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Abstract. In this paper, we define the commutators of fractional integral operators and Calderón-
Zygmund singular integral operators on differential forms, and give the sufficient and necessary
conditions for these commutators to be bounded on weighted Lebesgue spaces. As an applica-
tion, the Caccioppoli-type inequalities with Orlicz norm for commutators of Calderón-Zygmund
singular integral operators on differential forms are obtained.

1. Introduction

The purpose of this paper is to give the sufficient and necessary conditions for
the Lp -boundedness of commutators of two types of singular integral operators act-
ing on differential forms which include the fractional integral operators and Calderón-
Zygmund singular integral operators for functions as special cases. Meanwhile, we
establish some related norm inequalities for these commutators.

Given  , 0 <  < n , the fractional integral operator I on differential forms is
defined by

Iu(x) =
I

(∫
Rn

1
|x− y|n− uI(y)dy

)
dxI, (1.1)

where u(x) is a differential l -form defined on R
n and the summation is over all ordered

l -tuples I = (i1, i2, · · · , il) , 1 � i1 < · · · < il � n .
Similarly, the Calderón-Zygmund singular integral operator T on differential forms

is defined by

Tu(x) =
I

(∫
Rn

(x− y)
|x− y|n uI(y)dy

)
dxI, (1.2)

where (x) is defined on Sn−1 , has mean 0, and is sufficiently smooth.
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If b ∈ BMO(Rn) , the commutators of fractional integral operator and Calderón-
Zygmund singular integral operator on differential forms are of the forms

[b, I ]u(x) = b(x)Iu(x)− I(bu)(x)

=
I

(∫
Rn

(b(x)−b(y))
1

|x− y|n− uI(y)dy

)
dxI (1.3)

and

[b,T ]u(x) = b(x)Tu(x)−T(bu)(x)

=
I

(∫
Rn

(b(x)−b(y))
(x− y)
|x− y|n uI(y)dy

)
dxI . (1.4)

As we know, differential forms are the generalizations of functions and are often
used to describe various PDE systems, different geometric structures and the calculus
of variations. People can find many important applications of differential forms in
numerous fields, such as quasiconformal analysis, nonlinear elasticity and differential
geometry, see [1, 8, 12, 11, 2, 14, 18], for example. When taking u(x) as a 0-form,
the commutators in (1.3) and (1.4) reduce to the corresponding operators in function
spaces as follows

[b, I ] f (x) =
∫

Rn
(b(x)−b(y))

1
|x− y|n− f (y)dy (1.5)

and

[b,T ] f (x) =
∫

Rn
(b(x)−b(y))

(x− y)
|x− y|n f (y)dy. (1.6)

It is well known that these commutators are quite important operators in harmonic
analysis and have the higher degree of singularity compared with the standard singular
integral operators. In the past few decades, the research on commutators have attracted
great attention of many scholars for their significant roles in many fields, especially
in partial differential equations, see [5, 6, 10, 19] for details. The Lp -boundedness of
commutators was first investigated by R. Coifman, R. Rochberg and G. Weiss in the
study of certain fractorization theorems for generalized Hardy spaces in [7], where they
showed a classical result that the linear commutator [b,T ] is bounded on Lp(Rn) for
1 < p < . They also proved that the condition b∈ BMO(Rn) is a necessary condition
when T = Rj , the jth Riesz transform in R

n , for j = 1, . . . ,n . Since then, the study
on the boundedness of commutators in various function spaces have rapidly developed
and many articles have appeared.

In this paper, we are interested in the boundedness of commutators on weighted
Lebesgue spaces. For the functional cases, D. Cruz-Uribe and A. Fiorenza [4] proved
that the commutator of fractional integral operator is bounded from Lp(wp) into Lq(wq)
if w ∈ Ap,q and b ∈ BMO(Rn) . The analogous result of Ap -weight for any Calderón-
Zygmund singular integral operator was stated by C. Pérez in [16]. Recently, L. Chaffee
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and D. Cruz-Uribe [3] gave the necessary conditions for the boundedness of commuta-
tors on Banach function spaces which are satisfied by the commutators (1.5) and (1.6)
and the weighted function spaces we mentioned above. Inspired by these works, we aim
to give the weighted results for these commutators on differential forms. To be precise,
we prove that b ∈ BMO(Rn) is a sufficient and necessary condition for the commuta-
tors of fractional integral operators and Calderón-Zygmund singular integral operators
on differential forms to be bounded on weighted Lebesgue spaces. See Theorem 2.5
and Theorem 2.7, respectively. As an application of the estimate of boudedness, we es-
tablish the Caccioppoli-type inequality for commutator of Calderón-Zygmund singular
integral operator on differential forms and extend it to the version of A(, ,;E)-
weight. Finally, we generally derive the Caccioppoli-type inequality with Orlicz norm
and present the related conclusions in Sect. 3. The results obtained in this paper will
supplement and improve the study of the Lp -theory of the related operators and differ-
ential forms.

