{ber}\left(T_{i i}\right)\left\|k_{\lambda_{i}}\right\|^{2}+\sum_{\substack{i, j=1 \\
j \neq i}}^{n}\left\|T_{i j}\right\|_{\text {Ber }}\left\|k_{\lambda_{j}}\right\|\left\|k_{\lambda_{i}}\right\| \\
& =\sum_{i=1}^{n} t_{i j}\left\|k_{\lambda_{j}}\right\|\left\|k_{\lambda_{i}}\right\| . \tag{34}
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
\left|\left\langle\mathbf{T}^{*} \mathbf{T} \mathbf{x}, \mathbf{x}\right\rangle\right| & =\left|\sum_{i, j=1}^{n}\left\langle T_{i j}^{*} T_{i j} k_{\lambda_{j}}, k_{\lambda_{i}}\right\rangle\right| \\
& \leqslant \sum_{i=1}^{n} \operatorname{ber}\left(T_{i i}^{*} T_{i i}\right)\left\|k_{\lambda_{i}}\right\|^{2}+\sum_{j \neq i}^{n}\left\|T_{i j}^{*} T_{i j}\right\|_{\mathrm{Ber}}\left\|k_{\lambda_{i}}\right\|\left\|k_{\lambda_{j}}\right\| \tag{35}
\end{align*}
$$

Adding (34) and (35), we get

$$
\begin{aligned}
\operatorname{ber}_{d w}(\mathbf{T}) & \leqslant \sup _{\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in \Omega_{1} \times \cdots \times \Omega_{n}}\left\{\left|\left\langle\mathbf{T} \widehat{\mathbf{k}}_{\lambda}, \widehat{\mathbf{k}}_{\lambda}\right\rangle\right|+\left|\left\langle\mathbf{T}^{*} \mathbf{T} \widehat{\mathbf{k}}_{\lambda}, \widehat{\mathbf{k}}_{\lambda}\right\rangle\right|\right\} \\
& \leqslant \sum_{i=1}^{n}\left(\operatorname{ber}\left(T_{i i}\right)+\operatorname{ber}\left(T_{i i}^{*} T_{i i}\right)\right)\left\|k_{\lambda_{i}}\right\|^{2}+\sum_{j \neq i}^{n}\left(\left\|T_{i j}\right\|_{\mathrm{Ber}}+\left\|T_{i j}^{*} T_{i j}\right\|_{\mathrm{Ber}}\right)\left\|k_{\lambda_{i}}\right\|\left\|k_{\lambda_{j}}\right\|
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n}\left(\operatorname{ber}\left(T_{i i}\right)+\left\|T_{i i}\right\|_{\text {Ber }}^{2}\right)\left\|k_{\lambda_{i}}\right\|^{2}+\sum_{j \neq i}^{n}\left(\left\|T_{i j}\right\|_{\text {Ber }}+\left\|T_{i j}\right\|_{\text {Ber }}^{2}\right)\left\|k_{\lambda_{i}}\right\|\left\|k_{\lambda_{j}}\right\| \\
& \leqslant \sum_{i, j=1}^{n} t_{i j}\left\|k_{\lambda_{i}}\right\|\left\|k_{\lambda_{j}}\right\| \\
& =\left\langle\left[t_{i j}\right] \mathbf{x}, \mathbf{x}\right\rangle
\end{aligned}
$$

where $\mathbf{x}=\left(\left\|k_{\lambda_{1}}\right\|\left\|k_{\lambda_{2}}\right\| \ldots\left\|k_{\lambda_{1}}\right\|\right)^{T}$ with $\|\mathbf{x}\|=1$. Therefore

$$
\operatorname{ber}_{d w}(\mathbf{T})=\sup _{\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in \Omega_{1} \times \cdots \times \Omega_{n}}\left\{\left|\left\langle\widehat{\mathbf{T}}_{\lambda}, \widehat{\mathbf{k}}_{\lambda}\right\rangle\right|+\left|\left\langle\mathbf{T}^{*} \mathbf{\mathbf { k } _ { \lambda }}, \widehat{\mathbf{k}}_{\lambda}\right\rangle\right|\right\} \leqslant \omega\left(\left[t_{i j}\right]\right)
$$

Thus, we obtain the right-hand side inequality in (33), and this completes the proof.

