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Abstract. As an interesting generalization involving the interval-valued convex functions, the
interval-valued exponential trigonometric convex function is firstly introduced, and their mean-
ingful properties are then investigated. Meanwhile, certain Hermite–Hadamard- and Pachpatte-
type integral inclusion relations are also developed via the newly proposed functions in interval-
valued fractional calculus. In particular, an improved version of the Hermite–Hadamard’s inte-
gral inclusions pertaining to the interval-valued exponential trigonometric convex functions is
proposed as well. To identify the correctness of the derived inclusion relations in the study, the
graphical representations for the outcomes are provided in terms of the change of the parameter
α .

1. Introduction and preliminaries

The generalized convexity of functions provides a fairly powerful principle and
tool, which is widely used not only in applied analysis and nonlinear analysis, but also
in a crowd of problems in mathematical physics. In recent years, a great number of
researchers have devoted themselves to exploring some fascinating integral inequalities
by virtue of generalized convexity from different perspectives, see the published arti-
cles [4, 6, 9, 16] and the references therein. And within that, the Hermite–Hadamard’s
integral inequality is one of the most influential mathematical inequalities in associ-
ation with convex functions, which is also widely used in many other aspects of the
mathematical sciences, particularly in optimization analysis. Let us invoke it in the
following.

Consider a real-valued interval I ⊆ R . We assume that the function f : I → R is
convex for all a,b ∈ I along with a �= b . Then we have that

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (x)dx � f (a)+ f (b)

2
,

which is referred to as the celebrated Hermite–Hadamard’s inequality.
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This is an especially distinguished inequality, because it offers an estimate of
the error bound for the mean value with regard to the integrable convex mapping
f : [a,b] → R , which has aroused academic attention and research from a wealth of
scholars in the mathematical analysis field. Recently, some important papers concern-
ing different families of convex functions that are in connection with the Hermite–
Hadamard-type integral inequalities have been published. For example, we can refer to
Szostok [36] for higher order convex functions, to Kórus [20] for s-convex functions,
to Andric and Pecaric [3] for (h,g,m)-convex functions, to Latif [22] for GA-convex
and geometrically quasiconvex functions, to Niezgoda [27] for G-symmetrized con-
vex functions, to Demır et al. [12] for trigonometrically convex functions and so on.
For recent research allied to this topical subject, the interested reader may consult the
published articles [1, 11, 38] and the bibliographies quoted in them.

The exponential trigonometric convex functions, as an extension of the trigono-
metric convex functions, was recently introduced by Breckner et al. in 2021.

DEFINITION 1.1. [17] Consider a real-valued interval I ⊆ R . A function f : I →
R

+ is named as the exponential trigonometric convex functions if and only if

f (tx+(1− t)y) �
sin πt

2

e1−t f (x)+
cosπt

2

et f (y)

holds true for all x,y ∈ I and t ∈ [0,1] .

In the same paper, they deduced the succeeding Hermite–Hadamard-type integral
inequalities, which are in connection with the exponential trigonometric convexity.

THEOREM 1.1. [17] Assume that f : [a,b] → R is an exponential trigonometric
convex function with 0 � a < b. If f ∈ L1 ([a,b]) , then the coming integral inequalities
hold: √

e
2

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (x)dx � 2π +4e

e(π2 +4)
[ f (a)+ f (b)] .

Fractional calculus, as a fairly vigorous tool, has been shown to be a vital cor-
nerstone not only in mathematical sciences, but also in applied sciences. The field has
aroused a load of researcher’s attention to address the meaningful question. As a conse-
quence, many authors have obtained some significant integral inequalities through the
efficient interaction of various methods of fractional integrals, including Ahmad et al.
[2] in the study of four types of inequalities for convex functions concerning fractional
integrals with exponential kernels, Mohammed and Sarikaya [24] in the study of some
inequalities involving Sarikaya fractional integrals for twice differentiable functions,
Set et al. [32] in the Hermite–Hadamard–Fejér-type inequality for Atangana–Baleanu
fractional integral operators, and Dragomir [13] in the Hermite–Hadamard-type in-
equalities for generalized Riemann–Liouville fractional integrals. For more important
findings related to fractional integrals, we refer the interested readers to [21, 28, 25, 31]
and the bibliographies quoted in them.
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In the remainder of this part, the following theories established by Moore et al. in
[26] on interval analysis are significative since they can be commonly utilized through-
out this study. Therefore, we assume that ω is a closed, bounded real-valued interval
subset in R , which is expressed as

ω = [ω ,ω ] =
{

θ ∈ R : ω � θ � ω
}
.

Here, the numbers ω ,ω ∈ R and ω � ω . We denote the left endpoints of interval
ω by ω , the right endpoints of interval ω by ω , respectively. If ω = r = ω , then
the real-value interval ω is considered to be degenerated, in this condition, we take
advantage of the form ω = r = [r,r] . We denote ω is positive if ω > 0, or negative
if ω < 0. Furthermore, we denote the sets of all closed intervals in R by RI , the sets
of all positive closed intervals in R by R

+
I , as well as the sets of all negative closed

intervals in R by R
−
I . The Hausdorff–Pompeiu distance, with respect to the intervals

ω and ξ , is defined by in the following way:

d(ω ,ξ ) = d
(
[ω,ω ], [ξ ,ξ ]

)
= max

{∣∣ω − ξ
∣∣, ∣∣ω − ξ

∣∣}.

Distinctly, (RI ,d) is a complete metric space.
Moore et al. considered the succeeding interval-valued Lebesgue integrable con-

ception as well.

DEFINITION 1.2. [26] Consider a real-valued interval I ⊆ R and the interior I◦
of I . Let Ψ(x)= [Ψ(x),Ψ(x)] , x∈ I◦ . We call Ψ(x) is Lebesgue integrable if Ψ(x) and
Ψ(x) are both measurable and Lebesgue integrable in I◦ . What’s more, we denote the
interval-valued integration of the interval-valued function Ψ by

∫ b
a Ψ(x)dx , is defined

as follows:

∫ b

a
Ψ(x)dx =

[∫ b

a
Ψ(x)dx,

∫ b

a
Ψ(x)dx

]
.

For more axioms concerning interval-valued analysis, see the published mono-
graph [26]. We also evoke the notion of interval-valued convexity, which was intro-
duced by Breckner in [5].

DEFINITION 1.3. [5] Consider a convex set I ⊆ R . An interval-valued function
Ψ : I →R

+
I is referred as the interval-valued convex functions if and only if the coming

relation

Ψ(tx+(1− t)y)⊇ tΨ(x)+ (1− t)Ψ(y)

holds for all x,y ∈ I and t ∈ [0,1] .

In 2021, Zhou et al. gave the concept of the interval-valued fractional integral
operators together with exponential kernels as follows.
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DEFINITION 1.4. [41] Suppose that Ψ : [a,b]→RI is an interval-valued function
such that Ψ(x) =

[
Ψ(x),Ψ(x)

]
. Here, the real-valued functions Ψ(x),Ψ(x) are both

Riemannian integrable on the real-valued interval [a,b] . We denote the interval-valued
left-sided and right-sided fractional integrals along with exponential kernels for the
function Ψ by I α

a+Ψ(ζ ) and I α
b−Ψ(ζ ) , respectively, are defined as the following:

I α
a+Ψ(ζ ) =

1
α

∫ ζ

a
e(−

1−α
α (ζ−x))Ψ(x)dx, ζ > a,

and

I α
b−Ψ(ζ ) =

1
α

∫ b

ζ
e(−

1−α
α (x−ζ ))Ψ(x)dx, ζ < b,

with α ∈ (0,1) . Obviously, we have that

I α
a+Ψ(ζ ) =

[
I α

a+Ψ(ζ ),I α
a+Ψ(ζ )

]
,

and
I α

b−Ψ(ζ ) =
[
I α

b−Ψ(ζ ),I α
b−Ψ(ζ )

]
.