Throughout of this paper, let ⊂ R
n be a bounded domain, n � 2, B and B be

the balls with the same center and diam (B) = diam (B) . We use |E| to denote the
Lebesgue measure of a set E ⊂R

n . Let l =l(Rn) , l = 1,2, · · · ,n , be the set of all l -
forms u(x) =I uI(x)dxI =ui1···il (x)dxi1 ∧·· ·∧dxil with summation over all ordered
l -tuples I = (i1, i2, · · · , il) , 1� i1 < · · ·< il � n . D

′
(,l) is the space of all differential

l -forms on  , namely, the coefficients of the l -forms are differentiable on  . The
operator � : l(Rn) → n−l(Rn) is the Hodge-star operator as usual and the linear
operator d : D

′
(,l)→D

′
(,l+1) , 0 � l � n−1 is the exterior differential operator.

The Hodge codifferential operator d� : D
′
(,l+1) → D

′
(,l) , the formal adjoint of

d , is defined by d� = (−1)nl+1 � d� , see [17, 15] for more introduction. We shall
denote by Lp(,l) the space of differential l -forms with coefficients in Lp(,Rn)

and with norm ‖u‖p, =
(∫



(
I |uI(x)|2

) p
2
dx
) 1

p
. A nonnegative function w is called

a weight if w ∈ L1
loc(R

n) and w > 0 a.e . Also the norm of u∈ Lp(,l,w) is defined

by ‖u‖p,,w =
(∫

 |u|pw(x)dx
)1/p

. The non-homogeneous A-harmonic equation is of

the form
d�A(x,du) = B(x,du), (1.7)

where A :×l(Rn)→l(Rn) and B :×l(Rn)→l−1(Rn) satisfy the following
conditions:

|A(x, )| � a| |p−1, A(x, ) · � | |p and |B(x, )| � b| |p−1

for almost every x ∈  and all  ∈ l(Rn) . Here p > 1 is a constant related to the
equation (1.7) , and a,b > 0. A solution of (1.7) is an element of the Sobolev space
W 1,p

loc (,l−1) such that

∫


A(x,du) ·d+B(x,du) · = 0

for all  ∈W 1,p
loc (,l−1) with compact support.
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2. Boundedness for commutators of fractional integrals and singular integrals

In this section, we give the sufficient and necessary conditions for the Lp -boun-
dedness of two types of commutators generated by fractional integral operators and
Calderón-Zygmund singular integral operators applied to differential forms. We also
derive some strong-type estimates for these commutators. To state our results, we will
need the following two lemmas appearing in [4] and [16], respectively.

LEMMA 2.1. Given  , 0 <  < n and 1 < p < n
 , define q by 1

q = 1
p − 

n . Let
w be a weight satisfying Ap,q condition

( 1
|Q|

∫
Q

w(x)qdx
) 1

q
( 1
|Q|

∫
Q

w(x)−p
′
dx
) 1

p
′ � C1 < , (2.1)

for all cubes Q, where C1 is a constant and 1
p + 1

p′
= 1 . Then, given any function

b ∈ BMO(Rn) , [b, I ] satisfies the following inequality

(∫
Rn

|[b, I ] f (x)|qw(x)qdx
) 1

q � C2‖b‖BMO

(∫
Rn

| f (x)|pw(x)pdx

) 1
p

(2.2)

for some constant C2 .

LEMMA 2.2. Let w be a weight satisfying Ap condition: for all cubes Q, if there
is a constant C such that( 1

|Q|
∫

Q
w(x)dx

)( 1
|Q|

∫
Q

w(x)1−p
′
dx
)p−1

� C < , (2.3)

where 1 < p < and 1
p + 1

p′ = 1 . T is any Calderón-Zygmund singular integral oper-

ator. Then, given any function b ∈ BMO(Rn) , [b,T ] satisfies the following inequality

(∫
Rn

|[b,T ] f (x)|pw(x)dx
) 1

p � C‖b‖BMO

(∫
Rn

| f (x)|pw(x)dx

) 1
p

. (2.4)

We also need the following conclusions which are given in [3].