$$
\begin{aligned}
\text { COROLLARY 4. Let } \mathbf{T} & =\left[\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{array}\right] \in \mathscr{B}\left(\mathscr{H}_{1}\left(\Omega_{1}\right) \oplus \mathscr{H}_{2}\left(\Omega_{2}\right)\right) . \text { Then } \\
\operatorname{ber}_{d w}(\mathbf{T}) & \leqslant \frac{1}{2}\left(a+d+\sqrt{(a-d)^{2}+(b+c)^{2}}\right),
\end{aligned}
$$

where,

$$
a=\operatorname{ber}\left(T_{11}\right)+\left\|T_{11}\right\|_{\mathrm{Ber}}^{2}, b=\left\|T_{12}\right\|_{\mathrm{Ber}}+\left\|T_{12}\right\|_{\mathrm{Ber}}^{2}, c=\left\|T_{21}\right\|_{\mathrm{Ber}}+\left\|T_{21}\right\|_{\mathrm{Ber}}^{2},
$$

and $d=\operatorname{ber}\left(T_{22}\right)+\left\|T_{22}\right\|_{\text {Ber }}^{2}$.
Proof. Take $n=2$ in Theorem 12. Let a, b, c, d be as defined above. Then

$$
\begin{aligned}
\operatorname{ber}_{d w}\left(\left[\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{array}\right]\right) & \leqslant w\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right) \\
& =r\left(\left[\begin{array}{cc}
a & \frac{b+c}{2} \\
\frac{b+c}{2} & d
\end{array}\right]\right) \\
& =\frac{1}{2}\left(a+d+\sqrt{(a-d)^{2}+(b+c)^{2}}\right)
\end{aligned}
$$

as required.
Corollary 5. Let $\left[\begin{array}{cc}T_{11} & 0 \\ 0 & T_{22}\end{array}\right] \in \mathscr{B}\left(\mathscr{H}_{1}\left(\Omega_{1}\right) \oplus \mathscr{H}_{2}\left(\Omega_{2}\right)\right)$, then

$$
\operatorname{ber}_{d w}\left(\left[\begin{array}{cc}
T_{11} & 0 \\
0 & T_{22}
\end{array}\right]\right) \leqslant \max \left\{\operatorname{ber}\left(T_{11}\right)+\left\|T_{11}\right\|_{\mathrm{Ber}}^{2}, \operatorname{ber}\left(T_{22}\right)+\left\|T_{22}\right\|_{\mathrm{Ber}}^{2}\right\} .
$$

In special case, if $\mathscr{H}_{1}\left(\Omega_{1}\right)=\mathscr{H}_{2}\left(\Omega_{2}\right)$ and $T_{11}=T_{22}=T$, then

$$
\operatorname{ber}_{d w}\left(\left[\begin{array}{cc}
T & 0 \\
0 & T
\end{array}\right]\right) \leqslant \operatorname{ber}_{d w}(T)+\|T\|_{\text {Ber }}^{2} \text {. }
$$

Proof. From Corollary 4, we have

$$
\begin{aligned}
\operatorname{ber}_{d w}\left(\left[\begin{array}{cc}
T_{11} & 0 \\
0 & T_{22}
\end{array}\right]\right) & \leqslant \max \left\{\operatorname{ber}\left(T_{11}\right)+w\left(T_{11}^{*} T_{11}\right), \operatorname{ber}\left(T_{22}\right)+\operatorname{ber}\left(T_{22}^{*} T_{22}\right)\right\} \\
& =\max \left\{\operatorname{ber}\left(T_{11}\right)+\operatorname{ber}\left(\left|T_{11}\right|^{2}\right), \operatorname{ber}\left(T_{22}\right)+\operatorname{ber}\left(\left|T_{22}\right|_{\text {Ber }}^{2}\right)\right\} \\
& \leqslant \max \left\{\operatorname{ber}\left(T_{11}\right)+\left\|T_{11}\right\|_{\text {Ber }}^{2}, \operatorname{ber}\left(T_{22}\right)+\left\|T_{22}\right\|_{\text {Ber }}^{2}\right\},
\end{aligned}
$$

as required.
Corollary 6. Let $\mathbf{T}=\left[\begin{array}{ll}T & S \\ S & T\end{array}\right] \in \mathscr{B}(\mathscr{H}(\Omega) \oplus \mathscr{H}(\Omega))$. Then

$$
\operatorname{ber}_{d w}(\mathbf{T}) \leqslant \operatorname{ber}(T)+\|T\|_{\text {Ber }}^{2}+\|S\|_{\text {Ber }}+\|S\|_{\text {Ber }}^{2}
$$