Interval analysis, the branch of set value analysis devoted to the study of prop-
erties and applications of interval-valued functions, is nowadays playing an extremely
significant role in the pure and applied sciences. Interval analysis was originally used
to calculate the error bounds of a finite state machine numerical solution. For the
last few decades, the field of interval analysis has been developed boomingly and
has a great ramification in various branches of applied sciences like neural network
output optimization [37], computer graphics [34] and automatic error analysis [30].
Until its development to today, there have been many scholars studied on the hot is-
sues of various interval analysis theories. For example, Budak et al. [8] extended
the Riemann–Liouville fractional integrals of an interval-valued function F(x) defined
on R to the interval-valued function F(x,y) defined on R

2 . In this extension, they
deduced certain Hermite–Hadamard-type fractional integral inequalities for interval-
valued co-ordinated convex functions. Costa et al. [10] developed some inequalities for
interval-valued functions which is based on the Kulisch–Miranker order relation. They
took advantage of Aumann’s and Kaleva’s improper integrals to derive the Gauss’s in-
equalities for interval functions. Liu et al. [23] studied a family of log-s-convex fuzzy-
interval-valued function. They obtained certain Jensen- and Hermite–Hadamard–Fejér-
type inequalities with help of this kind of function. Srivastava et al. [35] introduced the
conception of interval-valued preinvex functions. The authors also gave the refinements
of the Hermite–Hadamard-type inequalities with regard to the Riemann–Liouville frac-
tional integrals. In [40], the authors presented the notion of the interval-valued har-
monical h -convex function. With the aid of this conception, they acquired several
Hermite–Hadamard-type inequalities for the interval Riemann integrals. In addition,
some applications of interval-valued functions in optimization theory are discussed in
[15] and [33]. For recent developments related to interval-valued functions, the inter-
ested reader can refer to [7, 14, 19, 18, 29] and the bibliographies quoted in them.
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Motivated and inspired by the aforementioned researches, in particular, the out-
comes investigated in [17], we notice that it is possible to treat and generalize these
results by virtue of interval-valued theories. To achieve this objective, we introduce a
class of the interval-valued exponential trigonometric convex functions. By using it, we
establish some fractional integral inclusion relations having exponential kernels pertain-
ing to the extraordinary Hermite–Hadamard- and Pachpatte-type integral inequalities,
respectively. This is the main contribution of this work.

2. Main results

Let us introduce the following conception of the interval-valued exponential trigono-
metric convex functions.

DEFINITION 2.1. Consider I ⊆ R is a convex set. An interval-valued function
H(x)=

[
H(x),H(x)

]
: I →RI , is called as the interval-valued exponential trigonometric

convex functions if and only if

H(tx+(1− t)y)⊇ sin πt
2

e1−t H(x)+
cosπt

2

et H(y)

holds true for any x,y ∈ I and t ∈ [0,1] .

Clearly, if the functions satisfy the condition H = H , then the conception of the
interval-valued exponential trigonometric convex functions degenerates to the notion of
the exponential-type trigonometric convex functions.

Next, we discuss some properties for interval-valued exponential trigonometric
convex functions.

PROPOSITION 2.1. An interval-valued function H(x) =
[
H(x),H(x)

]
: I → RI is

referred as the exponential trigonometric convex functions if and only if the coming
inequalities

H(tx+(1− t)y) �
sin πt

2

e1−t H(x)+
cosπt

2

et H(y),

and

H(tx+(1− t)y) �
sin πt

2

e1−t H(x)+
cosπt

2

et H(y)

hold true for all x,y ∈ I and t ∈ [0,1] , that is, the function H(x),H(x) are exponen-
tial trigonometric convex function, exponential trigonometric concave function, respec-
tively.

EXAMPLE 2.1. Let H = [es − 1,−s2 + 2s + 2],s ∈ [0,1] , for x = 0,y = 1 and
t ∈ [0,1] , we have

As can be seen from the Figure 2.1, the range of the purple solid line is the region
containing the green dotted line, which indicates that the function H given is in line
with Definition 2.1, and the left end includes the right end.
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Figure 2.1: Graphical representation for Proposition 2.1

THEOREM 2.1. Let H,G : I → RI . If H and G are both interval-valued expo-
nential trigonometric convex functions, then

(i) H +G is an interval-valued exponential trigonometric convex function,
(ii) For c ∈ R (c � 0) , cH is an interval-valued exponential trigonometric convex

function.

Proof. (i) Since H,G are both interval-valued exponential trigonometric convex
functions, we acquire that

(H +G)(tx+(1− t)y)= H(tx+(1− t)y)+G(tx+(1− t)y)

⊇ sin πt
2

e1−t H(x)+
cosπt

2

et H(y)+
sin πt

2

e1−t G(x)+
cosπt

2

et G(y)

=

[
sin πt

2

e1−t H(x)+
cosπt

2

et H(y)+
sin πt

2

e1−t G(x)+
cosπt

2

et G(y),

sin πt
2

e1−t H(x)+
cosπt

2

et H(y)+
sin πt

2

e1−t G(x)+
cosπt

2

et G(y)

]

=
sin πt

2

e1−t [H(x)+G(x)]+
cosπt

2

et [H(y)+G(y)].
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(ii) Let H be an interval-valued exponential trigonometric convex function and
c ∈ R (c � 0) , then

(cH)(tx+(1− t)y)⊇ c

[
sin πt

2

e1−t H(x)+
cosπt

2

et H(y)
]

=
sin πt

2

e1−t (cH)(x)+
cosπt

2

et (cH)(y). �

THEOREM 2.2. Let g : I → J be a convex function. If H : J → RI is an interval-
valued exponential trigonometric convex function and H , H are nondecreasing and
nonincreasing respectively, then H ◦g : I→RI is an interval-valued exponential trigono-
metric convex function.

Proof. Taking advantage of the nondecreasing exponential trigonometric convex-
ity of function H for any x,y ∈ I , t ∈ [0,1] , we get that

H(g(tx+(1− t)y)) � H(tg(x)+ (1− t)g(y))

�
sin πt

2

e1−t H(g(x))+
cosπt

2

et H(g(y)).
(2.1)

Similarly, we have that

H(g(tx+(1− t)y)) � H(tg(x)+ (1− t)g(y))

�
sin πt

2

e1−t H(g(x))+
cosπt

2

et H(g(y)).
(2.2)

By means of(2.1) and (2.2), we obtain that

(H ◦ g)(tx+(1− t)y)= H(g(tx+(1− t)y))
⊇ H(tg(x)+ (1− t)g(y))

⊇ sinπt
2

e1−t H(g(x))+
cosπt

2

et H(g(y)).

This completes the proof. �

THEOREM 2.3. Let H,G : I → R
+
I are both interval-valued exponential trigono-

metric convex functions. If H and G are monotone increasing, H and G are monotone
decreasing, then HG is an interval-valued exponential trigonometric convex function.

Proof. If x � y (similarly, y � x ), then [H(x)−H(y)][G(y)−G(x)] � 0 which
deduces that

H(x)G(y)+H(y)G(x) � H(x)G(x)+H(y)G(y). (2.3)
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Using the exponential trigonometric convexity of function H and G for any x,y ∈ I ,
t ∈ [0,1] , we obtain that

(H G)(tx+(1− t)y) = H(tx+(1− t)y)G(tx+(1− t)y)

�
[
sin πt

2

e1−t H(x)+
cosπt

2

et H(y)
][

sinπt
2

e1−t G(x)+
cosπt

2

et G(y)
]

=
sin2 πt

2

e2(1−t) H(x)G(x)+
[
sinπt

2

e1−t +
cosπt

2

et

]
[H(x)G(y)+H(y)G(x)]

+
cos2 πt

2

e2t H(y)G(y).

Utilizing the inequality (2.3), we get that

(H G)(tx+(1− t)y) �
sin πt

2

e1−t

[
sin πt

2

e1−t +
cosπt

2

et

]
H(x)G(x)

+
cosπt

2

et

[
sin πt

2

e1−t +
cosπt

2

et

]
H(y)G(y).

Since
sin πt

2
e1−t + cos πt

2
et � 1, we acquire that

(H G)(tx+(1− t)y) �
sin πt

2

e1−t H(x)G(x)+
cosπt

2

et H(y)G(y)

=
sin πt

2

e1−t (H G)(x)+
cosπt

2

et (H G)(y).

