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EQUIVALENCE ON HIROSHIMA’S TYPE INEQUALITIES

FOR POSITIVE SEMIDEFINITE BLOCK MATRICES

YUN ZHANG ∗ , HAIBO ZHANG AND SHUO SHI

(Communicated by T. Burić)

Abstract. In this paper, we prove that some Hiroshima’s type inequalities for positive semidef-
inite block matrices are equivalent. These interesting results are due to Hiroshima [Phys. Rev.
Lett. 91, (2003), 057902], Lin and Wolkowicz [Linear Multilinear Algebra 60, 11–12 (2012),
1365–1368], Turkmen, Paksoy and Zhang [Linear Algebra Appl. 437, 6 (2012), 1305–1316],
Zhang and Xu [J. Math. Inequal. 14, 4 (2020), 1383–1388], respectively.

1. Introduction

Let Mm,n be the space of all complex matrices of size m×n with Mn = Mn,n . For
A∈Mn , the vector of eigenvalues of A is denoted by λ (A) = (λ1(A),λ2(A), . . . ,λn(A))
and A∗ is the conjugate transpose of A. In this paper, we use A⊕B to represent the

block matrix

[
A 0
0 B

]
. Now, we recall the definition of majorization. Given a real vector

x = (x1,x2, . . . ,xn) ∈ R
n , we rearrange its components as x[1] � x[2] � · · · � x[n]. For

x = (x1,x2, . . . ,xn) , y = (y1,y2, . . . ,yn) ∈ R
n, if

k

∑
i=1

x[i] �
k

∑
i=1

y[i],k = 1,2, . . . ,n,

then we say that x is weakly majorized by y and denote x ≺w y . If x ≺w y and
n

∑
i=1

xi =
n

∑
i=1

yi holds, then we say that x is majorized by y and denote x ≺ y.

The study of eigenvalue majorization inequalities plays an important role in matrix
analysis. A fundamental result due to Schur [1, 5, 8, 12], which stated that the diagonal
entries of a Hermitian matrix A are majorized by its eigenvalues, i.e. ,

diag(A) ≺ λ (A). (1.1)
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This result was extended by Ky Fan [2] to block Hermitian matrices, i.e. , let H =[
A11 A12

A∗
12 A22

]
be a block Hermitian matrix with A11, A22 ∈ Mn. Then

λ (A11⊕A22) ≺ λ (H). (1.2)

For the case of 2×2 block-partitioned positive semidefinite matrices, we list some

related interesting results. Let H =
[
A11 A12

A∗
12 A22

]
be a positive semidefinite block matrix

with A11, A22 ∈ Mn . Lin and Wolkowicz [7] proved that if A12 ∈ Mn is Hermitian, then

λ (H) ≺ λ ((A11 +A22)⊕0) . (1.3)

Turkmen, Paksoy and Zhang [9] proved a parallel result: If A12 ∈Mn is Skew-Hermitian,
then

λ (H) ≺ λ ((A11 +A22)⊕0) . (1.4)

Recently, Zhang [13] gave a general result:

λ (H) ≺ 1
2

λ ([A11 +A22 + i(zA∗
12− zA12)]⊕0)

+
1
2

λ ([A11 +A22 + i(zA12− zA∗
12)]⊕0), (1.5)

in which i2 = −1 and |z| = 1. We notice that (1.3) and (1.4) are special cases of (1.5)
by setting different values of z.

For the case of s× s block-partitioned positive semidefinite matrices with s � 2,
there are some parallel results to (1.3) and (1.4). Let H = [Ai j] ∈ Msn be an s× s
block-partitioned positive semidefinite matrix with Ai j ∈Mn for i, j = 1, . . . ,s. In 2003,
Hiroshima [4] proved a very attractive result, i.e. , if Ai j ∈ Mn are Hermitian matrices
for all i �= j , then

λ (H) ≺ λ

((
s

∑
i=1

Aii

)
⊕0

)
, (1.6)

which is extremely valuable in quantum physics. Motivated by the inequality (1.4),
Zhang and Xu [11] generalized (1.4) to the following: If Ai j ∈ Mn are Skew-Hermitian
for all i �= j , then

λ (H) ≺ λ

((
s

∑
i=1

Aii

)
⊕0

)
. (1.7)

Another elegant proof of (1.7) is due to Zhang [10].
Although Hiroshima’s result (1.6) has useful applications in quantum physics (see,

e.g., [3, 6]), it seems not widely known in the field of matrix analysis. Indeed, inde-
pendent of the Hiroshima paper, Lin and Wolkowicz derived (1.3) as the special case of
(1.6). In fact, (1.3) and (1.6) are equivalent. In this paper, we aim to show that all the
above results are actually equivalent.
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2. Main results

The following lemma is well-known.

