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Abstract. This work presents a new Lyapunov-type inequality for a class of higher-order frac-
tional boundary value problem of the fractional Caputo Fabrizio differential equation subject to
fractional integral boundary conditions. The derived result is applied to the fractional Sturm-
Liouville problem in establishing a lower bound for the eigenvalues. We also provide the nec-
essary condition for nonexistence of the non-trivial solution of the fractional boundary value
problem.

1. Introduction

In this paper, we derive a new Lyapunov-type inequality for the following higher-
order fractional Caputo-Fabrizio differential equation subject to fractional integral bound-
ary conditions

CF
aD


x u(x)+ p(x)u(x) = 0, 2 <  � 3, a � x � b, (1)

u(a) = u′(a) = 0, u(b) = CF
aI


t (hu)(b), (2)

where a and b are real constants and CF
aD


x u(x) is the fractional Caputo-Fabrizio

derivative of u on [a,b] , CF
aI


t (hu)(x) denotes the fractional Caputo-Fabrizio inte-

gral of hu on [a,b] for a given p,h ∈ C([a,b],R) . Since the trivial solution u ≡ 0
satisfies the problem (1)–(2), we only consider the non-trivial solution of the problem.

We will prove that a necessary condition that the problem (1)–(2) will have a non-
zero solution for any  ∈ (2,3] under some condition on the real and continuous func-
tion p ∈C[a,b] .

Lyapunov investigated that a necessary condition for the existence of non-trivial
solution of the boundary value problem

y′′(x)+ p(x)y(x) = 0, x ∈ (a,b),
y(a) = y(b) = 0,

(3)
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is that ∫ b

a
|p(x)|dx >

4
b−a

, (4)

where p ∈ C[a,b] is a real-valued function and a and b are consecutive zeros of u .
The inequality (4) is the famous Lyapunov inequality [12]. Here, the constant 4 cannot
be replaced by a larger number. The Lyapunov inequality is an important tool in many
problems including disconjugacy and Sturm-Lioville eigenvalue problems for proving
the existence of nontrivial solutions [3], [15]. Many extensions and generalization of
Lyapunov inequality for the differential equations with integer orders have been stud-
ied and presented in the literature (e.g., see [18], [4], [17], [24], [25], [22], [7], [16] and
references therein). For example, Lyapunov-type inequalities for even order differen-
tial equations is proved in [7] and for odd-order differential equations in [25]. Some
new and improved inequalities for higher order differential equations with anti-periodic
boundary conditions was proved in [23]. In [16], the authors provided new Lyapunov-
type inequalities for the third order linear differential equation.

Recently, some authors pay attention to the study of Lyapunov-type inequalities for
the fractional boundary value problems. Ferreira [5] initiated in deriving a Lyapunov-
type inequality for the following Riemann-Liouville fractional boundary value problem

RL
aD


t u(t)+ p(t)y(t) = 0, t ∈ [a,b],  ∈ (1,2), (5)

u(a) = u(b) = 0 (6)

where RL
aD


t u(t) is the Riemann-Liouville derivative of u(t) of order  ∈ (1,2] , a and

b are consecutive zeros of u and p is a real and continuous function. The author proved
that if p ∈C[a,b] and u is a nontrivial solution of the problem (5)–(6), then

∫ b

a
|p(s)|ds > ()

( 22(−1)

(b−a)−1

)
. (7)