Proof. From Corollary 4, we have $T_{11}=T_{22}=T$ and $T_{12}=T_{21}=S$, therefore

$$
a=\operatorname{ber}(T)+\|T\|_{\mathrm{Ber}}^{2}=d, \quad b=\|S\|_{\mathrm{Ber}}+\|S\|_{\mathrm{Ber}}^{2}=c .
$$

Thus,

$$
\operatorname{ber}_{d w}\left(\left[\begin{array}{cc}
T & S \\
S & T
\end{array}\right]\right) \leqslant a+b=\operatorname{ber}(T)+\|T\|_{\mathrm{Ber}}^{2}+\|S\|_{\mathrm{Ber}}+\|S\|_{\mathrm{Ber}}^{2}
$$

as required.
A refinement of Theorem 12 is formulated as follows:
THEOREM 13. Let $\mathbf{T}=\left[T_{i j}\right] \in \mathscr{B}\left(\bigoplus_{i=1}^{n} \mathscr{H}_{i}\left(\Omega_{i}\right)\right)$ such that $T_{i j} \in \mathscr{B}\left(\mathscr{H}_{j}\left(\Omega_{j}\right)\right.$, $\left.\mathscr{H}_{i}\left(\Omega_{i}\right)\right)$. Then

$$
\begin{equation*}
\frac{1}{\sqrt{2}}\left\|\mathbf{T}+\mathbf{T}^{*} \mathbf{T}\right\| \leqslant \operatorname{ber}_{d w}(\mathbf{T}) \leqslant w^{1 / 2}\left(\left[t_{i j}\right]\right) \tag{36}
\end{equation*}
$$

where

$$
t_{i j}=n \cdot\left\{\begin{array}{ll}
\operatorname{ber}^{2}\left(T_{i i}\right)+\left\|T_{i i}\right\|_{\mathrm{Ber}}^{4}, & j=i \\
\left\|T_{i j}\right\|_{\mathrm{Ber}}^{2}+\left\|T_{i j}\right\|_{\mathrm{Ber}}^{4}, & j \neq i
\end{array} .\right.
$$

Proof. Let $\widehat{\mathbf{k}}_{\lambda}=\left[k_{\lambda_{1}} \cdots k_{\lambda_{n}}\right]^{T} \in \bigoplus_{i=1}^{n} \mathscr{H}_{i}\left(\Omega_{i}\right)$ with $\left\|\widehat{\mathbf{k}}_{\lambda}\right\|=\sum_{i=1}^{n}\left\|k_{\lambda_{i}}\right\|^{2}=1$. Then we have

$$
\begin{aligned}
\operatorname{ber}_{d w}(\mathbf{T}) & =\sup _{\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in \Omega_{1} \times \cdots \times \Omega_{n}}\left\{\sqrt{\left|\left\langle\mathbf{T}_{\lambda}, \widehat{\mathbf{k}}_{\lambda}\right\rangle\right|^{2}+\left\|\widehat{\mathbf{k}}_{\lambda}\right\|^{4}}\right\} \\
& =\sup _{\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in \Omega_{1} \times \cdots \times \Omega_{n}} \sqrt{\left|\left\langle\widehat{\mathbf{T}}_{\lambda}, \widehat{\mathbf{k}}_{\lambda}\right\rangle\right|^{2}+\left|\left\langle\mathbf{T}^{*} \mathbf{T} \widehat{\mathbf{k}}_{\lambda}, \widehat{\mathbf{k}}_{\lambda}\right\rangle\right|^{2}} .
\end{aligned}
$$

