FUNCTIONAL BOUNDS FOR EXTON'S
 DOUBLE HYPERGEOMETRIC X FUNCTION

Dragana Jankov Maširević and Tibor K. Pogány*

Dedicated to the memory of our great friend, teacher and colleague Dragan Jukić
(Communicated by T. Burić)

Abstract

Functional and uniform bounds for Exton's generalized hypergeometric X function of two variables and an associated incomplete Lipschitz-Hankel integral, as an auxiliary result, are obtained. A by-product for the Srivastava-Daoust generalized hypergeometric function of three variables is given by another derivation method. The main tools are certain representation formulae for the McKay I_{V} Bessel probability distribution's cumulative distribution function established recently in [3,5].

1. Introduction and motivation

The first results about probability distributions involving Bessel functions can be traced back to the early work of McKay [6] in 1932 who considered two classes of continuous distributions called Bessel function distributions.

Precisely, the random variable (rv) ξ defined on a standard probability space $(\Omega, \mathscr{F}, \mathrm{P})$, distributed according to McNolty's variant of the McKay law which is characterized by the probability distribution function (PDF) [7, p. 496, Eq. (13)]

$$
f_{I}(x ; a, b ; v)=\frac{\sqrt{\pi}\left(b^{2}-a^{2}\right)^{v+1 / 2}}{(2 a)^{v} \Gamma\left(v+\frac{1}{2}\right)} \mathrm{e}^{-b x} x^{v} I_{v}(a x), \quad x \geqslant 0
$$

defined for all $v>-1 / 2$ and $b>a>0$; McNolty reported, without derivation, several generalized PDFs of above type, among others the above listed PDF. The related cumulative distribution function (CDF) is

$$
\begin{equation*}
F_{I}(x ; a, b ; v)=\frac{\sqrt{\pi}\left(b^{2}-a^{2}\right)^{v+1 / 2}}{(2 a)^{v} \Gamma\left(v+\frac{1}{2}\right)} \int_{0}^{x} \mathrm{e}^{-b t} t^{v} I_{v}(a t) \mathrm{d} t, \quad x \geqslant 0 \tag{1.1}
\end{equation*}
$$

[^0]We will use in our considerations these McNolty's formulae.
Derivation of new representation formulae for CDF of rv distributed according to the McKay I_{V} law was one of the main goals of the mutually constructed and written article [3]. These results imply several by-products, among others. Namely, we deduce several strong functional and uniform bounds upon Exton's generalized hypergeometric X function of two variables which are the building blocks of the established CDF's. The Appendix we devote to the absolute convergence constraints upon the Exton's X functions.

2. Main results

Recently, Jankov Maširević and Pogány presented in [5] formulae for the CDF of McKay I_{v} Bessel distribution; one of them is formulated in terms of the lower incomplete gamma function

$$
\gamma(a, x)=\int_{0}^{x} \mathrm{e}^{-t} t^{a-1} \mathrm{~d} t, \quad \Re(a)>0
$$

and Exton's double hypergeometric X function [2]

$$
X_{C: D ; D^{\prime}}^{A: B ; B^{\prime}}\left[\left.\begin{array}{l}
(a):(b) ;\left(b^{\prime}\right) \tag{2.1}\\
(c):(d) ;\left(d^{\prime}\right)
\end{array} \right\rvert\, x, y\right]=\sum_{k, n \geqslant 0} \frac{((a))_{2 k+n}((b))_{k}\left(\left(b^{\prime}\right)\right)_{n}}{((c))_{2 k+n}((d))_{k}\left(\left(d^{\prime}\right)\right)_{n}} \frac{x^{k}}{k!} \frac{y^{n}}{n!}
$$

Here (a) denotes the sequence a_{1}, \cdots, a_{A}, whilst $((a))_{m}:=\left(a_{1}\right)_{m} \cdots\left(a_{A}\right)_{m}$ and the empty product equals per definitionem 1 .

Exton's X function (2.1) is a special case of the Srivastava-Daoust generalization of the Lauricella and/or the Kampé de Fériet hypergeometric functions in two variables. Accordingly, the convergence conditions [10, pp. 157-158] (compare the Appendix B) one reduces to [3]

$$
\begin{aligned}
& \Delta_{1}=1+2 C+D-2 A-B>0 \\
& \Delta_{2}=1+C+D^{\prime}-A-B^{\prime}>0
\end{aligned}
$$

under which (2.1) converges absolutely for all $x, y \in \mathbb{C}$. Another cases of convergence inside centered discs in \mathbb{C} can be deduced from [10, pp. 153-157] in a straightforward way. The Exton's generalized hypergeometric function of two variables is not widely known, so functional bounds, even for its special cases $X_{1: 1 ; 0}^{1: 0 ; 0}, X_{0: 1 ; 1}^{1: 0 ; 0}, X_{1: 1 ; 1}^{1: 0 ; 1}$ which occur in this note, are of considerable interest.