Note that when  = 2, one can recover the original Lypunov inequality (4).
In [6], Ferreira also considered a similar problem to the problem (5)–(6) in which

the Riemann-Liouville fractional derivative is replaced by the fractional Caputo deriva-
tive and he derived a Lyapunov-type inequality. Using this inequality, he investigated
real zeros of some Mittag-Leffler functions on some intervals. Since then, some ex-
tensions of Lyapunov-type inequalities for the fractional boundary value problems us-
ing different boundary conditions have been studied. For example, [21] provided a
Lyapunov-type inequality for fractional boundary value problem subject to the frac-
tional boundary conditions, a new Lyapunov-type inequality for fractional boundary
value problem subject to a Robin boundary condition was derived in [8], a Lyapunov-
type inequality for fractional boundary value problem with a mixed boundary condition
was provided in [9] and Lyapunov-type inequalities for a class of fractional bound-
ary value problem have been studied in [14]. The above-mentioned Lyapunov-type
inequalities have been derived for fractional boundary value problems involving frac-
tional derivatives with singular kernel. In 2015, a new fractional derivative with non sin-
gular kernel has been introduced by Caputo and Fabrizio [2]. The solutions of fractional
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differential equations in the sense of this new fractional derivative contain no singular
functions, and it describes better for modelling material heterogeneity and structures
with different scale. For more discussion on this new fractional derivative, we refer the
reader to [13].

Lyapunov-type inequality for higher-order fractional boundary value problems is
very rare. Motivated by the above studies, we will obtain a new Lyapunov-type inequal-
ity for higher-order fractional boundary value problems in the sense of the Caputo-
Fabrizio derivative. Lyapunov-type inequalities for fractional boundary value problems
of the Caputo-Fabrizio derivative are studied in [11], [19], [20].

The rest of the paper is organized as follows. Preliminaries and definitions have
been recalled in Section 2. The main results are given in Section 3. Some applications
of the derived inequality are presented in Section 4.

2. Preliminaries

We introduce the definitions of the Riemann-Liouville fractional integral and frac-
tional derivative and the Caputo fractional derivative and the fractional Caputo-Fabrizio
integral and derivative. We also recall some previous results which will be used in our
analysis.

DEFINITION 1. [10] Let  � 0. Assume that f is a real-valued function on
[a,b] . The Riemann-Lioville fractional integral of order  is defined by aI0 f = f and

(
aI
 f

)
(t) =

1
()

∫ t

a
(t − s)−1 f (s)ds,  > 0, t ∈ [a,b].

DEFINITION 2. [10] Let  � 0 and n ∈ N . Assume that f is real-valued and
absolutely continuous function on [a,b] . The Riemann-Lioville fractional derivative of
order  ∈ (n,n+1] is defined by

RL
aD


t f (t) =

1

(n−)
 n

 tn

∫ t

a
(t − s)n−1− f (s)ds, t > a. (8)

DEFINITION 3. [10] Let  � 0 and f ∈ Cn+1[a,b] . The Caputo fractional
derivative of order  ∈ (n,n+1] of the function f ∈Cn([a,b] is defined by

C
aD


t f (t) =

1

(n−)

∫ t

a
(t− s)n−1− f (n)(s)ds, t > a. (9)

DEFINITION 4. [2] Let f ∈ H1(a,b) and  ∈ (0,1] . The fractional Caputo-
Fabrizio derivative is defined as

CF
aD


t f (t) =

(2−)M()
2(1−)

∫ t

a
exp

(
− 

1−
(t− s)

)
f ′(s)ds, t � a, (10)

where M() is a normalization function with M(0) = M(1) = 1.
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DEFINITION 5. [13] The Caputo-Fabrizio fractional integral of order  ∈ (0,1)
of a continuous function f on [a,b] is defined by

CF
aI


t f (t) =

2(1−)
(2−)M()

f (t)+
2

(2−)M()

∫ t

0
f (s)ds. (11)

Imposing
2(1−)

(2−)M()
+

2
(2−)M()

= 1, we can have an explicit expressing

for M(),  ∈ (0,1] given as [13]

M() =
2

2−
.

The high order Caputo-Fabrizio fractional of order  =  +n for  ∈ (0,1) and
n ∈ N is defined as

CF
aD

+n
t f (t) := CF

aD

t (CF

aD
n
t f (t)).

