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FUNCTIONAL BOUNDS FOR EXTON’S
DOUBLE HYPERGEOMETRIC X FUNCTION

DRAGANA JANKOV MASIREVIC AND TIBOR K. POGANY*

Dedicated to the memory of our great friend, teacher and colleague Dragan Jukic¢

(Communicated by T. Buric)

Abstract. Functional and uniform bounds for Exton’s generalized hypergeometric X function
of two variables and an associated incomplete Lipschitz—Hankel integral, as an auxiliary result,
are obtained. A by-product for the Srivastava-Daoust generalized hypergeometric function of
three variables is given by another derivation method. The main tools are certain representation
formulae for the McKay I, Bessel probability distribution’s cumulative distribution function
established recently in [3, 5].

1. Introduction and motivation

The first results about probability distributions involving Bessel functions can be
traced back to the early work of McKay [6] in 1932 who considered two classes of
continuous distributions called Bessel function distributions.

Precisely, the random variable (rv) & defined on a standard probability space
(Q,.7,P), distributed according to McNolty’s variant of the McKay law which is char-
acterized by the probability distribution function (PDF) [7, p. 496, Eq. (13)]

ﬁ(b2 _ a2)v+1/2
(2a)'T (v+1)

fi(x;a,b;v) = e XV (ax), x>0,

defined for all v > —1/2 and b > a > 0; McNolty reported, without derivation, sev-
eral generalized PDFs of above type, among others the above listed PDF. The related
cumulative distribution function (CDF) is

\/E(b2 _ a2)v+1/2
(2a)'T (v +1)
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Fi(x;a,b;v) =

/e*’”tVIv(az)dz, x>0. (1.1)
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We will use in our considerations these McNolty’s formulae.

Derivation of new representation formulae for CDF of rv distributed according to
the McKay 7, law was one of the main goals of the mutually constructed and written
article [3]. These results imply several by—products, among others. Namely, we deduce
several strong functional and uniform bounds upon Exton’s generalized hypergeometric
X function of two variables which are the building blocks of the established CDF’s.
The Appendix we devote to the absolute convergence constraints upon the Exton’s X
functions.

2. Main results
Recently, Jankov MaSirevi¢ and Pogany presented in [5] formulae for the CDF of

McKay I, Bessel distribution; one of them is formulated in terms of the lower incom-
plete gamma function

y@Jy:/eﬂﬂ*m, R(a) >0,
0

and Exton’s double hypergeometric X function [2]

ap [ (a):(b);(b) _ ((@))2n (D)) ((B"))n ¥* ¥
K551 wra| )= Z @@ O
Here (a) denotes the sequence aj,---,as, whilst ((a)), := (a1)m---(aa)m and the

empty product equals per definitionem 1.

Exton’s X function (2.1) is a special case of the Srivastava—Daoust generalization
of the Lauricella and/or the Kampé de Fériet hypergeometric functions in two variables.
Accordingly, the convergence conditions [ 10, pp. 157-158] (compare the Appendix B)
one reduces to [3]

Al=14+2C+D—-2A—B>0
A=14+C+D —A—-B'>0

)

under which (2.1) converges absolutely for all x,y € C. Another cases of convergence
inside centered discs in C can be deduced from [10, pp. 153-157] in a straightforward
way. The Exton’s generalized hypergeometric function of two variables is not widely
known, so functional bounds, even for its special cases X 11::10;;(()), Xolfﬂ‘f , Xllfﬂ‘ll which
occur in this note, are of considerable interest.

REMARK 1. We point out that according to Appendix B all considered Exton X
functions converge for x > 0.

Next, we recall the definition of the Pochhammer symbol (or rising factorial)

_T+v) 1 (A=0veC\{0})
(V) = L(v)  v(v+1)-(v+n—1) (A=neN;veC)’
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where it is understood conventionally that (0)y := 1. According to the Pochhammer
symbol’s use, the confluent hypergeometric function one defines as the power series

1 n
oFi [—: b2 :2@%, zeC.

n=0

THEOREM 1. Forallb>a>0,v>—1/2andall x>0 it is

(2v+1)3 [ . ) (ax)z] r(2v+4)
22+l Y(2v+1,bx)oF1 | —;v+1; 1 az(bz—a2)"+%
sviayplon [ 2VH3: — 2v+1 | (ax)® }
S X1¢1;1[2v+4:v+2;2v+2 g b
(2V+1)3 (ax)2

= WY(ZVJrbe)oFl [—;v+1; 1 }

Moreover, for v € Ny and b > a > 0 there holds

vl ol [ — V331 2 T(2v+1)e>
vt X110;0[2v+2:3;— (ax) ,bx]gm, >0.