LEMMA 2.3. Given 0 <  < n and 1 < p < n
 , define q by 1

p − 1
q = 

n . Given
w ∈ Ap,q and a function b, if the commutator [b, I ] : Lp(wp) → Lq(wq) , then b ∈
BMO(Rn) .

LEMMA 2.4. For 1 < p < and w ∈ Ap , given a regular singular integral oper-
ator T and a function b, if [b,T ] is bounded on Lp(w) , then b ∈ BMO(Rn) .

Now, we are ready to give the sufficient and necessary condition for the bounded-
ness of commutators of fractional integral operators on differential forms.
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THEOREM 2.5. Given 0 <  < n and 1 < p < n
 , define q by 1

q = 1
p − 

n . Let

w∈Ap,q , u(x)∈Lp(l ,wp) be a differential l -form, l = 0,1, · · · ,n, I be the fractional
integral operator on differential forms. Then, given any function b ∈ BMO(Rn) , there
exists a constant C , independent of u , such that

‖[b, I ]u‖q,wq � C‖b‖BMO‖u‖p,wp, (2.5)

that is [b, I ] : Lp(l,wp) → Lq(l,wq) . Conversely, given a function b, if [b, I ] :
Lp(l,wp) → Lq(l,wq) , then b ∈ BMO(Rn) .

Proof. First, we prove the sufficiency. Let u =
I
uI(x)dxI be a differential l -form,

then

‖[b, I ]u‖q
q,wq =

∫
Rn

|[b, I ]u(x)|qw(x)qdx

=
∫

Rn

∣∣∣∣∣I
(∫

Rn

b(x)−b(y)
|x− y|n− uI(y)dy

)2
∣∣∣∣∣

q
2

w(x)qdx. (2.6)

Using the elementary inequality |N
i=1 ti|s � Ns−1N

i=1 |ti|s , for constants N,s > 0, it
follows that

‖[b, I ]u‖q
q,wq �

∫
Rn

C1
I

∣∣∣∫
Rn

b(x)−b(y)
|x− y|n− uI(y)dy

∣∣∣qw(x)qdx

= C1
I

∫
Rn

∣∣∣∫
Rn

b(x)−b(y)
|x− y|n− uI(y)dy

∣∣∣qw(x)qdx

= C1
I

∫
Rn

|[b, I ]uI(x)|qw(x)qdx. (2.7)

From Lemma 2.1, we have

(∫
Rn

|[b, I ]uI(x)|qw(x)qdx
) 1

q � C2‖b‖BMO

(∫
Rn

|uI(x)|pw(x)pdx

) 1
p

. (2.8)

The combination of (2.7) and (2.8) yields that

‖[b, I ]u‖q
q,wq � C3‖b‖q

BMO
I

(∫
Rn

|uI(x)|pw(x)pdx

) q
p

. (2.9)

Note that q
p > 1, since 1

q = 1
p − 

n . Thus, applying the fundamental inequality ‖a‖s +
‖b‖s � (‖a‖+‖b‖)s , s � 1, it follows that

‖[b, I ]u‖q
q,wq � C3‖b‖q

BMO
I

(∫
Rn

|uI(x)|pw(x)pdx

) q
p

� C4‖b‖q
BMO

(

I

∫
Rn

|uI(x)|pw(x)pdx

) q
p
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= C4‖b‖q
BMO

(∫
Rn

I
|uI(x)|pw(x)pdx

) q
p

� C5‖b‖q
BMO

(∫
Rn

(

I
|uI(x)|

)p
w(x)pdx

) q
p

. (2.10)

Using the inequality |N
i=1 ti|s � Ns−1N

i=1 |ti|s again, we can easily have

(

I
|uI(x)|

)2

� 4
I
|uI(x)|2. (2.11)

Substituting (2.11) into (2.10) gives

‖[b, I ]u‖q
q,wq � C6‖b‖q

BMO

(∫
Rn

(

I
|uI(x)|2

) p
2
w(x)pdx

) q
p

= C6‖b‖q
BMO

(∫
Rn

|u(x)|pw(x)pdx

) q
p

= C6‖b‖q
BMO‖u‖q

p,wp. (2.12)