LEMMA 2.1. [12, p. 32] Let A ∈ Mm,n with m � n. Then

λ (AA∗) = λ (A∗A⊕0).

THEOREM 2.2. The following statements are equivalent:

(a) [7, Theorem 1.1] Let H =
[
A11 A12

A∗
12 A22

]
be a positive semidefinite block matrix with

A11, A22 ∈ Mn . If A12 ∈ Mn is Hermitian, then

λ (H) ≺ λ ((A11 +A22)⊕0) .

(b) [7, Corallary 2.2] Let A1, A2 ∈ Mn with A∗
1A2 = A∗

2A1 . Then

λ (A1A
∗
1 +A2A

∗
2) ≺ λ (A∗

1A1 +A∗
2A2) .

(c) [4] Let A1, A2, . . . ,As ∈ Mn (s � 2) with A∗
i A j = A∗

jAi (1 � i < j � s) . Then

λ

(
s

∑
i=1

AiA
∗
i

)
≺ λ

(
s

∑
i=1

A∗
i Ai

)
.

(d) [4] Let H = [Ai j]∈Msn be an s×s block-partitioned positive semidefinite matrix
with Ai j ∈ Mn for i, j = 1, . . . ,s, (s � 2). If Ai j ∈ Mn are Hermitian matrices for
all i �= j , then

λ (H) ≺ λ

((
s

∑
i=1

Aii

)
⊕0

)
.

Proof. (a) ⇒ (b) See [7, Theorem 1.1].
(b) ⇒ (c). We use induction on the number of matrices. For s = 2 the assertion

is due to (b) . Now let s � 2 and assume that the statement (c) holds for the number s
of matrices.

Setting

H1 =
[
A1 0
0 A1

]
, H2 =

[
A2 0
0 A2

]
, . . . , Hs−1 =

[
As−1 0

0 As−1

]

and

Hs =
[

As As+1

As+1 −As

]
.

Next we only need to show that H∗
i Hj = H∗

j Hi (1 � i < j � s) . We can divide it
into two cases.
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Case 1: 1 � i < j � s−1. It is easy to check that

H∗
i Hj = H∗

j Hi.

Case 2: 1 � i � s−1, j = s. By a straight calculation, we also have

H∗
i Hs = H∗

s Hi.

By the induction hypothesis, we get

λ

(
s

∑
k=1

HkH
∗
k

)
≺ λ

(
s

∑
k=1

H∗
k Hk

)
.

That is

λ
([

∑s+1
k=1 AkA∗

k AsA∗
s+1−As+1A∗

s
As+1A∗

s −AsA∗
s+1 ∑s+1

k=1 AkA∗
k

])
≺ λ

([
∑s+1

k=1 A∗
kAk 0

0 ∑s+1
k=1 A∗

kAk

])
. (2.3)

Applying (1.2), we have

λ
([

∑s+1
k=1 AkA∗

k 0
0 ∑s+1

k=1 AkA∗
k

])
≺ λ

([
∑s+1

k=1 AkA∗
k AsA∗

s+1−As+1A∗
s

As+1A∗
s −AsA∗

s+1 ∑s+1
k=1 AkA∗

k

])
. (2.4)

Combining (2.3) and (2.4) gives

λ
([

∑s+1
k=1 AkA∗

k 0
0 ∑s+1

k=1 AkA∗
k

])
≺ λ

([
∑s+1

k=1 A∗
kAk 0

0 ∑s+1
k=1 A∗

kAk

])
,

i.e. ,

λ

(
s+1

∑
k=1

AkA
∗
k

)
≺ λ

(
s+1

∑
k=1

A∗
kAk

)
.