Analogously, we obtain that

(H G)(tx+(1− t)y) �
sin πt

2

e1−t H(x)G(x)+
cosπt

2

et H(y)G(y)

=
sin πt

2

e1−t (H G)(x)+
cosπt

2

et (H G)(y).

Therefore, we have

(HG)(tx+(1− t)y)⊇ sin πt
2

e1−t (HG)(x)+
cosπt

2

et (HG)(y).

This ends the proof. �

Next, we aims to establish some fractional integral inclusion relations for interval-
valued exponential convex functions.

To simplify the notation, throughout the present paper we denote

ρ =
1−α

α
(b−a), 0 < α < 1, a < b.

Based on the introduced interval-valued exponential trigonometric convex func-
tions, our first main outcome in accordance with the Hermite–Hadamard-type integral
inequalities is proposed in the following.
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THEOREM 2.4. If H : [a,b] → R
+
I is an interval-valued exponential trigonomet-

ric convex function together with a < b such that H(x) =
[
H(x),H(x)

]
, then we have:

√
e
2
H

(
a+b

2

)
⊇ 1−α

2(1− e−ρ)
[
I α

a+H(b)+I α
b−H(a)

]
⊇ ρ

1− e−ρ C (ρ)
H(a)+H(b)

2
,

(2.4)

where

C (ρ) =
4ρ +2πe−ρ−1 +4
4ρ2 +8ρ + π2 +4

+
2πe−1 + e−ρ−1(4e−4ρe)

4ρ2−8ρ + π2 +4
. (2.5)

Proof. On account of the interval-valued exponential trigonometric convexity of
H , we find that

H

(
x+ y

2

)
⊇ sin π

4

e
1
2

H(x)+
cosπ

4

e
1
2

H(y) =
1
2

√
2
e

[
H(x)+H(y)

]
, (2.6)

for any x,y ∈ [a,b] . Taking advantage of x = ηa+(1−η)b and y = (1−η)a+ ηb ,
η ∈ [0,1] , we get that

H

(
x+ y

2

)
= H

(
a+b

2

)
⊇ 1

2

√
2
e

[
H(ηa+(1−η)b)+H((1−η)a+ ηb)

]
. (2.7)

Multiplying on each side of (2.7) by e−ρη , and integrating the obtained outcomes with
regard to η from 0 to 1, we deduce that

∫ 1

0
e−ρηH

(
a+b

2

)
dη

⊇ 1
2

√
2
e

[∫ 1

0
e−ρηH(ηa+(1−η)b)dη +

∫ 1

0
e−ρηH((1−η)a+ ηb)dη

]

=
1
2

√
2
e

[∫ 1

0
e−ρη

(
H(ηa+(1−η)b)+H((1−η)a+ ηb)

)
dη ,

∫ 1

0
e−ρη

(
H(ηa+(1−η)b)+H((1−η)a+ ηb)

)
dη
]

=
[√

2
e

1
2(b−a)

(∫ b

a
e−

1−α
α (b−u)H(u)du+

∫ b

a
e−

1−α
α (v−a)H(v)dv

)
,√

2
e

1
2(b−a)

(∫ b

a
e−

1−α
α (b−u)H(u)du+

∫ b

a
e−

1−α
α (v−a)H(v)dv

)]

=

√
2
e

α
2(b−a)

[
I α

a+H(b)+I α
b−H(a)

]
.

(2.8)
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Also,

=
[∫ 1

0
e−ρηH

(
a+b

2

)
dη,
∫ 1

0
e−ρηH

(
a+b

2

)
dη
]

=
[
1− e−ρ

ρ
H

(
a+b

2

)
,
1− e−ρ

ρ
H

(
a+b

2

)]

=
1− e−ρ

ρ
H

(
a+b

2

)
.

(2.9)

Employing the equation (2.9) in the relation (2.8), it yields the first relation in (2.4).
For the second inclusion relation (2.4), by means of the exponential trigonometric

convexity of the interval-valued function H , we acquire that

H
(
(1−η)a+ ηb

)⊇ cosπη
2

eη H(a)+
sin πη

2

e1−η H(b), (2.10)

and

H
(
ηa+(1−η)b

)⊇ sin πη
2

e1−η H(a)+
cosπη

2

eη H(b), (2.11)

for all η ∈ [0,1] .
Adding (2.10) and (2.11), we derive that

H(ηa+(1−η)b)+H
(
(1−η)a+ ηb

)⊇
[

sin πη
2

e1−η +
cosπη

2

eη

][
H(a)+H(b)

]
. (2.12)

Multiplying both sides of (2.12) by e−ρη , and integrating the resulting inclusion per-
taining to η over [0,1] , we deduce that
∫ 1

0
e−ρηH(ηa+(1−η)b)dη +

∫ 1

0
e−ρηH

(
(1−η)a+ ηb

)
dη

⊇
∫ 1

0
e−ρη

[
sin πη

2

e1−η
+

cosπη
2

eη

][
H(a)+H(b)

]
dη

=
(

4ρ +2πe−ρ−1 +4
4ρ2 +8ρ + π2 +4

+
2πe−1 + e−ρ−1(4e−4ρe)

4ρ2−8ρ + π2 +4

)[
H(a)+H(b)

]
.

(2.13)

Combining (2.8), (2.9) with (2.13), yields the required second relations in (2.4). As a
consequence, the proof is completed. �

COROLLARY 2.1. If we consider certain special cases in Theorem 2.4, then we
acquire the succeeding findings.

(1) If we consider to take α → 1 , i.e. ρ = 1−α
α (b−a)→ 0 , then we have that

lim
α→1

1−α
2(1− e−ρ)

=
1

2(b−a)
,
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and

lim
α→1

ρ
2(1− e−ρ)

(
4ρ +2πe−ρ−1 +4
4ρ2 +8ρ + π2 +4

+
2πe−1 + e−ρ−1(4e−4ρe)

4ρ2−8ρ + π2 +4

)
=

2πe−1 +4
π2 +4

.

Thus, Theorem 2.4 is converted to√
e
2
H

(
a+b

2

)
⊇ 1

b−a

∫ b

a
H(x)dx ⊇ 2πe−1 +4

π2 +4

[
H(a)+H(b)

]
.

(2) If the functions satisfy the condition H = H , then we get the successive frac-
tional Hermite–Hadamard’s inequality for exponential trigonometric convex functions√

e
2
H

(
a+b

2

)
� 1−α

(1− e−ρ)
[
I α

a+H(b)+I α
b−H(a)

]
� ρ

1− e−ρ C (ρ)
H(a)+H(b)

2
.

(3) If we take α → 1 and H = H , then Theorem 2.4 degenerates to Theorem 1.1.

We give the undermentioned example to help readers understand the outcome ob-
tained in Theorem 2.4.

EXAMPLE 2.2. If we take H(s) = [2s2,es +1] , s ∈ [0,1] , a = 0, b = 1 and α =
1
2 , then all hypotheses mentioned in Theorem 2.4 meet requirements.

Evidently, ρ = 1−α
α (b−a) = 1. On the one hand, we have that

1−α
2(1− e−ρ)

[
I α

a+H(b)+I α
b−H(a)

]
=

1
2(1− e−1)

{∫ 1

0
e−(1−s)[2s2,es +1]ds+

∫ 1

0
e−s[2s2,es +1]ds

}

=
1

2(1− e−1)

{[
2−4e−1,

e
2
− 3e−1

2
+1

]
+
[
4−10e−1,2− e−1]}

≈ [0.6721,2.7206].

On the other hand, we get that√
e
2
H

(
a+b

2

)
=
√

e
2
H

(
0+1

2

)
=
√

e
2

[
1
2
,
√

e+1

]
≈ [0.5829,3.0879],

and

ρ
1− e−ρ C (ρ)

H(a)+H(b)
2

=
1

2(1− e−1)

(
8+2πe−2

16+ π2

){
[0,2]+ [2,1+ e]

}
≈ [0.9117,2.6067].