Proof. Starting with the representation formula [5, p. 156, Corollary 6]

(b2 _ a2)v+1/2
Fi(x;a,b;v)=—5——>——9 2v+1)y(2v+1,bx)oF} [—;v+ I;

(ax)z}
C P2VHIT(2v +2) 4

2

- 22VH1,2v+3 X1:0;1{ 2v4+3: —;2v+1 |(ax) —bx} 2.2
Q2v+2)2v+3) BB 2v4+4:v+2;2v+2] 4 7 ' ‘

we apply the bilateral inequality 0 < Fj(x;a,b;v) < 1 valid for general CDFs in the
range of their support set. Now, obvious steps lead to the asserted bounds.

Next, consider the expression for the CDF F; reported for the parameters v € Ny,
b > a > 0. Precisely, for all x > 0 there holds [3, Theorem 4.]

(b2 _ a2)v+1/2

Fitsa.b:v) ==

. 1.
PV b x O [2\/ ;L"Zf ki 1_ a2x2,bx]. (2.3)

Since Fi(x;a,b;v) <1 we conclude the second upper bound. [

A more sophisticated bound can be derived by the following monotonicity result
for the CDF of the McKay I, Bessel law with respect to the parameter v, which is
covered by [4, Theorem 2.1.]: for all min (;,L7 v) > —1/2 and b > a > 0 there holds

Fi(xa,b;u+v+1/2) < Fi(x;a,b;v), x=>0. (2.4)
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THEOREM 2. For all min (v, [,L) >—1/2,b>a>0 and x > 0 we have

(1 _ (a/b)2)l~‘+%

2
2 +2V +2,bx) oF) | G
Fou+av ) TRV 2640 I
y(2v+1,bx) . (ax)?
vl oFi [ v+ 1
b? _aZ)qu%xZuH 1 N
< 272v+1 2v43 [( :0;1 1:0;1
SabTr { Fousaves) X v sl - ma X v g

where the shorthand

2v+3: —2v+1 | (ax)?

QWAd:v4+2:2vE2] 4 ’_bx}'

1:0;1 051
Xl:l;lM Xl {

Proof. Let x be positive. Inserting (2.2) into the monotonicity relation (2.4), we
get by routine transformations that

a u+1/2
(1—b—2) y(2(u+v+1),bx) (ax)?
Fi | =+ v+3; }
r2u+2v+2) ’ 24
2012 _ 2\u+1/272v+1
a*(b”—a” )" " 2p1+2v+4 3 1:0:1 1
T rearaves 0 Kmalervil
y(2v+1,bx) (ax)?7 @DV o
YRVELE) i e X,
roven “HTYTETY ravea Y]

which leads to

1
(b7 a) (@
21 +2V+2,bx) oF [_; 3. }
AT (2u+2v+2) Y( u-+2v+ ,bx)o 1 L+v+3 J
y(2v+1,bx) (ax)?
o of [—; I; ]
roven OTVTETY
a?pV I IO v+ 5] g2p2riyvs X
(bz—a2)‘”‘%l"(2u +2v+5) r(2v+44) “LLELLEE

However, this is equivalent to the asserted inequality. [

The next derivation method depends on the incomplete Lipschitz-Hankel integral
(ILHI) built by the modified Bessel functions of the first kind:

Z
Ieﬂﬁv(z;avb) :/O e_bttulv(al)dh

where a,b > 0, the argument and another two parameters z,v,u € C and it should
hold R(u +v) > —1 (for more details on ILHI consult for instance [3] and the there
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listed references). Obviously, the special case I, , (x;a,b) occurs in (1.1) and builds
the desired CDF integral. Therefore, we may deduce about the formula [3, Corollary 1]

\/E(b2 _ a2)v+1/2 ;
(2a)T(v+3) ™

which holds for all b > a > 0,v > —1/2, that is

e
Fi(x;a,b;v) = %Iew (ax; 1, g) )
2

Fi(x;a,b;v) = (x;a,b), x>0,

as /7T (%)y =T(v+3%). By virtue of this expression we readily arrive at the uniform

upper bound
2Y(4
fo (1.2 < S
@/ (bfa)?—1]""2

The Griinwald-Letnikov fractional derivative of order 1 with respect to the argu-
ment x of a suitable function f is defined by [9]
(RS n
A — im — _1ym _
D2 = fim 7z 3 (1" () e (n =)
We recall the widely known and used formula [8]
DY (™) = ale™, acC.