(c) ⇒ (d) . Let H = P∗P, where P = [A1, A2, . . . ,As] ∈ Mn,sn with Ai ∈ Mn for
1 � i � s. By Lemma 2.1 and the statement (c) , we have

λ (H) = λ (P∗P) = λ (PP∗⊕0) = λ

((
s

∑
i=1

AiA
∗
i

)
⊕0

)

≺ λ

((
s

∑
i=1

A∗
i Ai

)
⊕0

)
,

i.e.,

λ (H) ≺ λ

((
s

∑
i=1

Aii

)
⊕0

)
.

(d) ⇒ (a) Taking s = 2. �
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THEOREM 2.5. The following statements are equivalent:

(e) [9, Corollary 5] Let H =
[
A11 A12

A∗
12 A22

]
be a positive semidefinite block matrix with

A11, A22 ∈ Mn . If A12 ∈ Mn is Skew-Hermitian, then

λ (H) ≺ λ ((A11 +A22)⊕0) .

( f ) [9, Corollary 4] Let A1, A2 ∈ Mn with A∗
1A2 = −A∗

2A1 . Then

λ (A1A
∗
1 +A2A

∗
2) ≺ λ (A∗

1A1 +A∗
2A2) .

(g) [11, Corollary 6] Let A1, A2, . . . ,As ∈ Mn (s � 2 ) with A∗
i A j = −A∗

jAi (1 � i <
j � s) . Then

λ

(
s

∑
i=1

AiA
∗
i

)
≺ λ

(
s

∑
i=1

A∗
i Ai

)
.

(h) [11, Theorem 1] Let H = [Ai j] ∈ Msn be an s× s block-partitioned positive
semidefinite matrix with Ai j ∈ Mn for i, j = 1, . . . ,s, (s � 2). If Ai j ∈ Mn are
Skew-Hermitian matrices for all i �= j , then

λ (H) ≺ λ

((
s

∑
i=1

Aii

)
⊕0

)
.

Proof. The proof for Theorem 2.5 is similar to that for Theorem 2.2. We only
show that ( f ) ⇒ (g). These are left as exercises for the reader.

We use induction on the number of matrices. For s = 2 the assertion is due to ( f ) .
Now let s � 2 and assume that the (g) holds for the number s of matrices. Setting

H1 =
[
A1 0
0 A1

]
, H2 =

[
A2 0
0 A2

]
, . . . , Hs−1 =

[
As−1 0

0 As−1

]

and

Hs =
[ −As −As+1

−As+1 −As

]
.

For 1 � i < j � s−1, it is clear that

H∗
i Hj = −H∗

j Hi.

For 1 � i � s−1 and j = s , we also have

H∗
i Hs = −H∗

s Hi.

By the induction hypothesis, we obtain

λ

(
s

∑
k=1

HkH
∗
k

)
≺ λ

(
s

∑
k=1

H∗
k Hk

)
.
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That is

λ
([

∑s+1
k=1 AkA∗

k AsA∗
s+1 +As+1A∗

s
As+1A∗

s +AsA∗
s+1 ∑s+1

k=1 AkA∗
k

])
≺ λ

([
∑s+1

k=1 A∗
kAk 0

0 ∑s+1
k=1 A∗

kAk

])
. (2.6)

Applying (1.2), we have

λ
([

∑s+1
k=1 AkA∗

k 0
0 ∑s+1

k=1 AkA∗
k

])
≺ λ

([
∑s+1

k=1 AkA∗
k AsA∗

s+1 +As+1A∗
s

As+1A∗
s +AsA∗

s+1 ∑s+1
k=1 AkA∗

k

])
. (2.7)

Combining (2.6) and (2.7) gives

λ
([

∑s+1
k=1 AkA∗

k 0
0 ∑s+1

k=1 AkA∗
k

])
≺ λ

([
∑s+1

k=1 A∗
kAk 0

0 ∑s+1
k=1 A∗

kAk

])
,

i.e. ,

λ

(
s+1

∑
k=1

AkA
∗
k

)
≺ λ

(
s+1

∑
k=1

A∗
kAk

)
. �

REMARK 2.8. From the proof of [9, Corollary 4], we can see that the statement
(b) in Theorem 2.2 and the statement ( f ) in Theorem 2.5 are equivalent. Therefore we
can conclude that all the statements of Theorem 2.2 and Theorem 2.5 are equivalent.
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