But since

$$
\begin{align*}
\left|\left\langle\mathbf{T} \widehat{\mathbf{k}}_{\lambda}, \widehat{\mathbf{k}}_{\lambda}\right\rangle\right|^{2} & =\left|\sum_{i, j=1}^{n}\left\langle T_{i j} k_{\lambda_{j}}, k_{\lambda_{i}}\right\rangle\right|^{2} \\
& \leqslant n \cdot \sum_{i, j=1}^{n}\left|\left\langle T_{i j} k_{\lambda_{j}}, k_{\lambda_{i}}\right\rangle\right|^{2} \quad \text { (by Jensen's inequality) } \\
& \leqslant n \cdot \sum_{i=1}^{n}\left|\left\langle T_{i i} k_{i}, k_{i}\right\rangle\right|^{2}+n \cdot \sum_{j \neq i}^{n}\left|\left\langle T_{i j} k_{\lambda_{j}}, k_{\lambda_{i}}\right\rangle\right|^{2} \\
& \leqslant n \cdot \sum_{i=1}^{n} \operatorname{ber}^{2}\left(T_{i i}\right)\left\|k_{\lambda_{i}}\right\|^{4}+n \cdot \sum_{j \neq i}^{n}\left\|T_{i j}\right\|_{\mathrm{Ber}}^{2}\left\|k_{\lambda_{i}}\right\|^{2}\left\|k_{\lambda_{j}}\right\|^{2} \\
& \leqslant n \cdot \sum_{i=1}^{n} \operatorname{ber}^{2}\left(T_{i i}\right)\left\|k_{\lambda_{i}}\right\|^{2}+n \cdot \sum_{j \neq i}^{n}\left\|T_{i j}\right\|_{\mathrm{Ber}}^{2}\left\|k_{\lambda_{i}}\right\|\left\|k_{\lambda_{j}}\right\| \tag{37}
\end{align*}
$$

the last inequality holds, since $\left\|k_{\lambda_{i}}\right\|^{4} \leqslant\left\|k_{\lambda_{i}}\right\|^{2} \leqslant 1$ and $\left\|k_{\lambda_{i}}\right\|^{2} \leqslant\left\|k_{\lambda_{i}}\right\| \leqslant 1$ for all $\lambda_{i} \in \Omega_{i}, i=1, \cdots, n$. Similarly, we have

$$
\begin{align*}
\left|\left\langle\mathbf{T}^{*} \mathbf{T} \widehat{\mathbf{k}}_{\lambda}, \widehat{\mathbf{k}}_{\lambda}\right\rangle\right|^{2} & =\left|\sum_{i, j=1}^{n}\left\langle T_{i j}^{*} T_{i j} k_{\lambda_{j}}, k_{\lambda_{i}}\right\rangle\right|^{2} \\
& \leqslant n \cdot \sum_{i=1}^{n} \operatorname{ber}^{2}\left(T_{i i}^{*} T_{i i}\right)\left\|k_{\lambda_{i}}\right\|^{2}+n \cdot \sum_{j \neq i}^{n}\left\|T_{i j}^{*} T_{i j}\right\|_{\mathrm{Ber}}^{2}\left\|k_{\lambda_{i}}\right\|\left\|k_{\lambda_{j}}\right\| . \tag{38}
\end{align*}
$$

Now adding (37) and (38), we get

$$
\begin{aligned}
& \left|\left\langle\mathbf{T} \widehat{\mathbf{k}}_{\lambda}, \widehat{\mathbf{k}}_{\lambda}\right\rangle\right|^{2}+\left|\left\langle\mathbf{T}^{*} \mathbf{T} \widehat{\mathbf{k}}_{\lambda}, \widehat{\mathbf{k}}_{\lambda}\right\rangle\right|^{2} \\
= & n \cdot \sum_{i=1}^{n}\left(\operatorname{ber}^{2}\left(T_{i i}\right)+\operatorname{ber}^{2}\left(T_{i i}^{*} T_{i i}\right)\right)\left\|k_{\lambda_{i}}\right\|^{2}+n \cdot \sum_{j \neq i}^{n}\left(\left\|T_{i j}\right\|_{\mathrm{Ber}}^{2}+\left\|T_{i j}^{*} T_{i j}\right\|_{\mathrm{Ber}}^{2}\right)\left\|k_{\lambda_{i}}\right\|\left\|k_{\lambda_{j}}\right\| \\
= & n \cdot \sum_{i=1}^{n}\left(\operatorname{ber}^{2}\left(T_{i i}\right)+\left\|T_{i i}\right\|_{\mathrm{Ber}}^{4}\right)\left\|k_{\lambda_{i}}\right\|^{2}+\sum_{j \neq i}^{n}\left(\left\|T_{i j}\right\|_{\mathrm{Ber}}^{2}+\left\|T_{i j}\right\|_{\mathrm{Ber}}^{4}\right)\left\|k_{\lambda_{i}}\right\|\left\|k_{\lambda_{j}}\right\| \\
\leqslant & n \cdot \sum_{i, j=1}^{n} t_{i j}\left\|k_{\lambda_{i}}\right\|\left\|k_{\lambda_{j}}\right\| \\
= & n \cdot\left\langle\left[t_{i j}\right] y, y\right\rangle
\end{aligned}
$$