Expressing I, (x;b) and the CDF F; by the Griinwald-Letnikov derivative in terms
of the Exton X function, we have obtained the next representation results valid for the
general 1, v order incomplete Lipschitz—Hankel integral.

PROPOSITION 1. [3, Theorem 3] Forall a,b>0, z,v,u € C, such that R(v) >
—1, we have

2,2
: Dept (xroof vHli—— ez }
ley.y (z30,0) = (=1)7D, < 1O{v—l-Z:v—i-l;— 4’ b)) -

Moreover, when additionally R(u + v) > —1, there holds
(%) v ZAV+I
(U+v+1IT(v+1)

At this point we turn back to bounding Exton’s X function by virtue of the Propo-
sition 1. The following uniform bound results close this section.

oo M+VHL:—;— a*7?
X110 [ , bz}.

! pAv+2: v+1— 4

[STRY (Z;a7 b) =

COROLLARY 1. Let b>a >0, v > —1/2. Then for all x > 0 hold the upper
bounds for the Exton X function, read as follows:

|
DX XI.:Q;O[ v+1:—;— 222,—1) } < (_2a)vr (V+§) ,
ROy +2:v+1;—1| 4 VEDE — a2Vt

r2v+2)
x} S B2 — @)+

2v+1X100[ 2v+1l:— ' B
LLO[2v4+2:v4+1;—1 4 7
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3. Another probabilistic approach to CDF

Firstly, we draw the reader’s attention to the precise definition of Srivastava—
Daoust generalized hypergeometric function .# of three variables, which can be reached
by consulting Appendix A for n = 3.

LEMMA 1. [I,p.45,2.1.7] Let F(x) be a CDF and h > 0. Then

1 x+h

=— F(t)dt
2h —h () i

1 [xth
Hi(x) = E/ F)di:  H(x)
are also CDFs.

THEOREM 3. Forall b>a>0,v > —%, we have the monotonicity property of
the three variables Srivastava—Daoust function

—bx
v gttt [ 2v+2: 1,21 —[v a1 1] 5
Sv(¥) =X 5000 ([2v+3:1,2,1},[2v+2:0,2,1}:—;—;— (‘Z;) ’
in the following manner:
2h(v4+1)T(2v+1
Fo) S o4 h) < Fo()+ PVFEDICVED o s,

(b2 —a2)V+%

Proof. Consider the CDF H,(x) generated by the baseline CDF F; when it is
expressed via Exton X in (2.3) which is tracing back to [3, Theorem 4]. Direct calcula-
tion, using the power series description (2.3) and the Maclaurin series expansion of the
exponential term give the following equality chain:

1
(PP =dd)V T b0 — v+l | 2o
m= oy ) [, 2 e a

| .
_ (bz—a2)"+7 2 (V+%)m(1)n(_b)jazmbn /x+ht2v+1+j+2m+ndt
hT(2v+1) Qv +2)ominj!l mtn!  Jx
(PR —dd) A (x4 )2 (2v +2) js2mn(V A+ Dm(Da
2h(v+1TQ@v+1) e (2v+3) jromen(2V +2)2mn
[—b(e+ ) [alx+R)PP™ [b(x+ h)]"
J! m! n!
(PP 2V +2) jr2men(V+ DD
2h(v+ DIV +1) ;20 (2V+3) jr2mtn(2V +2)2men
(—bx)7 (ax)®™ (bx)"
DT T T

J,m,n=0
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In turn, the last expressions form a difference of two, weighted three—variables Srivastava—
Daoust . functions, which results in

(bz_az)v+%
T 2h(v+ DI(2v+1

H(x) ] {yv(x—l—h)—yv(x)}.