Remark 1. We point out that according to Appendix B all considered Exton X functions converge for $x \geqslant 0$.

Next, we recall the definition of the Pochhammer symbol (or rising factorial)

$$
(v)_{\lambda}:=\frac{\Gamma(\lambda+v)}{\Gamma(v)}= \begin{cases}1 & (\lambda=0 ; v \in \mathbb{C} \backslash\{0\}) \\ v(v+1) \cdots(v+n-1) & (\lambda=n \in \mathbb{N} ; v \in \mathbb{C})\end{cases}
$$

where it is understood conventionally that $(0)_{0}:=1$. According to the Pochhammer symbol's use, the confluent hypergeometric function one defines as the power series

$$
{ }_{0} F_{1}[-; b ; z]=\sum_{n \geqslant 0} \frac{1}{(b)_{n}} \frac{z^{n}}{n!}, \quad z \in \mathbb{C} .
$$

THEOREM 1. For all $b>a>0, v>-1 / 2$ and all $x \geqslant 0$ it is

$$
\begin{aligned}
& \frac{(2 v+1)_{3}}{a^{2} b^{2 v+1}} \gamma(2 v+1, b x)_{0} F_{1}\left[-; v+1 ; \frac{(a x)^{2}}{4}\right]-\frac{\Gamma(2 v+4)}{a^{2}\left(b^{2}-a^{2}\right)^{v+\frac{1}{2}}} \\
& \leqslant x^{2 v+3} X_{1: 1 ; 1}^{1: 0 ; 1}\left[\left.\begin{array}{c}
2 v+3:-; 2 v+1 \\
2 v+4: v+2 ; 2 v+2
\end{array} \right\rvert\, \frac{(a x)^{2}}{4},-b x\right] \\
& \leqslant \frac{(2 v+1)_{3}}{a^{2} b^{2 v+1}} \gamma(2 v+1, b x){ }_{0} F_{1}\left[-; v+1 ; \frac{(a x)^{2}}{4}\right] .
\end{aligned}
$$

Moreover, for $v \in \mathbb{N}_{0}$ and $b>a>0$ there holds

$$
x^{2 v+1} X_{1: 0 ; 0}^{0: 1 ; 1}\left[\left.\begin{array}{c}
-: v+\frac{1}{2} ; 1 \\
2 v+2:-;
\end{array} \right\rvert\,(a x)^{2}, b x\right] \leqslant \frac{\Gamma(2 v+1) \mathrm{e}^{b x}}{\left(b^{2}-a^{2}\right)^{v+1 / 2}}, \quad x \geqslant 0
$$

Proof. Starting with the representation formula [5, p. 156, Corollary 6]

$$
\begin{gather*}
F_{I}(x ; a, b ; v)=\frac{\left(b^{2}-a^{2}\right)^{v+1 / 2}}{b^{2 v+1} \Gamma(2 v+2)}\left\{(2 v+1) \gamma(2 v+1, b x)_{0} F_{1}\left[-; v+1 ; \frac{(a x)^{2}}{4}\right]\right. \\
\left.-\frac{a^{2} b^{2 v+1} x^{2 v+3}}{(2 v+2)(2 v+3)} X_{1: 1 ; 1}^{1: 0 ; 1}\left[\left.\begin{array}{c}
2 v+3:-; 2 v+1 \\
2 v+4: v+2 ; 2 v+2
\end{array} \right\rvert\, \frac{(a x)^{2}}{4},-b x\right]\right\} \tag{2.2}
\end{gather*}
$$

we apply the bilateral inequality $0 \leqslant F_{I}(x ; a, b ; v) \leqslant 1$ valid for general CDFs in the range of their support set. Now, obvious steps lead to the asserted bounds.