That is, ‖[b, I ]u‖q,wq �C‖b‖BMO‖u‖p,wp . This completes the proof of the sufficiency.
Next, we prove the necessity. According to the assumption, we have [b, I ] :

Lp(l,wp) → Lq(l,wq) for any differential l -form, l = 0,1, · · · ,n . Therefore, we
could select u(x) as the special case 0-form, then we obtain

[b, I ] : Lp(wp) → Lq(wq). (2.13)

From Lemma 2.3, we have b ∈ BMO(Rn) , which completes the proof of Theorem
2.5. �

Selecting w(x) = 1 in Lemma 2.1 and restricting f in Lp() , we obviously have
the following inequality for [b, I ]

‖[b, I ] f‖q, � C‖b‖BMO‖ f‖p,, (2.14)

which shows that the local strong type (p,q) estimate holds for functions. Starting with
(2.14) and using the same method as we did in the proof of Theorem 2.5, we can prove
the following theorem.

THEOREM 2.6. Given 0 <  < n and 1 < p < n
 , define q by 1

q = 1
p − 

n . Let

u(x) ∈ Lp(,l) , l = 0,1, · · · ,n, I be the fractional integral operator on differen-
tial forms. Then, given any function b ∈ BMO(Rn) , [b, I ] satisfies the strong (p,q)
inequality

‖[b, I ]u‖q, � C‖b‖BMO‖u‖p, (2.15)

for any  with ⊂ R
n .
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Analogously, we can obtain the following boundedness results for commutators of
Calderón-Zygmund singular integral operators on differential forms which are based on
Lemma 2.2 and Lemma 2.4 and the approach developed in Theorem 2.5. The precise
proofs could be got by a simple adaptation of the proof of Theorem 2.5, thus we omit it
here.

THEOREM 2.7. Let u(x) ∈ Lp(l,w) , l = 0,1, · · · ,n, 1 < p <  , w ∈ Ap , T be
a Calderón-Zygmund singular integral operator on differential forms. Then, given any
function b ∈ BMO(Rn) , there exists a constant C , independent of u , such that

‖[b,T ]u‖p,w � C‖b‖BMO‖u‖p,w, (2.16)

that is [b,T ] : Lp(l ,w)→ Lp(l ,w) . Conversely, given a function b, if [b,T ] : Lp(l,w)
→ Lp(l ,w) , then b ∈ BMO(Rn) .

THEOREM 2.8. Let u ∈ Lp(,l) , l = 0,1, · · · ,n, 1 < p <  , T be a Calderón-
Zygmund singular integral operator on differential forms. Then, given any function
b ∈ BMO(Rn) , [b,T ] satisfies the strong (p, p) inequality

‖[b,T ]u‖p, � C‖b‖BMO‖u‖p, (2.17)

for any  with ⊂ R
n .

REMARK 2.1. We should note that the integral operators defined on differential
forms in this paper could be extended to the bilinear cases as follows,

I(u,v)(x) =
I

(∫
Rn

∫
Rn

uI(y1)vI(y2)
(|x− y1|+ |x− y2|)2n− dy1dy2

)
dxI , (2.18)

where 0 <  < 2n and

T (u,v)(x) =
I

(∫
Rn

∫
Rn

(x− y1,x− y2)
|(x− y1,x− y2)|n uI(y1)vI(y2)dy1dy2

)
dxI , (2.19)

where (x) is defined on S2n−1 , has mean 0, and is sufficiently smooth. For any
bilinear operator L on differential forms and b ∈ L1

loc(R
n) , the bilinear commutators

on differential forms are defined as

[b,L]1(u,v)(x) = b(x)L(u,v)(x)−L(bu,v)(x)

and
[b,L]2(u,v)(x) = b(x)L(u,v)(x)−L(u,bv)(x).

It is worth pointing out the techniques developed in this section provide an effective
mean to study the bilinear commutators of singular and fractional integrals on differ-
ential forms, which are more complicated than the linear cases. In a similar way, the
sufficient and necessary conditions for the boundedness of the bilinear commutators
of fractional and singular integrals on differential forms can be deduced by using the
weighted norm inequalities of the bilinear commutators on the function spaces and the
related corollaries in [3]. We leave the statements and proofs to the interested readers.
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3. Caccioppoli-type inequalities for commutators of
Calderón-Zygmund singular integrals

In this section, we mainly establish the Caccioppoli-type inequality with L (,)-
norm for commutators of Calderón-Zygmund singular integral operators applied to the
solution of the non-homogeneous A-harmonic equation. Before stating our results, we
first recall a weight class introduced in [20] and the Orlicz norm.