THEOREM 1. [2] Let the function f (t) satisfy f (k)(a) = 0 , k = 1,2, . . . ,n, then
the following equality holds:

CF
aD


t (CF

aD
n
t f (t)) = CF

aD
n
t (

CF
aD


t f (t)). (12)

DEFINITION 6. [2] For  =  + 2 with  ∈ (0,1) , the Caputo-Fabrizio frac-
tional derivative of order  defined as

CF
aD


t f (t) =

1

1−

∫ t

a
exp

(
− 

1−
(t− s)

)
f ′′′(s)ds. (13)

Note that the equality CF
aD


t (CF

aD
(2)
t f (x)) = CF

aD
(2)
t (CF

aD

t f (x)) is defined unam-

biguously when f ′′(0) = 0 (see [2]).

DEFINITION 7. Let  ∈ (n,n+ 1] , n ∈ N and f ∈ Cn+1[a,b] , a < b . The frac-
tional Caputo-Fabrizio integral operator of order  defined as

CF
aI


t f (t) = (1+n−)In

a f (t)+ (−n)In+1
a f (x), x � a, (14)

where In
a f (x) is the iterated Cauchy integral given by In

a f (x)= 1
(n−1)!

∫ x
a (x−t)n−1 f (t)dt ,

with the adaption I0
a f (x) = f (x) .

LEMMA 1. [11] Let  ∈ (n,n+1] . Then we have the following relation

CF
aI


t

CF
aD


t f (t) = f (t)−

n


k=0

(t−a)k

k!
f (k)(a).

LEMMA 2. [1] Let  ∈ (n,n+1] . Then we have the following relation

CF
aD


t

CF
aI


t f (t) = f (t).
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3. Main results

We present a Lyapunov type inequality for high-order fractional differential equa-
tions of the Caputo-Fabrizio fractional derivative in this section. We follow Green’s
function technique consisting in converting the fractional boundary value problem (1)–
(2) into an equivalent integral form and obtain the maximum value of the Green’s func-
tion. We will need the following results in our analysis.

LEMMA 3. Let y ∈C([a,b],R) . If w ∈C([a,b],R)∩AC([a,b],R) is a solution of
the following Caputo-Fabrizio fractional boundary value problem

CF
aD


t w(x)+ y(x) = 0,  ∈ (2,3], a � x � b, (15)

w(a) = w′(a) = 0, w(b) = 0. (16)

then

w(x) =
∫ b

a
H(x,t)y(t)dt,

where the Green’s function H(x,t) is given by

H(x, t) =

{
h1(x,t), a � t � x � b,

h2(x,t), a � t � x � b,
(17)

with

h1(x, t) := h2(x,t)− 2(3−)(x− t)(b−a)2+(−2)(x− t)2(b−a)2

2(b−a)2 ,

and

h2(x, t) :=
2(3−)(x−a)2(b− t)+ (−2)(x−a)2(b− t)2

2(b−a)2 .

Proof. By Lemma 1, we get, for  ∈ (2,3]

CF
aI


x

CF
aD


x w(x) = w(x)−w(a)− (x−a)w′(a)− (x−a)2

2
w′′(a). (18)

We apply the high order fractional Caputo-Fabrizio integral operator (14) to the equa-
tion (15) and using (18) , we obtain at once

w(x)−w(a)− (x−a)w′(a)− (x−a)2

2
w′′(a) = −Ia y(x).

The boundary conditions w(a) = w′(a) = 0 imply that

w(x) =
(x−a)2

2
w′′(a)− Ia y(x).
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Using the boundary condition w(b) = 0, we obtain

w(x) =
(3−)
(b−a)2

∫ b

a
(x−a)2(b− t)y(t)dt +

−2
2(b−a)2

∫ b

a
(x−a)2(b− t)2y(t)dt

− (3−)
∫ x

a
(x− t)y(t)dt− a−2

2

∫ x

a
(x− t)2y(t)dt

or, equivalently

u(x) =
∫ x

a
h1(x,t)y(t)dt +

∫ b

x
h2(x,t)y(t)dt

=
∫ b

a
H(x,t)y(t)dt.