Next, consider the expression for the CDF F_{I} reported for the parameters $v \in \mathbb{N}_{0}$, $b>a>0$. Precisely, for all $x \geqslant 0$ there holds [3, Theorem 4.]

$$
F_{I}(x ; a, b ; v)=\frac{\left(b^{2}-a^{2}\right)^{v+1 / 2}}{\Gamma(2 v+1)} x^{2 v+1} \mathrm{e}^{-b x} X_{1: 0 ; 0}^{0: 1 ; 1}\left[\left.\begin{array}{c}
-: v+\frac{1}{2} ; 1 \tag{2.3}\\
2 v+2:-;-
\end{array} \right\rvert\, a^{2} x^{2}, b x\right]
$$

Since $F_{I}(x ; a, b ; v) \leqslant 1$ we conclude the second upper bound.
A more sophisticated bound can be derived by the following monotonicity result for the CDF of the McKay I_{v} Bessel law with respect to the parameter v, which is covered by [4, Theorem 2.1.]: for all $\min (\mu, v)>-1 / 2$ and $b>a>0$ there holds

$$
\begin{equation*}
F_{I}(x ; a, b ; \mu+v+1 / 2)<F_{I}(x ; a, b ; v), \quad x \geqslant 0 \tag{2.4}
\end{equation*}
$$

THEOREM 2. For all $\min (v, \mu)>-1 / 2, b>a>0$ and $x \geqslant 0$ we have

$$
\begin{aligned}
& \frac{\left(1-(a / b)^{2}\right)^{\mu+\frac{1}{2}}}{\Gamma(2 \mu+2 v+2)} \gamma(2 \mu+2 v+2, b x)_{0} F_{1}\left[-; \mu+v+\frac{3}{2} ; \frac{(a x)^{2}}{4}\right] \\
& \quad-\frac{\gamma(2 v+1, b x)}{\Gamma(2 v+1)}{ }_{0} F_{1}\left[-; v+1 ; \frac{(a x)^{2}}{4}\right] \\
& \quad \leqslant a^{2} b^{2 v+1} x^{2 v+3}\left\{\frac{\left[\left(b^{2}-a^{2}\right)^{\mu+\frac{1}{2}} x^{2 \mu+1}\right.}{\Gamma(2 \mu+2 v+5)} X_{1: 1 ; 1}^{1: 0 ; 1}\left[\mu+v+\frac{1}{2}\right]-\frac{1}{\Gamma(2 v+4)} X_{1: 1 ; 1}^{1: 0 ; 1}[v]\right\}
\end{aligned}
$$

where the shorthand

$$
X_{1: 1 ; 1}^{1: 0 ; 1}[v]=X_{1: 1 ; 1}^{1: 0 ; 1}\left[\left.\begin{array}{c}
2 v+3:-; 2 v+1 \\
2 v+4: v+2 ; 2 v+2
\end{array} \right\rvert\, \frac{(a x)^{2}}{4},-b x\right]
$$

Proof. Let x be positive. Inserting (2.2) into the monotonicity relation (2.4), we get by routine transformations that

$$
\begin{aligned}
& \frac{\left(1-\frac{a^{2}}{b^{2}}\right)^{\mu+1 / 2} \gamma(2(\mu+v+1), b x)}{\Gamma(2 \mu+2 v+2)}{ }_{0} F_{1}\left[-; \mu+v+\frac{3}{2} ; \frac{(a x)^{2}}{4}\right] \\
& \quad-\frac{a^{2}\left(b^{2}-a^{2}\right)^{\mu+1 / 2} b^{2 v+1}}{\Gamma(2 \mu+2 v+5)} \cdot x^{2 \mu+2 v+4} X_{1: 1 ; 1}^{1: 0 ; 1}\left[\mu+v+\frac{1}{2}\right] \\
& \quad<\frac{\gamma(2 v+1, b x)}{\Gamma(2 v+1)}{ }_{0} F_{1}\left[-; v+1 ; \frac{(a x)^{2}}{4}\right]-\frac{a^{2} b^{2 v+1} x^{2 v+3}}{\Gamma(2 v+4)} X_{1: 1 ; 1}^{1: 0 ; 1}[v]
\end{aligned}
$$

which leads to

$$
\begin{aligned}
& \frac{\left(b^{2}-a^{2}\right)^{\mu+\frac{1}{2}}}{b^{2 \mu+1} \Gamma(2 \mu+2 v+2)} \gamma(2 \mu+2 v+2, b x){ }_{0} F_{1}\left[-; \mu+v+\frac{3}{2} ; \frac{(a x)^{2}}{4}\right] \\
& \quad-\frac{\gamma(2 v+1, b x)}{\Gamma(2 v+1)}{ }_{0} F_{1}\left[-; v+1 ; \frac{(a x)^{2}}{4}\right] \\
& <\frac{a^{2} b^{2 v+1} x^{2 \mu+2 v+4} X_{1: 1 ; 1}^{1: 0 ; 1}\left[\mu+v+\frac{1}{2}\right]}{\left(b^{2}-a^{2}\right)^{-\mu-\frac{1}{2}} \Gamma(2 \mu+2 v+5)}-\frac{a^{2} b^{2 v+1} x^{2 v+3}}{\Gamma(2 v+4)} X_{1: 1 ; 1}^{1: 0 ; 1}[v] .
\end{aligned}
$$