We say a measurable function w(x) defined on a subset E ⊂ R
n satisfies the

A(, ,;E) condition for some positive constants , , ; write w(x) ∈ A(, ,;E)
if w(x) > 0 a.e., and

sup
B

( 1
|B|
∫

B
wdx

)( 1
|B|
∫

B
w−dx

)/
< ,

where the supremum is over all balls B ⊂ E . An Orlicz function is a continuously
increasing function  : [0,) → [0,) with (0) = 0. The Orlicz space L (,)
consists of all measurable functions f on  such that

∫

( | f |



)
d <  for some

 =  ( f ) > 0. L (,) is equipped with the nonlinear Luxemburg functional

‖ f‖L (,) = inf { > 0 :
∫


( | f |


)
d � 1},

where the Radon measure  is defined by d = w(x)dx and w(x) ∈ A(, ,;) . A
convex Orlicz function  is often called a Young function. If  is a Young function,
then ‖ · ‖L(,) defines a norm in L (,) , which is called the Luxemburg norm or
Orlicz norm.

The following subclass of Young functions and the related property in Lemma 3.1
are given in [13].

DEFINITION 3.1. A Young function  : [0,) −→ [0,) is said to be in the class
NG(p,q) if  satisfies the nonstandard growth condition

p(t) � t ′(t) � q(t), 1 < p � q < . (3.1)

The first inequality in (3.1) is equivalent to that (t)
t p is increasing, and the second

inequality in (3.1) is equivalent to 	2 -condition, i.e., for each t > 0, (2t) � K(t) ,
where K > 1, and (t)

tq is decreasing with t .

LEMMA 3.1. Suppose  is a continuous function in the class NG(p,q) , 1 < p �
q <  . For any t > 0 , setting

A(t) =
∫ t

0

((s1/q)
s

) n+q
q

ds, K(t) =

(
(t1/q)

) n+q
q

tn/q
. (3.2)

Then, A(t) is a concave function, and there exists a constant C , such that

K(t) � A(t) � CK(t), ∀t > 0. (3.3)
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We need the following two lemmas appearing in [8] and [9], respectively.

LEMMA 3.2. Let u ∈ D
′
(,l) , l = 0,1, · · · ,n− 1 , be a solution of the non-

homogeneous A-harmonic equation (1.7) in a domain  . Then, there exists a constant
C , independent of u , such that

‖du‖p,B � C|B|−1/n‖u− c‖p,B (3.4)

for all balls B with B ⊂ and all closed forms. Here 1 < p <  .

LEMMA 3.3. Let u be a solution of the non-homogeneous A-harmonic equation
(1.7) in a domain  and 0 < s,t <  . Then, there exists a constant C , independent of
u , such that

‖du‖s,B � C|B|(t−s)/st‖du‖t,B (3.5)

for all balls B with B ⊂ for some  > 1 .

In [21], the results in Lemma 3.2 and Lemma 3.3 were extended to the versions of
A(, ,;)-weight as follows.

LEMMA 3.4. Let u∈Ls
loc(,l) be a solution of the non-homogeneous A-harmonic

equation (1.7) in a bounded domain  , l = 0,1, · · · ,n− 1 and 1+
 < p <  , Then,

there exists a constant C , independent of u , such that(∫
B
|du|sd

)1/s

� C|B|−1/n
(∫

B
|u− c|sd

)1/s

(3.6)

for all balls B with B ⊂  for some  > 1 and any closed form c, where the Radon
measure  is defined by d = w(x)dx and w(x) ∈ A(, ,;) ,  > 1 ,  > 0 .

LEMMA 3.5. Let u be a solution of the non-homogeneous A-harmonic equation
(1.7) in a domain  , 0 < p,q <  . Then, there exists a constant C , independent of u ,
such that (∫

B
|du|qd

)1/q

� C((B))(p−q)/pq
(∫

B
|du|pd

)1/p

(3.7)

for all balls B with B ⊂  for some  > 1 , where the Radon measure  is defined
by d = w(x)dx and w(x) ∈ A(, ,;) ,  > 1 ,  > 0 .

Combining Theorem 2.8 and Lemma 3.2, we can easily give the following Cacciop-
poli-type inequality for [b,T ] .