Obviously,

[0.5829,3.0879]⊇ [0.6721,2.7206]⊇ [0.9117,2.6067],

which exhibits the correctness of the findings yielded in Theorem 2.4.
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REMARK 2.1. In Example 2.2, if the parameter α is not a fixed constant, that is
α ∈ (0,1) , according to Theorem 2.4, then the inclusion relation involving the param-
eter α is in the following:

2(1− e−ρ)
1−α

√
e
2
H

(
a+b

2

)
⊇ [I α

a+H(b)+I α
b−H(a)

]
⊇ 2ρ

1−α
C (ρ)

H(a)+H(b)
2

,

(2.14)

where C (ρ) is defined in (2.5). As a consequence, the left-, middle-, and right-side
parts of the inclusion relations above can be acquired.

2(1− e−ρ)
1−α

√
e
2
H

(
a+b

2

)
=
√

e
2

[
1
2
,1+

√
e

]
2(1− e−ρ)

1−α
,

[
I α

a+H(b)+I α
b−H(a)

]
=

1
α

(∫ 1

0
e−

1−α
α (1−s)H(s)ds+

∫ 1

0
e−

1−α
α sH(s)ds

)
,

and
2ρ

1−α
C (ρ)

H(a)+H(b)
2

=
[
1,

3+ e
2

]
2ρ

1−α
C (ρ).

Three functions with respect to the variable α ∈ (0,1) , yielded by the inclusions in
Theorem 2.4 on the left-, middle- and right-side portions, are plotted in Fig. 2.2. And
as can be seen from the Fig. 2.2, the inclusion relations derived in Theorem 2.4 are
always valid if the parameter α ∈ (0,1) is given any value.

The Hermite–Hadamard-type inclusion relations with midpoint can be expressed
as interval-valued fractional integrals having exponential kernel in the following.

THEOREM 2.5. In Theorem 2.4, if we consider the identical hypotheses, then we
have the succeeding fractional integral inclusion relations:

√
e
2
H

(
a+b

2

)
⊇ 1−α

2(1− e−
ρ
2 )

[
I α

( a+b
2 )+

H(b)+I α
( a+b

2 )−
H(a)

]

⊇ ρ
1− e−

ρ
2
E (ρ)

H(a)+H(b)
2

,

(2.15)

where

E (ρ) =
8ρ +2

3
2 πe−

ρ+1
2 −2

5
2 (ρ +1)e−

ρ+1
2 +8

4ρ2 +8ρ + π2 +4

+
π(4e−1−2

3
2 e−

ρ+1
2 )−2

5
2 ρe−

ρ+1
2 +2

5
2 e−

ρ+1
2

4ρ2−8ρ + π2 +4
.
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Figure 2.2: Graphical representation for Theorem 2.4

Proof. Starting from the inclusion relation (2.6) in Theorem 2.4 again, if we con-
sider to let x = η

2 a+ 2−η
2 b and y = 2−η

2 a+ η
2 b,η ∈ [0,1] , then we acquire that

H

(
x+ y

2

)
= H

(
a+b

2

)

⊇ 1
2

√
2
e

[
H

(
η
2

a+
2−η

2
b

)
+H

(
2−η

2
a+

η
2

b

)]
.

(2.16)

Multiplying on each side of (2.16) by e−
ρ
2 η , and integrating the derived outcomes with

regard to η from 0 to 1, we deduce that

∫ 1

0
e−

ρ
2 ηH

(
a+b

2

)
dη

⊇ 1
2

√
2
e

∫ 1

0
e−

ρ
2 ηH

(
η
2

a+
2−η

2
b

)
dη +

∫ 1

0
e−

ρ
2 ηH

(
2−η

2
a+

η
2

b

)
dη

=
1
2

√
2
e

[∫ 1

0
e−

ρ
2 η

(
H

(
η
2

a+
2−η

2
b

)
+H

(
2−η

2
a+

η
2

b

))
dη ,

∫ 1

0
e−

ρ
2 η

(
H

(
η
2

a+
2−η

2
b

)
+H

(
2−η

2
a+

η
2

b

))
dη

]
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=
1
2

√
2
e

[
2

b−a

(∫ b

a+b
2

e−
1−α

α (b−u)H(u)du+
∫ a+b

2

a
e−

1−α
α (v−a)H(v)dv

)
,

2
b−a

(∫ b

a+b
2

e−
1−α

α (b−u)H(u)du+
∫ a+b

2

a
e−

1−α
α (v−a)H(v)dv

)]

=

√
2
e

α
b−a

[
I α

( a+b
2 )+H(b)+I α

( a+b
2 )−

H(a)
]
.

That is,

H

(
a+b

2

)
⊇
√

2
e

(1−α)

2(1− e−
ρ
2 )

[
I α

( a+b
2 )+

H(b)+ I α
( a+b

2 )−H(a)
]
,

which proves the first inclusion relation in (2.15).
For the second inclusion relation (2.15), by means of the exponential trigonometric

convexity of the interval-valued function H , we find that

H

(
η
2

a+
2−η

2
b

)
⊇ sin πη

4

e1− η
2

H(a)+
cosπη

4

e
η
2

H(b), (2.17)

and

H

(
2−η

2
a+

η
2

b

)
⊇ cosπη

4

e
η
2

H(a)+
sin πη

4

e1− η
2

H(b), (2.18)

for all η ∈ [0,1] .
Adding the relations (2.17) and (2.18), we derive that

H

(
η
2

a+
2−η

2
b

)
+H

(
2−η

2
a+

η
2

b

)
⊇
[

sin πη
4

e1− η
2

+
cosπη

4

e
η
2

]
[H(a)+H(b)].

(2.19)

Multiplying both sides of (2.19) by e−
ρ
2 η , and integrating the presented findings per-

taining to η over [0,1] , we have that

∫ 1

0
e−

ρ
2 ηH

(
η
2

a+
2−η

2
b

)
dη +

∫ 1

0
e−

ρ
2 ηH

(
2−η

2
a+

η
2

b

)
dη

⊇
∫ 1

0
e−

ρ
2 η

[
sin πη

4

e1− η
2

+
cosπη

4

e
η
2

]
[H(a)+H(b)]dη

= E (ρ)
[
H(a)+H(b)

]
,

which is equivalent to√
2
e

(1−α)

2(1− e−
ρ
2 )

[
I α

( a+b
2 )+

H(b)+ I α
( a+b

2 )−H(a)
]
⊇
√

2
e

ρ
2(1− e−

ρ
2 )

E (ρ)
H(a)+H(b)

2
,
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where,

E (ρ) : =
∫ 1

0
e−

ρ
2 η

[
sinπη

4

e1− η
2

+
cosπη

4

e
η
2

]
dη

=
8+8ρ +2

3
2 πe−

ρ+1
2 −2

5
2 (ρ +1)e−

ρ+1
2

4ρ2 +8ρ + π2 +4

+
π(4e−1−2

3
2 e−

ρ+1
2 )−2

5
2 ρe−

ρ+1
2 +2

5
2 e−

ρ+1
2

4ρ2−8ρ + π2 +4
.

Consequently, the second inclusion relation in Theorem 2.5 is proved. This concludes
the proof. �

COROLLARY 2.2. If we consider some special cases in Theorem 2.5, then we
acquire the coming outcomes.

(1) If we consider to take α → 1 , that is ρ → 0 ,

lim
α→1

1−α
2(1− e−

ρ
2 )

=
1

b−a
,

and

lim
α→1

ρ
2(1− e−

ρ
2 )

E (ρ) =
4π +8e
π2e+4e

,

then we have that√
e
2
H

(
a+b

2

)
⊇ 1

b−a

∫ b

a
H(x)dx ⊇ 2π +4e

π2e+4e

[
H(a)+H(b)

]
.

(2) If the functions satisfy the condition H = H , then we have the succeeding
fractional Hermite–Hadamard’s inequality involving midpoint for exponential trigono-
metric convex functions√

e
2
H

(
a+b

2

)
� 1−α

2(1− e−
ρ
2 )

[
I α

( a+b
2 )+

H(b)+I α
( a+b

2 )−
H(a)

]

� ρ
2(1− e−

ρ
2 )

E (ρ)
H(a)+H(b)

2
.