Now, it remains to apply the standard 0 < H;(x) < L;x > 0 property to obtain the
asserted inequality.
Concerning the convergence of the given function .#,(x) (see the Appendix A
(4.2)), as
Aj=14+(140)+0—-1-0=1
A=1+2+2)+0-2—-1=2
A3=1+(1l+1)+0-1-1=1,
ie. Ay >0 forall = 1,2,3, which implies that our function converges absolutely for
all complex arguments. [

REMARK 2. The Lemma 1 contains also the CDF H,(x), its application leads
to slightly different monotonicity result. However, to establish the related inequality
bounds we leave to the interested reader.

4. Appendix A

Srivastava and Daoust generalized the Lauricella hypergeometric function Fp by
the n-tuple power series [1 1, p. 454]

A:BU);....p(") .
(1)-. (n) N
CPTsb [(e) sy [(@M)) : §W];- (@) - 8] X,
A B (1) B ()
jl;Il(aj)ml9;1)+.-.+m,19;") jl;ll(bj )ml(pj(.l) '“jl;ll(bj >mn<p1(-") A
:mgo c p) (1) D) ) m_1| ces m—n‘ (41)
jl;ll(c/)mlu/}”+~-~+mnw§-”) jl;ll (d; )mléjgn "'jl;ll (d )mnéj@
where m := (my,---,m,) and the parameters satisfy
(1) (1) (n) (n)
91 ’“'79A ’...751 "”’SD(")>O'
For convenience, we write (a) to denote the sequence of A parameters ay,---,as, with

similar interpretations for (), (b(1)),---, (d™). Empty products should be interpreted
as unity. Srivastava and Daoust [10, pp. 157-158] reported that the series in (4.1)
converges absolutely for all x,---,x, € C when

DO ) B0

(0 (¢
> 5~ 3.6)

j=1 J=1

< l
Ag=1—|—2l//j(-')+
Jj=1 Jj=

o) >0, (=Tn @2
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In the case Ay = 0,/ = 1,n, the convergence constraints of the series is described
by the relation [10, p. 157, Egs. (5.2-5.3); p. 158 (ii)]. Finally, when all A, <O,

.gl.....pn) . .. . . . .
fé'g’;’...;g(n) (x1,-++,x,) diverges except at the origin, that is, this series is formal.

5. Appendix B

Exton’s X function (2.1) is a special case of the Srivastava—Daoust function in two
variables defined according to (4.1) by the double power series [10, p. 151]

A ([(@):6;0]:[(b): ¢;[(D): ¢']
I (1) wiwd): @) 8l 811°)
B B

(aj)kej+n9;- H(bl>k(PJ JI;[l(b/j)n(p;x_ky_n

=y = -
B D D 1!
k>0 k! n!
=1

(/) iyny! IH (dj)is; jl;[l(d§)na;

=

—

(5.1)

0

The reduced absolute convergence constraints of (5.1) for all x, y € C read

C D A B
Ar=1+3 v+ 8- 0—3 ¢;>0,
P = =

C D A B
M=1+D Y+ 86— 60— ¢/ >0.
=1 =1 j=1 =1

Another cases of convergence analysis inside disks in C can be found in [10, pp. 153—
157].
We are interested in the convergence regions of the Exton’s Xllf%), X%fé, X ffff
occuring in our results and contain the parameters in any particular case. These series
_ ABE <[a (2.1 b1 [p 0 1]

are generated by
x,y} CDD'\ [c:2;1]:[d: 1];]d" : 1] x,y) ’

A [a:bib

C:D;D' {c A
where A,B,B',C,D,D’ € {0,1} and in the cases when any of parameters a,b,b’,c,d,d’
vanish, the empty products should be interpreted as unity. The constraints for the
Srivastava—Daoust function (5.1) guaranteeing the absolute convergence of the . for
x,y € C reduce for our three functions to

a. Xllf%). Here Aj(a) = 2; Ap(a) = 1. The series converges for any x > 0.
b. Xﬂ:()l;‘ol. Now, A;(b) = 1; A2(b) = 1. This ensures the convergence of the second
series for all x > 0 as well.

c. Xllff,‘ll. The remaining case is also clear, being Aj(c) = 2; Ay(¢) = 1, which
means absolute convergence for any x > 0.
We point out that for all three cases of X function which occur in related bounding

inequalities we have that both A, A, are positive, which ensures the convergence for
all considered values of the argument x > 0.
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