THEOREM 3.6. Let u be a solution of the non-homogeneous A-harmonic equa-
tion (1.7) in  and du∈ Lp(,l+1) , 1 < p < , T be a Calderón-Zygmund singular
integral operator on differential forms and b∈ BMO(Rn) . Then, there exists a constant
C , independent of u , such that

‖[b,T ](du)‖p,B � C|B|−1/n‖u− c‖p,B (3.8)

for all balls B with B ⊂ and all closed forms c.
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We now extend the Theorem 3.6 to the case of A(, ,;)-weight, we begin
with the following lemma.

LEMMA 3.7. Let u∈Lp
loc(,l) be a solution of the non-homogeneous A-harmo-

nic equation (1.7) in  , l = 0,1, · · · ,n− 1 , 1 < p <  , T be a Calderón-Zygmund
singular integral operator on differential forms and b ∈ BMO(Rn) . Then, there exists
a constant C , independent of u , such that

(∫
B
|[b,T ](du)|pd

)1/p

� C

(∫
B

|du|pd
)1/p

(3.9)

for all balls B with B ⊂  for some  > 1 , where Radon measure  is defined by
d = w(x)dx and w(x) ∈ A(, ,;) ,  > 1 ,  > 0 .

Proof. Taking s =  p/(−1) and t =  p/(1+ ) , then we have s > p > t > 0.
Applying Lemma 3.3 to s,t > 0 yields

‖du‖s,B � C1|B| t−s
ts ‖du‖t,1B, (3.10)

where 1 > 1 is a constant. Using the Hölder inequality with 1
p = 1

s + s−p
ps , Theorem

2.8 and (3.10), we have

(∫
B
|[b,T ](du)|pd

)1/p
=
(∫

B
|[b,T ](du)|pw(x)dx

)1/p

=
(∫

B

(
|[b,T ](du)|w1/p(x)

)p
dx
)1/p

�
(∫

B
|[b,T ](du)|sdx

)1/s(∫
B
ws/(s−p)(x)dx

)(s−p)/ps

� C1

(∫
B
|du|sdx

)1/s(∫
B
ws/(s−p)(x)dx

)(s−p)/ps

� C2|B| t−s
ts ‖du‖t,1B

(∫
B
w (x)dx

)1/ p
. (3.11)

By the Hölder inequality with 1
t = 1

p + p−t
t p , we find that

‖du‖t,1B =
(∫

1B

(|du|(w(x))1/p(w(x))−1/p)tdx
)1/t

�
(∫

1B
|du|pw(x)dx

)1/p(∫
1B

(
w−1/p(x)

) t p
p−t dx

) p−t
t p

�
(∫

1B
|du|pw(x)dx

)1/p(∫
1B

(
w(x)

) −t
p−t dx

) p−t
t p

�
(∫

1B
|du|pd

)1/p(∫
1B

w− (x)dx
)1/ p

. (3.12)
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Substituting (3.12) into (3.11) yields that

(∫
B
|[b,T ](du)|pd

)1/p

� C2|B| t−s
ts

(∫
1B

|du|pd
)1/p(∫

1B
w− (x)dx

)1/ p(∫
B
w (x)dx

)1/ p
. (3.13)

Since w ∈ A(, ,;) , we have

(∫
B
w (x)dx

)1/ p(∫
1B

w− (x)dx
)1/ p

�
((∫

1B
w(x)dx

)(∫
1B

w− (x)dx
)/

)1/ p

=

(
|1B|1+/

( 1
|1B|

∫
1B

w (x)dx
)( 1

|1B|
∫
1B

w− (x)dx
)/

)1/ p

� C3|B|1/ p+1/ p. (3.14)

Combining (3.13) and (3.14), we obtain

(∫
B
|[b,T ](du)|pd

)1/p

� C2|B| t−s
ts

(∫
1B

|du|pd
)1/p(∫

1B
w− (x)dx

)1/ p(∫
B
w(x)dx

)1/ p

� C4|B| t−s
ts |B|1/ p+1/ p

(∫
1B

|du|pd
)1/p

= C4

(∫
1B

|du|pd
)1/p

, (3.15)

which completes the proof of Lemma 3.7. �
Using Lemma 3.4 and Lemma 3.7, we have the following Caccioppoli-type in-

equality with the weight A(, ,;) .