However, this is equivalent to the asserted inequality.
The next derivation method depends on the incomplete Lipschitz-Hankel integral (ILHI) built by the modified Bessel functions of the first kind:

$$
I_{e_{\mu, v}}(z ; a, b)=\int_{0}^{z} \mathrm{e}^{-b t} t^{\mu} I_{v}(a t) \mathrm{d} t
$$

where $a, b>0$, the argument and another two parameters $z, v, \mu \in \mathbb{C}$ and it should hold $\Re(\mu+v)>-1$ (for more details on ILHI consult for instance [3] and the there
listed references). Obviously, the special case $I_{e_{V, v}}(x ; a, b)$ occurs in (1.1) and builds the desired CDF integral. Therefore, we may deduce about the formula [3, Corollary 1]

$$
F_{I}(x ; a, b ; v)=\frac{\sqrt{\pi}\left(b^{2}-a^{2}\right)^{v+1 / 2}}{(2 a)^{v} \Gamma\left(v+\frac{1}{2}\right)} I_{e_{v, v}}(x ; a, b), \quad x \geqslant 0
$$

which holds for all $b>a>0, v>-1 / 2$, that is

$$
F_{I}(x ; a, b ; v)=\frac{\left[(b / a)^{2}-1\right]^{v+\frac{1}{2}}}{2^{v}\left(\frac{1}{2}\right)_{v}} I_{e_{v, v}}\left(a x ; 1, \frac{b}{a}\right)
$$

as $\sqrt{\pi}\left(\frac{1}{2}\right)_{v}=\Gamma\left(v+\frac{1}{2}\right)$. By virtue of this expression we readily arrive at the uniform upper bound

$$
I_{e_{v, v}}\left(a x ; 1, \frac{b}{a}\right) \leqslant \frac{2^{v}\left(\frac{1}{2}\right)_{v}}{\left[(b / a)^{2}-1\right]^{v+\frac{1}{2}}}
$$

The Grünwald-Letnikov fractional derivative of order η with respect to the argument x of a suitable function f is defined by [9]

$$
\mathbb{D}_{x}^{\eta}(f)=\lim _{h \rightarrow 0^{+}} \frac{1}{h^{\eta}} \sum_{m=0}^{\infty}(-1)^{m}\binom{\eta}{m} f(x+(\eta-m) h)
$$

We recall the widely known and used formula [8]

$$
\mathbb{D}_{x}^{\eta}\left(\mathrm{e}^{\alpha x}\right)=\alpha^{\eta} \mathrm{e}^{\alpha x}, \quad \alpha \in \mathbb{C}
$$

Expressing $I_{e_{\mu, v}}(x ; b)$ and the CDF F_{I} by the Grünwald-Letnikov derivative in terms of the Exton X function, we have obtained the next representation results valid for the general μ, v order incomplete Lipschitz-Hankel integral.

Proposition 1. [3, Theorem 3] For all $a, b>0, z, v, \mu \in \mathbb{C}$, such that $\mathfrak{R}(v)>$ -1, we have

$$
I_{e_{\mu, v}}(z ; a, b)=(-1)^{\mu} \mathbb{D}_{b}^{\mu}\left(X_{1: 1 ; 0}^{1: 0 ; 0}\left[\left.\begin{array}{c}
v+1:-;- \\
v+2: v+1 ;-
\end{array} \right\rvert\, \frac{a^{2} z^{2}}{4},-b z\right]\right)
$$

Moreover, when additionally $\mathfrak{R}(\mu+v)>-1$, there holds

$$
I_{e_{\mu, v}}(z ; a, b)=\frac{\left(\frac{a}{2}\right)^{v} z^{\mu+v+1}}{(\mu+v+1) \Gamma(v+1)} X_{1: 1 ; 0}^{1: 0 ; 0}\left[\left.\begin{array}{c}
\mu+v+1:-;- \\
\mu+v+2: v+1 ;-
\end{array} \right\rvert\, \frac{a^{2} z^{2}}{4},-b z\right] .
$$

At this point we turn back to bounding Exton's X function by virtue of the Proposition 1. The following uniform bound results close this section.