where $y=\left(\left\|k_{\lambda_{1}}\right\|\left\|k_{\lambda_{2}}\right\| \cdots\left\|k_{\lambda_{n}}\right\|\right)^{T}$. Taking the supremum over unit vectors $\widehat{\mathbf{k}}_{\lambda} \in$ $\bigoplus_{i=1}^{n} \mathscr{H}_{i}\left(\Omega_{i}\right)$, we obtain the right-hand side inequality. To prove the left hand side inequality we note that

$$
\begin{aligned}
\operatorname{ber}_{d w}^{2}(\mathbf{T}) & =\sup _{\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in \Omega_{1} \times \cdots \times \Omega_{n}}\left\{\left|\left\langle\widehat{\mathbf{k}}_{\lambda}, \widehat{\mathbf{k}}_{\lambda}\right\rangle\right|^{2}+\left|\left\langle\mathbf{T}^{*} \mathbf{T} \widehat{\mathbf{k}}_{\lambda}, \widehat{\mathbf{k}}_{\lambda}\right\rangle\right|^{2}\right\} \\
& \geqslant \frac{1}{2} \sup _{\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in \Omega_{1} \times \cdots \times \Omega_{n}}\left\{\left|\left\langle\mathbf{T} \widehat{\mathbf{k}}_{\lambda}, \widehat{\mathbf{k}}_{\lambda}\right\rangle\right|+\left|\left\langle\mathbf{T}^{*} \mathbf{T} \widehat{\mathbf{k}}_{\lambda}, \widehat{\mathbf{k}}_{\lambda}\right\rangle\right|\right\}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \geqslant \frac{1}{2} \sup _{\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in \Omega_{1} \times \cdots \times \Omega_{n}}\left\{\left|\left\langle\left(\mathbf{T}+\mathbf{T}^{*} \mathbf{T}\right) \widehat{\mathbf{k}}_{\lambda}, \widehat{\mathbf{k}}_{\lambda}\right\rangle\right|^{2}\right\} \\
& =\frac{1}{2}\left\|\mathbf{T}+\mathbf{T}^{*} \mathbf{T}\right\|_{\text {Ber }}^{2},
\end{aligned}
$$

as required.
Corollary 7. Let $\mathbf{T}=\left[\begin{array}{ll}T_{11} & T_{12} \\ T_{21} & T_{22}\end{array}\right] \in \mathscr{B}\left(\mathscr{H}_{1}\left(\Omega_{1}\right) \oplus \mathscr{H}_{2}\left(\Omega_{2}\right)\right)$. Then

$$
\begin{equation*}
\operatorname{ber}_{d w}(\mathbf{T}) \leqslant \sqrt{a+d+\sqrt{(a-d)^{2}+(b+c)^{2}}} \tag{39}
\end{equation*}
$$

where,

$$
a=\operatorname{ber}^{2}\left(T_{11}\right)+\left\|T_{11}\right\|_{\mathrm{Ber}}^{4}, b=\left\|T_{12}\right\|_{\mathrm{Ber}}^{2}+\left\|T_{12}\right\|_{\mathrm{Ber}}^{4}, c=\left\|T_{21}\right\|_{\mathrm{Ber}}^{2}+\left\|T_{21}\right\|_{\mathrm{Ber}}^{4},
$$

and $d=\operatorname{ber}^{2}\left(T_{22}\right)+\left\|T_{22}\right\|_{\text {Ber }}^{4}$.
Proof. Take $n=2$ in Theorem 13. Let a, b, c, d be as defined above. Then

$$
\begin{aligned}
\operatorname{ber}_{d w}^{2}\left(\left[\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{array}\right]\right) & \leqslant 2 w\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right) \\
& =2 r\left(\left[\begin{array}{cc}
a & \frac{b+c}{2} \\
\frac{b+c}{2} & d
\end{array}\right]\right) \\
& =a+d+\sqrt{(a-d)^{2}+(b+c)^{2}}
\end{aligned}
$$

which proves the required inequality.