The prof is now completed. �

LEMMA 4. If u ∈C([a,b],R)∩AC([a,b],R) is a solution of the problem (1)–(2),
then we have

u(x) =
∫ b

a
H(x,t)(p(t)+h(t))dt

+(3−)
∫ x

a
(x− t)h(t)u(t)dt +

−2

2

∫ x

a
(x− t)2h(t)u(t)dt,

where H(x, t) is the Green’s function given by (17).

Proof. Let u ∈ C([a,b],R)∩AC([a,b],R) be a solution of the problem (1)–(2).
Define

v(x) := u(x)−CF
aI


x (hu)(x), a � x � b. (19)

More precisely,

v(x) = u(x)− (3−)
∫ x

a
(x− t)h(t)u(t)dt− −2

2

∫ x

a
(x− t)2h(t)u(t)dt, x ∈ [a,b].

Applying the Caputo-Fabrizio fractional derivative on both sides of the above equation
and using Lemma 2, we have, for x ∈ (a,b)

CF
aD


x v(x) = CF

aD

x u(x)−CF

aD

x

CF
aI


x (hu)(x)

= CF
aD


x u(x)−h(x)u(x).

Using (1), from the above equation we get

CF
aD


x v(x) = CF

aD

x u(x)−h(x)u(x)

= −p(x)u(x)−h(x)u(x)
= −(p(x)+h(x))u(x).
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Therefore, we have

CF
aD


x v(x) = −(p(x)+h(x))u(x), a � x � b. (20)

With the help of (19), one has for x ∈ [a,b]

v′(x) = u′(x)− (3−)
∫ x

a
h(t)u(t)dt− (−2)

∫ x

a
(x− t)h(t)u(t)dt.

Using (2), we obtain

v(a) = v′(a) = 0, v(b) = 0. (21)

Then, v ∈C([a,b],R)∩AC([a,b],R) be a solution of the problem (20)–(21). Lemma 3
implies that v also satisfies the following integral equation

v(x) =
∫ b

a
H(x,t)(p(t)+h(t))dt, a � x � b.

Hence, from (19) we get

u(x) =
∫ b

a
H(x, t)(p(t)+h(t))dt

+(3−)
∫ x

a
(x− t)h(t)u(t)dt +

−2

2

∫ x

a
(x− t)2h(t)u(t)dt, a � x � b,

which is the desired conclusion. �

LEMMA 5. The Green function H(x,t) defined by (17) satisfies the following
bound:

|H(x, t)| � 2(3−)(b−a)+ (−2)(b−a)2

2
, 2 <  � 3, a � x, t � b.

Proof. For a � t � x � b , we have x−a � b−a . Using this inequality, one has

2(3−)(x−a)2(b− t)+ (−2)(x−a)2(b− t)2

2(b−a)2 �
2(3−)(b− t)+ (−2)(b− t)2

2
.

Thus, we have

h1(x, t) �
2(3−)(b− t)+ (−2)(b− t)2

2
− (3−)(x− t)− −2

2
(x− t)2.

For a � t � x � b , we get

(3−)((b− t)− (x− t))= 2(3−)(b− x) � (3−)(b−a),

and
−2

2

(
(b− t)2− (x− t)2) �

−2

2
(b− t)2 �

−2

2
(b−a)2.
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Consequently, for a � t � x � b we have

|H(x,t)| � 2(3−)(b−a)+ (−2)(b−a)2

2
. (22)

For a � x � t � b , we note that x−a � t −a � b−a . Then, one obtains

|h2(x, t)| � 2(3−)(t−a)2(b− t)+ (−2)(t−a)2(b− t)2

2(b−a)2 .

Now, using the inequality 2uv � (u+ v)2 for u = t−a, v = b− t , we have

|h2(x,t)| � 4(3−)(b−a)+ (−2)(b−a)2

8
.