(3) If we take α → 1 and H = H , then Theorem 2.5 converts to Theorem 1.1.

Taking advantage of the interval-valued exponential trigonometric convexity again,
we put forward the following Pachpatte-type fractional integral inclusions,

THEOREM 2.6. Suppose that the mappings H,F : [a,b]→R
+
I are both two interval-

valued exponential trigonometric convex functions together with a < b such that H(x)=
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[
H(x),H(x)

]
as well as F(x) =

[
F(x),F(x)

]
. Then the coming inclusion relation holds

true:

α
b−a

[
I α

a+H(b)F(b)+I α
b−H(a)F(a)

]⊇P(a,b)D(ρ)+Q(a,b)
πe−ρ−1(eρ +1)

ρ2 + π2 ,

(2.20)

where

P(a,b) = H(a)F(a)+H(b)F(b),

Q(a,b) = H(a)F(b)+H(b)F(a),

and

D(ρ) =
8ρ −π2e−ρ−2 + π2 +2ρ2 +8
2(ρ +2)(ρ2 +4ρ + π2 +4)

− e−ρ−2(8e2−8ρe2 + π2e2 +2ρ2e2 −π2eρ)
2(ρ −2)(ρ2−4ρ + π2 +4)

.

Proof. Applying the exponential trigonometric convexities of the interval-valued
functions H and F , it yields that

H
(
(1−η)a+ ηb

)⊇ cosπη
2

eη
H(a)+

sin πη
2

e1−η
H(b), (2.21)

and

F
(
(1−η)a+ ηb

)⊇ cosπη
2

eη F(a)+
sin πη

2

e1−η F(b). (2.22)

Multiplying both sides of (2.21) with corresponding terms of (2.22), and noticing that
all these parts are non-negative, it derives that

H
(
(1−η)a+ ηb

)
F
(
(1−η)a+ ηb

)
⊇
(

cosπη
2

eη

)2

H(a)F(a)+

(
sin πη

2

e1−η

)2

H(b)F(b)

+
sin πη

2 cosπη
2

e

[
H(a)F(b)+H(b)F(a)

]
.

(2.23)

Analogously, we get that

H
(
ηa+(1−η)b

)
F
(
ηa+(1−η)b

)
⊇
(

sinπη
2

e1−η

)2

H(a)F(a)+

(
cosπη

2

eη

)2

H(b)F(b)

+
sin πη

2 cosπη
2

e

[
H(a)F(b)+H(b)F(a)

]
.

(2.24)
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Adding (2.23) and (2.24), we deduce that

H
(
ηa+(1−η)b

)
F
(
ηa+(1−η)b

)
+H
(
(1−η)a+ ηb

)
F
(
(1−η)a+ ηb

)
⊇
⎡
⎣
(

sin πη
2

e1−η

)2

+

(
cosπη

2

eη

)2
⎤
⎦[H(a)F(a)+H(b)F(b)

]

+
2sin πη

2 cosπη
2

e

[
H(a)F(b)+H(b)F(a)

]
.

(2.25)

Multiplying both sides of (2.25) by e−ρη , and integrating obtained outcomes pertaining
to η over [0,1] , it acquires that∫ 1

0
e−ρηH

(
ηa+(1−η)b

)
F
(
ηa+(1−η)b

)
dη

+
∫ 1

0
e−ρηH

(
(1−η)a+ ηb

)
F
(
(1−η)a+ ηb

)
dη

⊇
∫ 1

0
e−ρη

⎡
⎣
(

sin πη
2

e1−η

)2

+

(
cosπη

2

eη

)2
⎤
⎦P(a,b)dη

+
∫ 1

0
e−ρη 2sin πη

2 cosπη
2

e
Q(a,b)dη .

(2.26)

In the light of Definition 1.4, we have that∫ 1

0
e−ρηH

(
ηa+(1−η)b

)
F
(
ηa+(1−η)b

)
dη =

α
b−a

I α
a+H(b)F(b), (2.27)

and ∫ 1

0
e−ρηH

(
(1−η)a+ ηb

)
F
(
(1−η)a+ ηb

)
dη =

α
b−a

I α
b−H(a)F(a). (2.28)

It is easy to check that

∫ 1

0
e−ρη

⎡
⎣
(

sin πη
2

e1−η

)2

+

(
cosπη

2

eη

)2
⎤
⎦dη

=
8ρ −π2e−ρ−2 + π2 +2ρ +8
2(ρ +2)(ρ2 +4ρ + π2 +4)

− e−ρ−2(8e2−8ρe2 + π2e2 +2ρ2e2 −π2eρ)
2(ρ −2)(ρ2−4ρ + π2 +4)

,

(2.29)

and ∫ 1

0
e−ρη 2sinπη

2 cosπη
2

e
dη =

πe−ρ−1(eρ +1)
ρ2 + π2 . (2.30)

Substituting (2.27)–(2.30) into (2.26), it yields the required findings. This concludes
the proof. �
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COROLLARY 2.3. If we consider certain special cases in Theorem 2.6, then we
acquire the following outcomes.

(1) If we let α → 1 , that is ρ → 0 , then we get that

lim
α→1

[
8ρ −π2e−ρ−2 + π2 +2ρ +8
2(ρ +2)(ρ2 +4ρ + π2 +4)

− e−ρ−2(8e2−8ρe2 + π2e2 +2ρ2e2 −π2eρ)
2(ρ −2)(ρ2−4ρ + π2 +4)

]

=
π2−π2e−2 +8

2(π2 +4)
,

and

lim
α→1

πe−ρ−1(eρ +1)
ρ2 + π2 =

2
πe

.

Thus, Theorem 2.6 is transformed to

1
b−a

∫ b

a
H(x)F(x)dx ⊇ π2−π2e−2 +8

4(π2 +4)
[
H(a)F(a)+H(b)F(b)

]
+

1
πe

[
H(a)F(b)+H(b)F(a)

]
.

(2) If we consider to let H = H and F = F , then we have the succeeding frac-
tional Pachpatte-type integral inequality together with exponential trigonometric con-
vex functions

α
b−a

[
I α

a+H(b)F(b)+I α
b−H(a)F(a)

]
�P(a,b)D(ρ)+Q(a,b)

πe−ρ−1(eρ +1)
ρ2 + π2 .

(3) If we take α → 1 , H = H and F = F , then we have the following Pachpatte-
type integral inequality for exponential trigonometric convex functions

1
b−a

∫ b

a
H(x)F(x)dx � π2−π2e−2 +8

4(π2 +4)
[
H(a)F(a)+H(b)F(b)

]
+

1
πe

[
H(a)F(b)+H(b)F(a)

]
.

To help readers understanding the result established in Theorem 2.6, we provide
the following example.

EXAMPLE 2.3. Let H(s) = [s2,s+ 1] and F(s) = [2s3,es + 1] , s ∈ [0,1] . If we
take a = 0, b = 1, and α = 1

4 , i.e. ρ = 1−α
α (b−a)= 3, then all hypotheses considered

in Theorem 2.6 meet requirements.
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On the one hand, the left-side part of (2.20) is

α
b−a

[
I α

a+H(b)F(b)+I α
b−H(a)F(a)

]
=
∫ 1

0
e−3(1−s)[s2,s+1][2s3,es +1]ds+

∫ 1

0
e−3s[s2,s+1][2s3,es +1]ds

=
[
80e−3

243
+

52
243

,
7e
16

− 59e3

144
+

5
9

]
+
[

80
243

− 1472e−3

243
,
43
36

− 7e−3

9
− 5e−2

4

]
≈ [0.2580,2.711].

On the other hand, for the right-side part of (2.20), it follows that

P(a,b)D(ρ)+Q(a,b)
πe−ρ−1(eρ +1)

ρ2 + π2

= [2,2+2(1+ e)]
(

50−π2e−5 + π2

10(25+ π2)
− e−5(2e2 + π2e2 −π2e3)

2(1+ π2)

)

+[0,5+ e]
πe−4(e3 +1)

9+ π2

≈ [0.4115,2.4380].