> COROLLARY 8. Let $\left[\begin{array}{cc}T_{11} & 0 \\ 0 & T_{22}\end{array}\right] \in \mathscr{B}\left(\mathscr{H}_{1}(\Omega) \oplus \mathscr{H}_{2}(\Omega)\right)$. Then $\operatorname{ber}_{d w}\left(\left[\begin{array}{cc}T_{11} & 0 \\ 0 & T_{22}\end{array}\right]\right) \leqslant \sqrt{2} \max \left\{\sqrt{\operatorname{ber}^{2}\left(T_{11}\right)+\left\|T_{11}\right\|_{\text {Ber }}^{4}}, \sqrt{\operatorname{ber}^{2}\left(T_{22}\right)+\left\|T_{22}\right\|_{\text {Ber }}^{4}}\right\}$.

In special case, if $\mathscr{H}_{1}(\Omega)=\mathscr{H}_{2}(\Omega)$ and $T_{11}=T_{22}=T$, then

$$
\operatorname{ber}_{d w}\left(\left[\begin{array}{cc}
T & 0 \\
0 & T
\end{array}\right]\right) \leqslant \sqrt{2}\left(\operatorname{ber}^{2}(T)+\|T\|_{\text {Ber }}^{4}\right)^{1 / 2}
$$

Proof. Form Corollary 7, we have

$$
\begin{aligned}
\operatorname{ber}_{d w}^{2}\left(\left[\begin{array}{cc}
T_{11} & 0 \\
0 & T_{22}
\end{array}\right]\right) & \leqslant 2 \max \left\{\operatorname{ber}^{2}\left(T_{11}\right)+\operatorname{ber}^{2}\left(T_{11}^{*} T_{11}\right), \operatorname{ber}^{2}\left(T_{22}\right)+\operatorname{ber}^{2}\left(T_{22}^{*} T_{22}\right)\right\} \\
& =2 \max \left\{\operatorname{ber}^{2}\left(T_{11}\right)+\operatorname{ber}^{2}\left(\left|T_{11}\right|^{2}\right), \operatorname{ber}^{2}\left(T_{22}\right)+\operatorname{ber}^{2}\left(\left|T_{22}\right|^{2}\right)\right\} \\
& \leqslant 2 \max \left\{\operatorname{ber}^{2}\left(T_{11}\right)+\left\|T_{11}\right\|_{\text {Ber }}^{4}, \operatorname{ber}^{2}\left(T_{22}\right)+\left\|T_{22}\right\|_{\text {Ber }}^{4}\right\},
\end{aligned}
$$

which gives the desired result.