COROLLARY 1. Let $b>a>0, v>-1 / 2$. Then for all $x \geqslant 0$ hold the upper bounds for the Exton X function, read as follows:

$$
\left.\left.\begin{array}{l}
\mathbb{D}_{b}^{v}\left(X _ { 1 : 1 ; 0 } ^ { 1 : 0 ; 0 } \left[\left.\begin{array}{c}
v+1:-;- \\
v+2: v+1 ;-
\end{array} \right\rvert\, \frac{a^{2} z^{2}}{4},-b z\right.\right.
\end{array}\right]\right) \leqslant \frac{(-2 a)^{v} \Gamma\left(v+\frac{1}{2}\right)}{\sqrt{\pi}\left(b^{2}-a^{2}\right)^{v+1 / 2}}, ~ \begin{aligned}
& x^{2 v+1} X_{1: 1 ; 0}^{1: 0 ; 0}\left[\left.\begin{array}{c}
2 v+1:-;- \\
2 v+2: v+1 ;-
\end{array} \right\rvert\, \frac{a^{2} x^{2}}{4},-b x\right] \leqslant \frac{\Gamma(2 v+2)}{\left(b^{2}-a^{2}\right)^{v+1 / 2}}
\end{aligned}
$$

3. Another probabilistic approach to CDF

Firstly, we draw the reader's attention to the precise definition of SrivastavaDaoust generalized hypergeometric function \mathscr{S} of three variables, which can be reached by consulting Appendix A for $n=3$.

Lemma 1. [1, p. 45, 2.1.7] Let $F(x)$ be $a \mathrm{CDF}$ and $h>0$. Then

$$
H_{1}(x)=\frac{1}{h} \int_{x}^{x+h} F(t) \mathrm{d} t ; \quad H_{2}(x)=\frac{1}{2 h} \int_{x-h}^{x+h} F(t) \mathrm{d} t,
$$

are also CDFs.
THEOREM 3. For all $b>a>0, v>-\frac{1}{2}$, we have the monotonicity property of the three variables Srivastava-Daoust function

$$
\mathscr{S}_{v}(x)=x^{2 v+2} \mathscr{S}_{2: 0 ; 0 ; 0}^{1: 0 ; 1 ; 1}\left(\begin{array}{c|c}
{[2 v+2: 1,2,1]:-;\left[v+\frac{1}{2}: 1\right] ;[1: 1]} & -b x \\
{[2 v+3: 1,2,1],[2 v+2: 0,2,1]:-;-;-} & (a x)^{2} \\
b x
\end{array}\right)
$$

in the following manner:

$$
\mathscr{S}_{v}(x) \leqslant \mathscr{S}_{v}(x+h) \leqslant \mathscr{S}_{v}(x)+\frac{2 h(v+1) \Gamma(2 v+1)}{\left(b^{2}-a^{2}\right)^{v+\frac{1}{2}}}, \quad h>0 ; x \geqslant 0
$$

Proof. Consider the CDF $H_{1}(x)$ generated by the baseline CDF F_{I} when it is expressed via Exton X in (2.3) which is tracing back to [3, Theorem 4]. Direct calculation, using the power series description (2.3) and the Maclaurin series expansion of the exponential term give the following equality chain:

$$
\begin{aligned}
& H_{1}(x)= \frac{\left(b^{2}-a^{2}\right)^{v+\frac{1}{2}}}{h \Gamma(2 v+1)} \int_{x}^{x+h} \mathrm{e}^{-b t} t^{2 v+1} X_{1: 0 ; 0}^{0: 1 ; 1}\left[\left.\begin{array}{c}
-: v+\frac{1}{2} ; 1 \\
2 v+2:-;-
\end{array} \right\rvert\, a^{2} t^{2}, b t\right] \mathrm{d} t \\
&= \frac{\left(b^{2}-a^{2}\right)^{v+\frac{1}{2}}}{h \Gamma(2 v+1)} \sum_{j, m, n \geqslant 0} \frac{\left(v+\frac{1}{2}\right)_{m}(1)_{n}(-b)^{j} a^{2 m} b^{n}}{(2 v+2)_{2 m+n} j!m!n!} \int_{x}^{x+h} t^{2 v+1+j+2 m+n} \mathrm{~d} t \\
&= \frac{\left(b^{2}-a^{2}\right)^{v+\frac{1}{2}}(x+h)^{2 v+2}}{2 h(v+1) \Gamma(2 v+1)} \sum_{j, m, n \geqslant 0} \frac{(2 v+2)_{j+2 m+n}\left(v+\frac{1}{2}\right)_{m}(1)_{n}}{(2 v+3)_{j+2 m+n}(2 v+2)_{2 m+n}} \\
& \cdot \frac{[-b(x+h)]^{j}}{j!} \frac{[a(x+h)]^{2 m}}{m!} \frac{[b(x+h)]^{n}}{n!} \\
& \quad-\frac{\left(b^{2}-a^{2}\right)^{v+\frac{1}{2}} x^{2 v+2}}{2 h(v+1) \Gamma(2 v+1)} \sum_{j, m, n \geqslant 0} \frac{(2 v+2)_{j+2 m+n}\left(v+\frac{1}{2}\right)_{m}(1)_{n}}{(2 v+3)_{j+2 m+n}(2 v+2)_{2 m+n}} \\
& \cdot \frac{(-b x)^{j}}{j!} \frac{(a x)^{2 m}}{m!} \frac{(b x)^{n}}{n!} .
\end{aligned}
$$