THEOREM 3.8. Let u ∈ Lp
loc(,l) be a solution of the non-homogeneous A-

harmonic equation (1.7) in  , l = 0,1, · · · ,n− 1 , 1+
 < p <  , T be a Calderón-

Zygmund singular integral operator on differential forms and b ∈ BMO(Rn) . Then,
there exists a constant C , independent of u , such that

(∫
B
|[b,T ](du)|pd

)1/p

� C|B|−1/n
(∫

B
|u− c|pd

)1/p

(3.16)

for all balls B with B ⊂  for some  > 1 and any closed form c, where the Radon
measure  is defined by d = w(x)dx and w(x) ∈ A(, ,;) ,  > 1 ,  > 0 .



430 J. NIU, G. SHI, S. DING AND Y. XING

Next, we further extend the Theorem 3.8 into the version with Orlicz norm as
follows.

THEOREM 3.9. Let  be a Young function in the class NG(p,q) with 1+
 <

p � q < , T be a Calderón-Zygmund singular integral operator on differential forms
and b ∈ BMO(Rn) . Assume that (|u|) ∈ L1

loc(,) and u is a solution of the non-
homogeneous A-harmonic equation (1.7) in  . Then, there exists a constant C , inde-
pendent of u , such that

‖[b,T ](du)‖L (B,) � C‖u− c‖L(B,) (3.17)

for all balls B with B ⊂  and |B| � 0 > 0 , where  > 1 is a constant, c is any
closed form and Radonmeasure  is defined by d = w(x)dx and w(x)∈A(, ,;) ,
 > 1 ,  > 0 .

Proof. We may assume that w(x) � 1 a.e. in  reasonably. Thus, for any ball
B ⊂ , we have

(B) =
∫

B
d =

∫
B
w(x)dx �

∫
B
dx = |B|.

Using the Hölder inequality with 1 = q
n+q + n

n+q , we obtain

∫
B

(
|[b,T ](du)|

)
d

=
∫

B


(
|[b,T ](du)|

)
|[b,T ](du)| nq

n+q
|[b,T ](du)| nq

n+q d

�
(∫

B

(|[b,T ](du)|) n+q
q

|[b,T ](du)|n d
) q

n+q
(∫

B
|[b,T ](du)|qd

) n
n+q

. (3.18)

Using Lemma 3.1 and noticing A(t) is a concave function, it follows that

∫
B

(
|[b,T ](du)|

)
d

�
(∫

B
K(|[b,T ](du)|q)d

) q
n+q (∫

B
|[b,T ](du)|qd

) n
n+q

�
(∫

B
A(|[b,T ](du)|q)d

) q
n+q (∫

B
|[b,T ](du)|qd

) n
n+q

� A
q

n+q

(∫
B
|[b,T ](du)|qd

)(∫
B
|[b,T ](du)|qd

) n
n+q

� C1(n,q)K
q

n+q

(∫
B
|[b,T ](du)|qd

)(∫
B
|[b,T ](du)|qd

) n
n+q
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= C1(n,q)

(
(
∫
B |[b,T ](du)|qd)1/q

)
(
∫
B |[b,T ](du)|qd)

n
n+q

(∫
B
|[b,T ](du)|qd

) n
n+q

= C1(n,q)

((∫
B
|[b,T ](du)|qd

)1/q
)

. (3.19)

Combining Lemma 3.7, Lemma 3.4 and Lemma 3.5 gives

(∫
B
|[b,T ](du)|qd

)1/q

� C1

(∫
B
|du|qd

)1/q

� C2 ((B))(p−q)/pq
(∫

1B
|du|pd

)1/p

� C3 ((B))(p−q)/pq |B|−1/n
(∫

2B
|u− c|pd

)1/p

, (3.20)

where 2 > 1 is a constant. Note that

((B))(p−q)/pq |B|−1/n < |B|(p−q)/pq−1/n < |0|(p−q)/pq−1/n, (3.21)

since (B) � |B|� 0 and p < q . Combining (3.19), (3.20) and (3.21) and noticing 
is increasing and satisfies 2 -condition, we have

∫
B

(
|[b,T ](du)|

)
d � C4

((∫
2B

|u− c|pd
)1/p

)
. (3.22)

Taking h(t) =
∫ t
0
(s)

s ds and using the fact that (t)/tq is decreasing with t , we obtain

h(t) =
∫ t

0

(s)
s

ds =
∫ t

0

(s)
sq sq−1ds � (t)

tq
1
q
sq|t0 =

1
q
(t).