REFERENCES

[1] A. Abu-Omar and F. Kittaneh, Numerical radius for $n \times n$ operator matrices, Linear Algebra Appl., 468 (2015), 18-26.
[2] A. Abu-Omar and F. Kittaneh, Estimates for the numerical radius and the spectral radius of the Frobenius companion matrix and bounds for the zeros of polynomials, Ann. Funct. Anal., 5 (2014), 56-62.
[3] M. W. Alomari, On the Davis-Wielandt radius inequalities of Hilbert space operators, Linear Multilinear Algebra, https://doi.org/10.1080/03081087.2022.2081308.
[4] M. W. Alomari, On the generalized mixed Schwarz inequality, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 46 (2020), no. 1, 3-15.
[5] M. W. Alomari, Numerical radius inequalities for Hilbert space operators, Complex Anal. Oper. Theory, 15 (4), (2021) Article 111.
[6] M. W. Alomari, Improvements of some numerical radius inequalities, Azerb. J. Math., 12 (1), (2022), 124-137.
[7] N. Aronzajn, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), 337-404.
[8] M. Bakherad, Some Berezin number inequalities for operator matrices, Czechoslovak Math. J., 68 (4) (2018), 997-1009.
[9] M. BAKHERAD AND M. T. KARAEV, Berezin number inequalities for Hilber space operators, Concr. Oper. (2019) 6: 33-43.
[10] W. Bani-Domi and F. Kittaneh, Numerical radius inequalities for operator matrices, Linear Multilinear Algebra 57 (2009), no. 4, 421-427.
[11] F. Chien, M. Bakherad and M. W. Alomari, Refined Berezin number inequalities via superquadratic and convex functions, Filomat 7: 1 (2023), 265-277.
[12] C. Davis, The shell of a Hilbert-space operator, Acta Sci. Math., (Szeged) 29 (1968), 69-86.
[13] C. Davis, The shell of a Hilbert-space operator. II, Acta Sci. Math., (Szeged) 31 (1970), 301-318.
[14] M. T. Garayev and M. W. Alomari, Inequalities for the Berezin number of operators and related questions, Complex Anal. Oper. Theory, 15, Article No. 30, (2021).
[15] M. T. Garayev, M. GÜrdal and S. Saltan, Hardy type inequality for reproducing kernel Hilbert space operators and related problems, Positivity, 21 (4) (2017), 1615-1623.
[16] V. GÜRdal and M. B. Gürdal, A-Davis-Wielandt-Berezin radius inequalities, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. in press., 2022.
[17] K. E. Gustafson and D. K. M. Rao, Numerical Range, The Field of Values of Linear Operators and Matrices, Springer, New York, 1997.
[18] V. Guillemin, Toeplitz operators in n-dimensions, Inte. Equa. Opera. The., 7 (1984), 145-204.
[19] M. Hajmohamadi, R. Lashkaripour, and M. Bakherad, Some generalizations of numerical radius on off-diagonal part of 2×2 operator matrices, J. Math. Inequal., 12 (2) (2018), 447-457.
[20] M. Hajmohamadi, R. Lashkaripour, and M. Bakherad, Improvements of Berezin number inequalities, Linear Multilinear Algebra, 68 (2020), no. 6, 1218-1229.
[21] J. C. Hou and H. K. Du, Norm inequalities of positive operator matrices, Integral Equations Operator Theory, 22 (1995), 281-294.
[22] T. Kato, Notes on some inequalities for linear operators, Math. Ann., 125 (1952), 208-212.
[23] M. T. Karaev, On the Berezin symbol, Zap. Nauch. Semin. POMI, 270 (2000), 80-89 (Russian); Translated from Zapiski Nauchnykh Seminarov POMI, 270 (2003), 2135-2140.
[24] M. T. KaraEv, Berezin symbol and invertibility of operators on the functional Hilbert spaces, J. Funct. Anal., 238 (2006), 181-192.
[25] M. T. Karaev, Functional analysis proofs of Abels theorems, Proc. Amer. Math. Soc. 132 (2004), 2327-2329.
[26] M. T. Karaev and S. Saltan, Some results on Berezin symbols, Complex Var. Theory Appl. 50 (3) (2005), 185-193.
[27] M. T. Karaev, On the Riccati equations, Monatshefte für Math., 155 (2008), 161-166.
[28] M. T. KaraEv, Use of reproducing kernels and Berezin symbols technique in some questions of operator theory, Forum Math., 24 (3) (2012), 553-564.
[29] M. T. KARAEV, Reproducing kernels and Berezin symbols techniques in various questions of operator theory, Comp. Anal. Oper. Theory, 7 (2013), 983-1018.
[30] M. T. Karaev and M. Gürdal, On the Berezin symbols and Toeplitz operators, Extracta Math., 25 (1) (2010), 83-102.
[31] M. T. Karaev, M. Gürdal and M. Huban, Reproducing kernels, Engliš algebras and some applications, Studia Math., 232 (2) (2016), 113-141.