In turn, the last expressions form a difference of two, weighted three-variables SrivastavaDaoust \mathscr{S} functions, which results in

$$
H_{1}(x)=\frac{\left(b^{2}-a^{2}\right)^{v+\frac{1}{2}}}{2 h(v+1) \Gamma(2 v+1)}\left\{\mathscr{S}_{v}(x+h)-\mathscr{S}_{v}(x)\right\} .
$$

Now, it remains to apply the standard $0 \leqslant H_{1}(x) \leqslant 1 ; x \geqslant 0$ property to obtain the asserted inequality.

Concerning the convergence of the given function $\mathscr{S}_{v}(x)$ (see the Appendix A (4.2)), as

$$
\begin{aligned}
& \Delta_{1}=1+(1+0)+0-1-0=1 \\
& \Delta_{2}=1+(2+2)+0-2-1=2 \\
& \Delta_{3}=1+(1+1)+0-1-1=1
\end{aligned}
$$

i.e. $\Delta_{\ell}>0$ for all $\ell=1,2,3$, which implies that our function converges absolutely for all complex arguments.

REMARK 2. The Lemma 1 contains also the CDF $H_{2}(x)$, its application leads to slightly different monotonicity result. However, to establish the related inequality bounds we leave to the interested reader.

4. Appendix A

Srivastava and Daoust generalized the Lauricella hypergeometric function F_{D} by the n-tuple power series [11, p. 454]

$$
\begin{align*}
& \mathscr{S}_{C: D^{(1)} ; \cdots ; D^{(n)}}^{A: B^{(1)} ; \cdots ; B^{(n)}}\left(\begin{array}{cc|c}
{\left[(a): \boldsymbol{\theta}^{(1)}, \cdots, \theta^{(n)}\right]:\left[\left(b^{(1)}\right): \varphi^{(1)}\right] ; \cdots ;\left[\left(b^{(n)}\right): \varphi^{(n)}\right]} & x_{1} \\
{\left[(c): \psi^{(1)} ; \cdots ; \psi^{(n)}\right]:\left[\left(d^{(1)}\right): \delta^{(1)}\right] ; \cdots ;\left[\left(d^{(n)}\right): \delta^{(n)}\right]} & x_{n}
\end{array}\right) \\
& =\sum_{\boldsymbol{m} \geqslant 0} \frac{\prod_{j=1}^{A}\left(a_{j}\right)_{m_{1}} \theta_{j}^{(1)}+\cdots+m_{n} \theta_{j}^{(n)} \prod_{j=1}^{B^{(1)}}\left(b_{j}^{(1)}\right)_{m_{1} \varphi_{j}^{(1)}} \cdots \prod_{j=1}^{B_{j}^{(n)}}\left(b_{j}^{(n)}\right)_{m_{n} \varphi_{j}^{(n)}}^{\prod_{m_{1}} \psi_{j}^{(1)}+\cdots+m_{n} \psi_{j}^{(n)}} \prod_{j=1}^{D^{(1)}}\left(d_{j}^{(1)}\right)_{m_{1} \delta_{j}^{(1)}}^{\cdots \prod_{j=1}^{D^{(n)}}\left(d_{j}^{(n)}\right)_{m_{n}} \delta_{j}^{(n)}} \frac{x_{1}^{m_{1}}}{m_{1}!} \cdots \frac{x_{n}^{m_{n}}}{m_{n}!}}{m^{n}} \tag{4.1}
\end{align*}
$$

where $\boldsymbol{m}:=\left(m_{1}, \cdots, m_{n}\right)$ and the parameters satisfy

$$
\theta_{1}^{(1)}, \cdots, \theta_{A}^{(1)}, \cdots, \delta_{1}^{(n)}, \cdots, \delta_{D^{(n)}}^{(n)}>0 .
$$