Similarly, we have h(t) � 1
p(t) since (t)/t p is increasing with t . Hence,

1
q
(t) � h(t) � 1

p
(t). (3.23)

Let g(t) = h(t1/p) , then
(
h(t1/p)

)′
= 1

p
(t1/p)

t is increasing. Thus, g is a convex func-
tion. According to definitions of g and h and using Jensen’s inequality to g , we have

h

((∫
B
|u|pd

)1/p
)

= g

(∫
B
|u|pd

)
�
∫

B
g(|u|p)d =

∫
B
h(|u|)d . (3.24)
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Combining (3.22), (3.23) and (3.24), we have

∫
B

(
|[b,T ](du)|

)
d � C4

((∫
2B

|u− c|pd
)1/p

)

� C5h

((∫
2B

|u− c|pd
)1/p

)

� C5

∫
2B

h(|u− c|)d

� C6

∫
2B

(|u− c|)d , (3.25)

which implies (3.17) holds. This completes the proof of Theorem 3.9. �
Choosing (t) = t p log+ t in Theorem 3.9, we obtain the following Caccioppoli-

type inequality with the Lp(log+ L)-norms.

COROLLARY 3.10. Let (t) = t p log+ t , p > 1+
 and  ∈ R , T be a Calderón-

Zygmund singular integral operator on differential forms and b ∈ BMO(Rn) . Assume
that (|u|) ∈ L1

loc(,) and u is a solution of the non-homogeneous A-harmonic
equation (1.7). Then, there exists a constant C , independent of u , such that

‖[b,T ](du)‖Lp(log+ L)(B,) � C‖u− c‖Lp(log+ L)(B,) (3.26)

for all balls B with B ⊂  and |B| � 0 > 0 , where  > 1 is a constant, c is any
closed form and Radonmeasure  is defined by d = w(x)dx and w(x)∈A(, ,;) ,
 > 1 ,  > 0 .

It is to be observed that c is any closed form in all Caccioppoli-type inequali-
ties derived in this section. Therefore, selecting c = 0 in Theorem 3.6, Theorem 3.8,
Theorem 3.9 gives the following corollaries.

COROLLARY 3.11. Let u be a solution of the non-homogeneous A-harmonic
equation (1.7) in  and du ∈ Lp(,l + 1) , 1 < p <  , T be a Calderón-Zygmund
singular integral operator on differential forms and b ∈ BMO(Rn) . Then, there exists
a constant C , independent of u , such that

‖[b,T ](du)‖p,B � C|B|−1/n‖u‖p,B (3.27)

for all balls B with B ⊂ .

COROLLARY 3.12. Let u ∈ Lp
loc(,l) be a solution of the non-homogeneous

A-harmonic equation (1.7) in  , l = 0,1, · · · ,n−1 , 1+
 < p <  , T be a Calderón-

Zygmund singular integral operator on differential forms and b ∈ BMO(Rn) . Then,
there exists a constant C , independent of u , such that(∫

B
|[b,T ](du)|pd

)1/p

� C|B|−1/n
(∫

B
|u|pd

)1/p

(3.28)
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for all balls B with B ⊂  for some  > 1 , where the Radon measure  is defined
by d = w(x)dx and w(x) ∈ A(, ,;) ,  > 1 ,  > 0 .

COROLLARY 3.13. Let  be a Young function in the class NG(p,q) with 1+
 <

p � q < , T be a Calderón-Zygmund singular integral operator on differential forms
and b ∈ BMO(Rn) . Assume that (|u|) ∈ L1

loc(,) and u is a solution of the non-
homogeneous A-harmonic equation (1.7) in  . Then, there exists a constant C , inde-
pendent of u , such that

‖[b,T ](du)‖L (B,) � C‖u‖L(B,) (3.29)

for all balls B with B⊂ and |B|� 0 > 0 , where  > 1 is a constant and the Radon
measure  is defined by d = w(x)dx and w(x) ∈ A(, ,;) ,  > 1 ,  > 0 .

REMARK 3.1. It should be noticed that the Caccioppoli-type inequalities derived
in this paper can be extended into the global cases using the well-known Covering
Lemma, which also means that these Caccioppoli-type inequalities also hold for boun-
ded John domains, Lp -averaging domains or L()-averaging domains.

REMARK 3.2. Note that the A(, ,;E)-class is an extension of several exist-
ing weight classes which contain A

r (E)-weight, Ar( ,E)-weight and Ar(E)-weight.
Thus, these conclusions obtained in this paper will change into the corresponding ver-
sions when we take some weight as a special case.
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