[32] M. T. KARAEV and N. S. Iskenderov, Berezin number of operators and related questions, Methods Funct. Anal. Topol., 19 (1) (2013), 68-72.
[33] M. T. Karaev and S. Saltan, Some results on Berezin symbols, Complex Variables, 50 (3) (2005), 185-193.
[34] F. Kittaneh, Norm inequalities for certian operator sums, J. Funct. Anal. 143 (2) (1997), 337-348.
[35] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math., 168 (1) (2005), 73-80.
[36] F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci., 24 (1988), 283-293.
[37] C. K. Li and Y. T. Poon, Davis-Wielandt shells of normal operators, Acta Sci. Math., (Szeged), 75 (2009), 289-297.
[38] C. K. Li And Y. T. Poon, Spectrum, numerical range and Davis-Wielandt shells of normal operator, Glasgow Math. J., 51 (2009), 91-100.
[39] C. K. Li, Y. T. Poon and N. S. Sze, Davis-Wielandt, Shells of operators, Operators and Matrices, 2 (3) (2008), 341-355.
[40] C. K. Li, Y. T. Poon And N. S. Sze, Elliptical range theorems for generalized numerical ranges of quadratic operators, Rocky Mountain J. Math., 41 (3) (2011), 813-832.
[41] B. Lins, I. M. Spitkovsky and S. Zhong, The normalized numerical range and the DavisWielandt shell, Linear Algebra Appl., 546 (1) (2018), 187-209
[42] E. Nordgren, and P. Rosenthal, Boundary values of Berezin symbols, Oper. Theory: Advances and Applications, 73 (1994), 362-368.
[43] V. V. Peller, Hankel operators of class σ_{p} and theirapplications (rational approximation, Gaussian processes, the problem of majorizing operators), Mat. Sbornik, 113 (4) (1980), 538-581.
[44] G. Popescu, Unitary invariants in multivariable operator theory, Mem. Amer. Math. Soc., Vol. 200, no. 941, 2009.
[45] W. REID, Symmetrizable completely continuous linear transformations in Hilbert space, Duke Math., 18 (1951), 41-56.
[46] D. Sarason, Sub-Hardy Hilbert spaces in the unit disc, 1996.
[47] A. SEDDIK, Rank one operators and norm of elementary operators, Linear Algebra and its Applications, 424 (2007), 177-183.
[48] A. Sheikhhosseini, M. S. Moslehian and K. Shebrawi, Inequalities for generalized Euclidean operator radius via Young's inequality, J. Math. Anal. Appl., 445 (2017), 1516-1529.
[49] K. Stroethoff, The Berezin transform and operators on spaces of analytic functions, Lin. Oper. Banach Center Publications, Polish Academy of Sciences, 38 (1997), 361-380.
[50] R. Tapdigoglu, M. Gürdal, N. Altwaijry, N. Sari, Davis-Wielandt-Berezin radius inequalities via Dragomir inequalities, Operators and Matrices, 15 (4) (2021), 1445-1460.
[51] H. Wielandt, On eigenvalues of sums of normal matrices, Pacific J. Math., 5 (1955), 633-638.
[52] U. Yamanci and M. Garayev, Some results related to the Berezin number inequalities, Turkish J. Math., 43 (2019), 1940-1952.
[53] A. Zamani, M. S. Moslehian, M.-T. Chien and H. Nakazato, Norm-parallelism and the Davis-Wielandt radius of Hilbert space operators, Linear Multilinear Algebra 67 (2019), no. 11, 2147-2158.
[54] A. Zamani and M. S. Moslehian, Exact and approximate operator parallelism, Canad. Math. Bull., 58 (1) 2015, 207-224.
[55] A. Zamani and M. S. Moslehian, Norm-parallelism in the geometry of Hilbert C^{*}-modules, Indag. Math., 27 (1) (2016), 266-281.
[56] A. Zamani, The operator-valued parallelism, Linear Algebra Appl., 505 (2016), 282-295.
[57] K. ZHU, Operator Theory in Function Spaces, Marcel Dekker, Second edition, 2007.

Mohammad W. Alomari
Department of Mathematics, Faculty of Science and
Information Technology
Irbid National University
P.O. Box 2600, Irbid, P.C. 21110, Jordan
e-mail: mwomath@gmail.com
Monire Hajmohamadi
Department of Mathematics, Faculty of Mathematics
University of Sistan and Baluchestan
Zahedan, I.R. Iran
e-mail: monire.hajmohamadi@yahoo.com
Mojtaba Bakherad
Department of Mathematics, Faculty of Mathematics
University of Sistan and Baluchestan
Zahedan, I.R. Iran
e-mail: bakherad@member.ams.org

[^0]: Mathematics subject classification (2020): Primary 47A30, 47A12; Secondary 47A63, 47L05.
 Keywords and phrases: Davis-Wielandt radius, Davis-Wielandt shell, Berezin symbol, $n \times n$ operator matrix.

 * Corresponding author.