For convenience, we write (a) to denote the sequence of A parameters a_{1}, \cdots, a_{A}, with similar interpretations for $\left(b^{\prime}\right),\left(b^{(1)}\right), \cdots,\left(d^{(n)}\right)$. Empty products should be interpreted as unity. Srivastava and Daoust [10, pp. 157-158] reported that the series in (4.1) converges absolutely for all $x_{1}, \cdots, x_{n} \in \mathbb{C}$ when

$$
\begin{equation*}
\Delta_{\ell}=1+\sum_{j=1}^{C} \psi_{j}^{(\ell)}+\sum_{j=1}^{D^{(\ell)}} \delta_{j}^{(\ell)}-\sum_{j=1}^{A} \theta_{j}^{(\ell)}-\sum_{j=1}^{B^{(\ell)}} \varphi_{j}^{(\ell)}>0, \quad \ell=\overline{1, n} . \tag{4.2}
\end{equation*}
$$

In the case $\Delta_{\ell}=0, \ell=\overline{1, n}$, the convergence constraints of the series is described by the relation [10, p. 157, Eqs. (5.2-5.3); p. 158 (ii)]. Finally, when all $\Delta_{\ell}<0$, $\mathscr{S}_{C: D^{\prime} ; \cdots ; D^{(n)}}^{A: B^{\prime} ; \cdots ; B^{(n)}}\left(x_{1}, \cdots, x_{n}\right)$ diverges except at the origin, that is, this series is formal.

5. Appendix B

Exton's X function (2.1) is a special case of the Srivastava-Daoust function in two variables defined according to (4.1) by the double power series [10, p. 151]

$$
\begin{align*}
& \mathscr{S}_{C: D ; D^{\prime}}^{A: B ; B^{\prime}}\left(\left.\begin{array}{l}
{\left[(a): \theta ; \theta^{\prime}\right]:[(b): \varphi] ;\left[\left(b^{\prime}\right): \varphi^{\prime}\right]} \\
{\left[(c): \psi ; \psi^{\prime}\right]:[(d): \delta] ;\left[\left(d^{\prime}\right): \delta^{\prime}\right]}
\end{array} \right\rvert\, x, y\right) \\
&=\sum_{k, n \geqslant 0} \frac{\prod_{j=1}^{A}\left(a_{j}\right)_{k \theta_{j}+n \theta_{j}^{\prime}} \prod_{j=1}^{B}\left(b_{j}\right)_{k \varphi_{j}} \prod_{j=1}^{B^{\prime}}\left(b_{j}^{\prime}\right)_{n \varphi_{j}^{\prime}}}{\prod_{j=1}^{C}\left(c_{j}\right)_{k \psi_{j}+n \psi_{j}^{\prime}} \prod_{j=1}^{D}\left(d_{j}\right)_{k \delta_{j}} \prod_{j=1}^{D^{\prime}}\left(d_{j}^{\prime}\right)_{n \delta_{j}^{\prime}}} \frac{y^{n}}{k!} \frac{n!}{n!} \tag{5.1}
\end{align*}
$$

The reduced absolute convergence constraints of (5.1) for all $x, y \in \mathbb{C}$ read

$$
\begin{aligned}
& \Delta_{1}=1+\sum_{j=1}^{C} \psi_{j}+\sum_{j=1}^{D} \delta_{j}-\sum_{j=1}^{A} \theta_{j}-\sum_{j=1}^{B} \varphi_{j}>0 \\
& \Delta_{2}=1+\sum_{j=1}^{C} \psi_{j}^{\prime}+\sum_{j=1}^{D^{\prime}} \delta_{j}^{\prime}-\sum_{j=1}^{A} \theta_{j}^{\prime}-\sum_{j=1}^{B^{\prime}} \varphi_{j}^{\prime}>0
\end{aligned}
$$

Another cases of convergence analysis inside disks in \mathbb{C} can be found in [10, pp. 153157].

We are interested in the convergence regions of the Exton's $X_{1: 1 ; 0}^{1: 0 ; 0}, X_{1: 0 ; 0}^{0: 1 ; 1}, X_{1: 1 ; 1}^{1: 0 ; 1}$ occuring in our results and contain the parameters in any particular case. These series are generated by

$$
X_{C: D ; D^{\prime}}^{A: B ; B^{\prime}}\left[\left.\begin{array}{l}
a: b ; b^{\prime} \\
c: d ; d^{\prime}
\end{array} \right\rvert\, x, y\right]=\mathscr{S}_{C: D ; D^{\prime}}^{A: B ; B^{\prime}}\left(\left.\begin{array}{l}
{[a: 2 ; 1]:[b: 1] ;\left[b^{\prime}: 1\right]} \\
{[c: 2 ; 1]:[d: 1] ;\left[d^{\prime}: 1\right]}
\end{array} \right\rvert\, x, y\right)
$$