Evidently,

[0.2580,2.711]⊇ [0.4115,2.4380],

which elucidates the correctness of the outcomes proposed in Theorem 2.6.

REMARK 2.2. In Example 2.3, if the parameter α is not a fixed constant, that
is α ∈ (0,1) , according to Theorem 2.6, then the inclusion relation concerning the
parameter α is in the following:

α
b−a

[
I α

a+H(b)F(b)+I α
b−H(a)F(a)

]
=
∫ 1

0

(
e−

1−α
α (1−s) + e−

1−α
α s
)

[s2,s+1][2s3,es +1]ds,

P(a,b)D(ρ)+Q(a,b)
πe−ρ−1(eρ +1)

ρ2 + π2

= [2,2+2(1+ e)]

×
(

8ρ −π2e−ρ−2 + π2 +2ρ2 +8
2(ρ +2)(ρ2 +4ρ + π2 +4)

− e−ρ−2(8e2−8ρe2 + π2e2 +2ρ2e2−π2eρ)
2(ρ −2)(ρ2−4ρ + π2 +4)

)

+[0,5+ e]
πe−4(e3 +1)

9+ π2 .

Two functions with regard to the variable α ∈ (0,1) , deduced by the inclusions in
Theorem 2.6 on the left- and right-side portions, are plotted in Fig. 2.3. And as can be
seen from the Fig. 2.3, the inclusion relations derived in Theorem 2.6 are always valid
if the parameter α ∈ (0,1) is given for all value.
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Figure 2.3: Graphical representation for Theorem 2.6

THEOREM 2.7. In Theorem 2.6, if we consider the identical hypotheses, then we
have the successive fractional integral inclusion relations:

2H

(
a+b

2

)
F

(
a+b

2

)
⊇ 1−α

e(1− e−ρ)
[
I α

a+H(b)F(b)+I α
b−H(a)F(a)

]
+P(a,b)

πe−ρ−1(ρeρ + ρ)
(e− e−ρ+1)(ρ2 + π2)

+Q(a,b)
ρ

e(1− e−ρ)
D(ρ),

(2.31)

where P(a,b) , Q(a,b) and D(ρ) are defined as in Theorem 2.6.

Proof. For η ∈ [0,1] , we have that

a+b
2

=
(1−η)a+ ηb

2
+

ηa+(1−η)b
2

.

Since H , F are both two nonnegative interval-valued exponential trigonometric convex
functions, we derive that

H

(
a+b

2

)
F

(
a+b

2

)

= H

(
(1−η)a+ ηb

2
+

ηa+(1−η)b
2

)
F

(
(1−η)a+ ηb

2
+

ηa+(1−η)b
2

)
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⊇
( √

2
2
√

e

)2 [
H((1−η)a+ ηb)+H(ηa+(1−η)b)

]
× [F((1−η)a+ ηb)+F(ηa+(1−η)b)

]
=

1
2e

[
H((1−η)a+ ηb)F((1−η)a+ ηb)+H(ηa+(1−η)b)F(ηa+(1−η)b)

]
+

1
2e

[
H(ηa+(1−η)b)F((1−η)a+ηb)+H((1−η)a+ηb)F(ηa+(1−η)b)

]
⊇ 1

2e

[
H((1−η)a+ ηb)F((1−η)a+ ηb)+H(ηa+(1−η)b)F(ηa+(1−η)b)

]

+
1
2e

⎧⎨
⎩2sin πη

2 cosπη
2

e
P(a,b)+

⎡
⎣
(

sin πη
2

e1−η

)2

+

(
cosπη

2

eη

)2
⎤
⎦Q(a,b)

⎫⎬
⎭ . (2.32)

Multiplying both sides of (2.32) by e−ρη , and integrating established findings pertain-
ing to η over [0,1] , it follows that

∫ 1

0
e−ρηH

(
a+b

2

)
F

(
a+b

2

)
dη

⊇ 1
2e

∫ 1

0
e−ρη[H((1−η)a+ ηb))F((1−η)a+ ηb)

]
dη

+
1
2e

∫ 1

0
e−ρη[H(ηa+(1−η)b)F(ηa+(1−η)b)

]
dη

+
1
2e

P(a,b)
∫ 1

0
e−ρη 2sinπη

2 cosπη
2

e
dη

+
1
2e

Q(a,b)
∫ 1

0
e−ρη

[(
sin πη

2

e1−η

)2

+

(
cosπη

2

eη

)2]
dη .

As a consequence,

1− e−ρ

ρ
H

(
a+b

2

)
F

(
a+b

2

)

⊇ α
2e(b−a)

[
I α

a+H(b)F(b)+I α
b−H(a)F(a)

]
+

1
2e

P(a,b)
πe−ρ−1(eρ +1)

ρ2 + π2

+
1
2e

Q(a,b)

[
8ρ −π2e−ρ−2 + π2 +2ρ +8
2(ρ +2)(ρ2 +4ρ + π2 +4)

− e−ρ−2(8e2−8ρe2 + π2e2 +2ρ2e2−π2eρ)
2(ρ −2)(ρ2−4ρ + π2 +4)

]
,

which yields the desired finding in (2.31). This ends the proof. �
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COROLLARY 2.4. If we consider several special cases in Theorem 2.7, then we
acquire the succeeding findings.

(1) If we consider to take α → 1 , that is ρ → 0 , then we obtained that

lim
α→1

1−α
e(1− e−ρ)

=
1

e(b−a)
,

lim
α→1

πe−ρ−1(ρeρ + ρ)
(e− e−ρ+1)(ρ2 + π2)

=
2

πe2 ,

and

lim
α→1

ρ
e−e−ρ+1

[
8ρ−π2e−ρ−2+π2+2ρ+8
2(ρ+2)(ρ2+4ρ+π2+4)

−e−ρ−2(8e2−8ρe2+π2e2+2ρe2−π2eρ)
2(ρ−2)(ρ2−4ρ+π2+4)

]

=
π2−π2e−2 +8

2e(π2 +4)
.

Thus, Theorem 2.7 is converted to

2H

(
a+b

2

)
F

(
a+b

2

)
⊇ 2

e(b−a)

∫ b

a
H(x)F(x)dx+

2
πe2

[
H(a)F(a)+H(b)F(b)

]
+

π2−π2e−2 +8
2e(π2 +4)

[
H(a)F(b)+H(b)F(a)

]
.

(2) If the functions satisfy the conditions H = H and F = F , then we have the
successive fractional Pachpatte-type integral inequality for exponential trigonometric
convex functions

2H

(
a+b

2

)
F

(
a+b

2

)
� 1−α

e(1− e−ρ)
[
I α

a+H(b)F(b)+I α
b−H(a)F(a)

]
+P(a,b)

πe−ρ−1(ρeρ + ρ)
(e− e−ρ+1)(ρ2 + π2)

+Q(a,b)
ρ

e(1− e−ρ)
D(ρ).

(3) If we take α → 1 , H = H and F = F , then we have the coming Pachpatte-type
integral inequality for exponential trigonometric convex functions

2H

(
a+b

2

)
F

(
a+b

2

)
� 2

e(b−a)

∫ b

a
H(x)F(x)dx+

2
πe2

[
H(a)F(a)+H(b)F(b)

]
+

π2−π2e−2 +8
2e(π2 +4)

[
H(a)F(b)+H(b)F(a)

]
.

We finally establish the following interesting outcomes, which concern multi-
ple fractional integral inclusion relations pertaining to the interval-valued exponential
trigonometric convex functions.
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THEOREM 2.8. Assume that H : [a,b] → R
+
I is an interval-valued exponential

trigonometric convex function together with a < b and H(x) =
[
H(x),H(x)

]
. Then

one has the succeeding multiple integral inclusion relations:

eH

(
a+b

2

)
⊇
√

e
2

[
H

(
3a+b

4

)
+H

(
a+3b

4

)]

⊇ 1−α
2(1− e−

ρ
2 )

[
I α

a+H

(
a+b

2

)
+I α

( a+b
2 )−

H(a)

+I α
( a+b

2 )+H(b)+I α
b−H

(
a+b

2

)]

⊇ ρ
2(1− e−

ρ
2 )

K (ρ)
[
H(a)+H(b)

2
+H

(
a+b

2

)]

⊇ ρ
2(1− e−

ρ
2 )

K (ρ)

(
1+

√
2
e

)
H(a)+H(b)

2
,

(2.33)

where

K (ρ) =
2ρ +2πe−

ρ
2 −1 +4

ρ2 +4ρ + π2 +4
+

2πe−1 + e−
ρ
2 −1(4e−2ρe)

ρ2−4ρ + π2 +4
.