This implies that

|H(x, t)| � 4(3−)(b−a)+ (−2)(b−a)2

8
for a � x � t � b. (23)

From (22) and (23), the desired conclusion follows. This finished the proof. �

We have the following Lyapunov-type inequality for the fractional boundary value
problem (1)–(2) when  ∈ (2,3] .

THEOREM 2. Let  ∈ (2,3] and p∈C([a,b]) . If u∈C([a,b],R)∩AC([a,b],R) is
a nontrivial solution of the fractional boundary value problem (1)–(2), then the function
p satisfies the following condition

∫ b

a

∣∣∣(p(t)+h(t)
∣∣∣dt +

∫ b

a

2(3−)(b− t)+ (−2)(b− t)2

2(3−)(b−a)+ (−2)(b−a)2|h(t)|dt

�
2

2(3−)(b−a)+ (−2)(b−a)2.

(24)

Proof. Let C[a,b] be the Banach space with maximum norm, that is,

‖u‖ = max
x∈[a,b]

|u(x)|, u ∈C[a,b].

By Lemma 4, the solution of the fractional boundary value problem (1)–(2) has the
integral form

u(x) =
∫ b

a
H(x, t)(p(t)+h(t))dt

+(3−)
∫ x

a
(x− t)h(t)u(t)dt +

−2

2

∫ x

a
(x− t)2h(t)u(t)dt, x,t ∈ [a,b].
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Taking the maximum norm of the both side of the above equation yields

‖u‖ �
(

max
x∈[a,b]

∫ b

a

∣∣∣H(x,t)(p(t)+h(t)
∣∣∣dt

+(3−)
∫ b

a
(b− t)||h(t)|dt +

−2

2

∫ b

a
(b− t)2|h(t)|dt

)
‖u‖.

Since u is non-zero, we have ‖u‖ �= 0. Hence, using Lemma 5 one can show that

2 �
(
2(3−)(b−a)+ (−2)(b−a)2

)∫ b

a

∣∣∣(p(t)+h(t)
∣∣∣dt

+2(3−)
∫ b

a
(b− t)||h(t)|dt +(−2)

∫ b

a
(b− t)2|h(t)|dt,

which yields

∫ b

a

∣∣∣(p(t)+h(t)
∣∣∣dt +

∫ b

a

2(3−)(b− t)+ (−2)(b− t)2

2(3−)(b−a)+ (−2)(b−a)2|h(t)|dt

�
2

2(3−)(b−a)+ (−2)(b−a)2.

This gives the desired result (24). Thus, we complete the proof. �

REMARK 1. In Theorem 2, if we let h ≡ 0, then we recover the Lyapunov-type
inequality derived in [20].

We now present some applications of the obtained result in Theorem 2. We present
a lower bound for the eigenvalues of some nonlocal fractional boundary value problems.

THEOREM 3. Let  ∈ (2,3] and  ∈ R . If u is a nontrivial solution of the fol-
lowing fractional boundary value problem,

CF
aD


t u(x)+u(x) = 0, a � x � b, (25)

u(a) = u′(0) = 0, u(1) = 0, (26)

then the eigenvalues  ∈ R must satisfy

| | > 2

2(3−)(b−a)2+(−2)(b−a)3.

THEOREM 4. If  ∈ (2,3] ,
∫ 1
0 p(t)dt �

2

4−
, then the following fractional bound-

ary value problem

CF
aD


t u(x)+ p(x)u(x) = 0 0 < x < 1,

u(0) = u′(0) = 0, u(1) = 0,
(27)

has no nontrivial solution.
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Proof. If there were nonzero solution to the problem (27), then we would have

that
∫ 1
0 p(x)dt >

2

4−
by Theorem 2. However, this contradicts the hypothesis that

∫ 1
0 p(x)dx �

2

4−
. Therefore, the only solution to the boundary value problem is the

trivial solution. �
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