where $A, B, B^{\prime}, C, D, D^{\prime} \in\{0,1\}$ and in the cases when any of parameters $a, b, b^{\prime}, c, d, d^{\prime}$ vanish, the empty products should be interpreted as unity. The constraints for the Srivastava-Daoust function (5.1) guaranteeing the absolute convergence of the \mathscr{S} for $x, y \in \mathbb{C}$ reduce for our three functions to
a. $X_{1: 1 ; 0}^{1: 0 ; 0}$. Here $\Delta_{1}(\mathbf{a})=2 ; \Delta_{2}(\mathbf{a})=1$. The series converges for any $x \geqslant 0$.
b. $X_{1: 0 ; 0}^{0: 1 ; 1}$. Now, $\Delta_{1}(\mathbf{b})=1 ; \Delta_{2}(\mathbf{b})=1$. This ensures the convergence of the second series for all $x \geqslant 0$ as well.
c. $X_{1: 1 ; 1}^{1: 0 ; 1}$. The remaining case is also clear, being $\Delta_{1}(\mathbf{c})=2 ; \Delta_{2}(\mathbf{c})=1$, which means absolute convergence for any $x \geqslant 0$.
We point out that for all three cases of X function which occur in related bounding inequalities we have that both Δ_{1}, Δ_{2} are positive, which ensures the convergence for all considered values of the argument $x \geqslant 0$.

REFERENCES

[1] J. Bognár, J. Mogyoródi, A. Prékopa, A. Rényi and D. Szász, Exercises in Probability Theory, Fourth corrected edition, Typotex Kiadó, Budapest, 2001. (in Hungarian).
[2] H. EXton, Reducible double hypergeometric functions and associated integrals, Anais da Faculdade de Ciências. Universidade Do Porto, LXIII (1982), No. 1-4, 137-143.
[3] K. Górska, A. Horzela, D. Jankov Maširević and T. K. Pogány, Observations on the McKay I_{V} Bessel distribution, J. Math. Anal. Appl., 516 (2022), No. 1, Paper No. 126481, 14 pp.
[4] D. Jankov Maširević and T. K. Pogány, Functional bounds for Horn function Φ_{2} generated by CDF of McKay I_{v} Bessel distribution, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan., (2022), (to appear).
[5] D. JANKOV MAŠIREVIĆ AND T. K. PogÁNY, On new formulae for cumulative distribution function for McKay Bessel distribution, Comm. Statist. Theory Methods, 50 (2021), No. 1, 143-160.
[6] A. T. McKay, A Bessel function distribution, Biometrika, 24 (1932), No. 1-2, 39-44.
[7] F. McNolty, Some probability density functions and their characteristic functions, Math. Comp., 27 (1973), No. 123, 495-504.
[8] M. D. Ortigueira, A coherent approach to non-integer order derivatives, Signal Processing, 86 (2006), 2505-2515.
[9] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York, 1993.
[10] H. M. Srivastava and M. C. Daoust, A note on the convergence of Kampé de Fériet double hypergeometric series, Math. Nachr., 53 (1972), 151-159.
[11] H. M. Srivastava and M. C. Daoust, Certain generalized Neumann expansions associated with the Kampé De Fériet function, Nederl. Akad. Wetensch. Proc. Ser. A 72 = Indag. Math., 31 (1969), 449-457.
(Received July 12, 2022)

> Dragana Jankov Maširević Department of Mathematics
> University of Osijek 31000 Osijek, Croatia
> e-mail: djankov@mathos.hr
> Tibor K. Pogány
> Institute of Applied Mathematics
> Óbuda University
> 1034 Budapest, Hungary
> and
> Faculty of Maritime Studies
> University of Rijeka 51000 Rijeka, Studentska 2, Croatia
> e-mail: pogany.tibor@nik.uni-obuda.hr tibor.poganj@uniri.hr

[^0]: Mathematics subject classification (2020): 26D15, 33C10, 33C70, 33E20, 60E05.
 Keywords and phrases: Modified Bessel functions of the first kind, McKay I_{V} Bessel distribution, Grünwald-Letnikov fractional derivative, incomplete Lipschitz-Hankel integral, Exton X function, Srivastava-Daoust \mathscr{S} function, functional bounding inequality.

 The research of T. K. Pogány has been supported in part by the University of Rijeka, Croatia under the project number uniri-pr-prirod-19-16.

 * Corresponding author.