Proof. Taking advantage of the exponential trigonometric convexity of the interval-
valued function H defined on

[
a, a+b

2

]
, we have that

H

(
3x+ y

4

)
= H

(
x+ x+y

2

2

)

⊇ sin π
4

e
1
2

H(x)+
cosπ

4

e
1
2

H

(
x+ y

2

)

=
1
2

√
2
e

(
H(x)+H

(
x+ y

2

))
,

for any x,y ∈ [a, a+b
2

]
.

Making use of x = ηa+ (1−η) a+b
2 and y = (1−η)a + η a+b

2 , η ∈ [0,1] , we
derive that

H

(
x+ y

2

)
= H

(
3a+b

4

)

⊇ 1
2

√
2
e

[
H

(
ηa+(1−η)

a+b
2

)
+H

(
(1−η)a+ η

a+b
2

)]
.

(2.34)
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Multiplying on each side of (2.34) by e−
ρ
2 η , and integrating obtained findings with

regard to η from 0 to 1, it follows that

∫ 1

0
e−

ρ
2 ηH

(
3a+b

4

)
dη

⊇ 1
2

√
2
e

[∫ 1

0
e−

ρ
2 ηH

(
ηa+(1−η)

a+b
2

)
dη

+
∫ 1

0
e−

ρ
2 ηH

(
(1−η)a+ η

a+b
2

)
dη

]

=
1
2

√
2
e

[∫ 1

0
e−

ρ
2 η
(

H
(

ηa+(1−η)
a+b

2

)
+H
(
(1−η)a+ η

a+b
2

))
dη,

∫ 1

0
e−

ρ
2 η
(

H
(

ηa+(1−η)
a+b

2

)
+H
(
(1−η)a+ η

a+b
2

))
dη

]

=

[√
2
e

1
b−a

(∫ a+b
2

a
e−

1−α
α ( a+b

2 −u)H(u)du+
∫ a+b

2

a
e−

1−α
α (v−a)H(v)dv

)
,

√
2
e

1
b−a

(∫ a+b
2

a
e−

1−α
α ( a+b

2 −u)H(u)du+
∫ a+b

2

a
e−

1−α
α (v−a)H(v)dv

)]

=

√
2
e

α
b−a

[
I α

a+H

(
a+b

2

)
+I α

( a+b
2 )−

H(a)
]
.

(2.35)

Also,

∫ 1

0
e−

ρ
2 ηH

(
3a+b

4

)
dη =

[∫ 1

0
e−

ρ
2 ηH

(
3a+b

4

)
dη,
∫ 1

0
e−

ρ
2 ηH

(
3a+b

4

)
dη

]

=

⎡
⎣2
(
1− e−

ρ
2

)
ρ

H

(
3a+b

4

)
,
2
(
1− e−

ρ
2

)
ρ

H

(
3a+b

4

)⎤⎦

=
2
(
1− e−

ρ
2

)
ρ

H

(
3a+b

4

)
.

(2.36)

Employing the exponential trigonometric convexity of the interval-valued function H
again, we have that

H

(
(1−η)a+ η

a+b
2

)
⊇ cosπη

2

eη
H(a)+

sin πη
2

e1−η
H

(
a+b

2

)
, (2.37)
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and

H

(
ηa+(1−η)

a+b
2

)
⊇ sinπη

2

e1−η H(a)+
cosπη

2

eη H

(
a+b

2

)
, (2.38)

for all η ∈ [0,1] .

Adding (2.37) and (2.38), it yields that

H

(
ηa+(1−η)

a+b
2

)
+H

(
(1−η)a+ η

a+b
2

)

⊇
[

sin πη
2

e1−η +
cosπη

2

eη

][
H(a)+H

(
a+b

2

)]
.

(2.39)

Multiplying both sides of (2.39) by e−
ρ
2 η , and integrating deduced outcomes pertaining

to η over [0,1] , we derive that

∫ 1

0
e−

ρ
2 ηH

(
ηa+(1−η)

a+b
2

)
dη +

∫ 1

0
e−

ρ
2 ηH

(
(1−η)a+ η

a+b
2

)
dη

⊇
∫ 1

0
e−

ρ
2 η

[
sinπη

2

e1−η +
cosπη

2

eη

][
H(a)+H

(
a+b

2

)]
dη

=

(
2ρ +2πe−

ρ
2 −1 +4

ρ2 +4ρ + π2 +4
+

2πe−1 + e−
ρ
2 −1(4e−2ρe)

ρ2−4ρ + π2 +4

)

×
[
H(a)+H

(
a+b

2

)]
.

(2.40)

Combining (2.35), (2.36) and (2.40), we get the following results

√
e
2
H

(
3a+b

4

)
⊇ 1−α

2(1− e−
ρ
2 )

[
I α

a+H

(
a+b

2

)
+I α

( a+b
2 )−

H(a)
]

⊇ ρ
2(1− e−

ρ
2 )

(
2ρ +2πe−

ρ
2 −1 +4

ρ2 +4ρ + π2 +4
+

2πe−1 + e−
ρ
2 −1(4e−2ρe)

ρ2−4ρ + π2 +4

)

×
[

H(a)+H( a+b
2 )

2

]
.

(2.41)
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Similarly, in terms of the exponential trigonometric convexity of the interval-valued
function H defined on

[
a+b
2 ,b

]
, we obtain that√

e
2
H

(
a+3b

4

)
⊇ 1−α

2(1− e−
ρ
2 )

[
I α

( a+b
2 )+H(b)+I α

b−H

(
a+b

2

)]

⊇ ρ
2(1− e−

ρ
2 )

(
2ρ +2πe−

ρ
2 −1 +4

ρ2 +4ρ + π2 +4
+

2πe−1 + e−
ρ
2 −1(4e−2ρe)

ρ2−4ρ + π2 +4

)

×
[

H
(

a+b
2

)
+H(b)

2

]
.

(2.42)

Using the relations (2.41) and (2.42), it follows that√
e
2

[
H

(
3a+b

4

)
+H

(
a+3b

4

)]

⊇ 1−α
2(1− e−

ρ
2 )

[
I α

a+H

(
a+b

2

)
+I α

( a+b
2 )−

H(a)+I α
( a+b

2 )+H(b)+I α
b−H

(
a+b

2

)]

⊇ ρ
2(1− e−

ρ
2 )

K (ρ)
[
H(a)+H(b)

2
+H

(
a+b

2

)]
.

(2.43)

This yields the second and third integral inclusion relations in (2.33).
By virtue of the exponential trigonometric convexity of interval-valued function

H again, we acquire that

H

(
a+b

2

)
= H

(
3a+b

4 + a+3b
4

2

)

⊇ sin π
4

e
1
2

H

(
3a+b

4

)
+

cosπ
4

e
1
2

H

(
a+3b

4

)

=
1
2

√
2
e

[
H

(
3a+b

4

)
+H

(
a+3b

4

)]
,

(2.44)

and

H

(
a+b

2

)
⊇ sin π

4

e
1
2

H(a)+
cosπ

4

e
1
2

H(b) =

√
2
e

H(a)+H(b)
2

, (2.45)

Applying the relations (2.44) and (2.45) to (2.43), we get the first and fourth inclu-
sion relations in (2.33), respectively. Therefore, the proof of Theorem 2.8, is accom-
plished. �

COROLLARY 2.5. If we consider some special cases in Theorem 2.8, then we
obtain the successive findings.
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(1) If we consider to take α → 1 , that is ρ = 1−α
α (b− a) → 0 , then we deduce

that

lim
α→1

1−α
2(1− e−

ρ
2 )

=
1

b−a
,

and

lim
α→1

ρ
2(1− e−

ρ
2 )

(
2ρ +2πe−

ρ
2 −1 +4

ρ2 +4ρ + π2 +4
+

2πe−1 + e−
ρ
2 −1(4e−2ρe)

ρ2−4ρ + π2 +4

)

=
2(2πe−1 +4)

π2 +4
,

Thus, Theorem 2.8 is transformed to

e
2
H

(
a+b

2

)
⊇ 1

2

√
e
2

[
H

(
3a+b

4

)
+H

(
a+3b

4

)]

⊇ 1
b−a

∫ b

a
H(x)dx

⊇ 2πe−1 +4
π2 +4

[
H(a)+H(b)

2
+H

(
a+b

2

)]

⊇ 2πe−1 +4
π2 +4

(
1+

√
2
e

)
H(a)+H(b)

2
,

which are the refinement results of Theorem 2.4 with α → 1 .

(2) If we consider to let H = H , then we get that

eH

(
a+b

2

)
�
√

e
2

[
H

(
3a+b

4

)
+H

(
a+3b

4

)]

� 1−α
2(1− e−

ρ
2 )

[
I α

a+H

(
a+b

2

)
+I α

( a+b
2 )−

H(a)

+I α
( a+b

2 )+H(b)+I α
b−H

(
a+b

2

)]

� ρ
2(1− e−

ρ
2 )

K (ρ)
[
H(a)+H(b)

2
+H

(
a+b

2

)]

� ρ
2(1− e−

ρ
2 )

K (ρ)

(
1+

√
2
e

)
H(a)+H(b)

2
.
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(3) If we take α → 1 and H = H , then we have that

e
2
H

(
a+b

2

)
� 1

2

√
e
2

[
H

(
3a+b

4

)
+H

(
a+3b

4

)]

� 1
b−a

∫ b

a
H(x)dx

� 2πe−1 +4
π2 +4

[
H(a)+H(b)

2
+H

(
a+b

2

)]

� 2πe−1 +4
π2 +4

(
1+

√
2
e

)
H(a)+H(b)

2
,

which are the refinement results with respect to Theorem 1.1.

To end this section, we present the following example to reveal the correctness of
the results obtained in Theorem 2.8.

EXAMPLE 2.4. If we consider to take H(s) =
[
2s4,s+1

]
, s∈ [0,1] , a = 0, b = 1

and α = 1
3 , then all hypotheses considered in Theorem 2.8 satisfy requirements. One

can obtain that

eH

(
a+b

2

)
= e

[
1
8
,
3
2

]
≈ [0.3398,4.0774],

√
e
2

[
H

(
3a+b

4

)
+H

(
a+3b

4

)]
=
√

e
2

([
1

128
,
5
4

]
+
[

81
128

,
7
4

])
≈ [0.7469,3.4975],

1−α
2(1− e−

ρ
2 )

[
I α

a+H

(
a+b

2

)
+I α

( a+b
2 )−

H(a)+I α
( a+b

2 )+H(b)+I α
b−H

(
a+b

2

)]

=
1

1− e−1

{∫ 1
2

0
e−2( 1

2−s)[2s4,s+1]ds+
∫ 1

2

0
e−2s[2s4,s+1]ds

+
∫ 1

1
2

e−2(1−s)[2s4,s+1]ds+
∫ 1

1
2

e−2(s− 1
2 )[2s4,s+1]ds

}

=
1

1− e−1

[
3e
2
− 121e−1

8
+2,3−3e−1

]
≈ [0.8052,3.0000],

ρ
2(1− e−

ρ
2 )

K (ρ)
[
H(a)+H(b)

2
+H

(
a+b

2

)]

=
1

1− e−1

(
6+2πe−2

16+ π2 +
2e−1

π

)[
9
8
,3

]
≈ [1.0257,2.7351],
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ρ
2(1− e−

ρ
2 )

K (ρ)

(
1+

√
2
e

)
H(a)+H(b)

2

=
1

1− e−1

(
1+

√
2
e

)(
6+2πe−2

16+ π2 +
2e−1

π

)[
1,

3
2

]
≈ [1.6937,2.5406].

Therefore,

[0.3398,4.0774]⊇ [0.7469,3.4975]⊇ [0.8052,3.0000]
⊇ [1.0257,2.7351]⊇ [1.6937,2.5406],

which elucidates the correctness of the outcomes presented in Theorem 2.8.

REMARK 2.3. In Example 2.4, if the parameter α is not a fixed constant, that
is α ∈ (0,1) , according to Theorem 2.8, then the inclusion relation pertaining to the
parameter α is in the following:√

e
2

[
H

(
3a+b

4

)
+H

(
a+3b

4

)]

⊇ 1−α
2(1− e−

ρ
2 )

[
I α

a+H

(
a+b

2

)

+I α
( a+b

2 )−
H(a)+I α

( a+b
2 )+H(b)+I α

b−H

(
a+b

2

)]

⊇ ρ
2(1− e−

ρ
2 )

K (ρ)
[
H(a)+H(b)

2
+H

(
a+b

2

)]
.

Therefore, the left-, middle-, and right-side parts of the above inclusions can be ac-
quired.

2(1− e−
ρ
2 )

ρ

√
e
2

[
H

(
3a+b

4

)
+H

(
a+3b

4

)]
=

2(1− e−
ρ
2 )

ρ

√
e
2

[
41
64

,3

]
,

α
b−a

[
I α

a+H

(
a+b

2

)
+I α

( a+b
2 )−

H(a)+I α
( a+b

2 )+H(b)+I α
b−H

(
a+b

2

)]

=

{∫ 1
2

0
e−

1−α
α ( 1

2−s)[2s4,s+1]ds+
∫ 1

2

0
e−

1−α
α s[2s4,s+1]ds

+
∫ 1

1
2

e−
1−α

α (1−s)[2s4,s+1]ds+
∫ 1

1
2

e−
1−α

α (s− 1
2 )[2s4,s+1]ds

}
,

and

K (ρ)
[
H(a)+H(b)

2
+H

(
a+b

2

)]

=
[
9
8
,3

]
2ρ +2πe−

ρ
2 −1 +2

ρ2 +4ρ + π2 +4
+

2πe−1 + e−
ρ
2 −1(4e−2ρe)

ρ2−4ρ + π2 +4
.
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Three functions pertaining to the variable α ∈ (0,1) , yielded by the inclusions in Theo-
rem 2.8 on the left-, middle- and right-side portions, are plotted in Fig. 2.4. And as can
be seen from the Fig. 2.4, the inclusion relations deduced in Theorem 2.8 are always
valid if the parameter α ∈ (0,1) is given for all value.
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Figure 2.4: Graphical representation for Theorem 2.8

3. Conclusions

To the best of our knowledge, this is the first paper concerning to the fractional
inclusion relations involving the interval-valued exponential trigonometric convexity.
Herein, we deduce the interval-valued fractional integral inclusions in association with
the Hermite–Hadamard- and Pachpatte-type inequality for the newly introduced fam-
ily of functions. In particular, we come up with an improved version of the Hermite–
Hadamard-type integral inclusions pertaining to the interval-valued exponential trigono-
metric convex functions. These integral inclusion relations addressed in the present
study are substantial generalizations of the outcomes obtained by Kadakal et al. in [17]
(2021). We would like to emphasize that interval analysis has a wide range of applica-
tions in applied mathematics, especially in the field of optimality analysis, see the pub-
lished articles [15, 33, 39]. To a certain extent, the important area of the interval-valued
analysis research, which is linked to fractional integral operators, deserves further ex-
ploration.
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[31] M. Z. SARIKAYA, D. KILIÇER, On the extension of Hermite–Hadamard type inequalities for coordi-
nated convex mappings, Turkish J. Math. 45 (2021) 2731–2745.

[32] E. SET, S. I. BUTT, A. O. AKDEMIR, A. KARAOǦLAN, T. ABDELJAWAD, New integral inequal-
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