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ON APPROXIMATELY CONVEX AND AFFINE FUNCTIONS

ANGSHUMAN R. GOSWAMI AND ZSOLT PÁLES

(Communicated by M. Krnić)

Abstract. A real valued function f defined on a real open interval I is called  -convex if, for
all x,y ∈ I , t ∈ [0,1] it satisfies

f (tx+(1− t)y) � t f (x)+(1− t) f (y)+ t
(
(1− t)|x− y|)+(1− t)

(
t|x− y|),

where  : R+ → R+ is a nonnegative error function. If f and − f are simultaneously  -
convex, then f is said to be a  -affine function. In the main results of the paper, we describe
the structural and inclusion properties of these two classes. We characterize these two classes
of functions and investigate their relationship with approximately monotone and approximately-
Hölder functions. We also introduce a subclass of error functions that enjoys the so-called 
property and we show that the error function which is the most optimal for a  -convex function
has to belong to this subclass. The properties of this subclass of error function are investigated
as well. Then we offer two formulas for the lower  -convex envelop. Besides, a sandwich type
theorem is also added.

1. Introduction

The motivation for our paper comes from the theory of approximate convexity
which has become an active field of research and many important contributions have
been made, see for instance [3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43]. In these
papers several aspects of approximate convexity were investigated: stability problems,
Bernstein–Doetsch-type theorems, Hermite–Hadamard type inequalities, etc. The no-
tions and results have various applications in nonsmooth and convex analysis and op-
timization theory, and also in the theory of functional equations and inequalities. The
main concepts and results of this paper are distillated from the following elementary
observations; primarily studied in the paper [30].

Assume that I is a nonempty interval and a function f : I → R satisfies the fol-
lowing inequality

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)+ 
(
t
(
(1− t)|x− y|)p +(1− t)

(
t|x− y|)p)

,

(x,y ∈ I, t ∈ [0,1])
(1)
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for some nonnegative constant  and real constant p ∈ R . In other words, f is ap-
proximately convex with an error term described in terms of the p th power function.
Clearly, if  = 0, then the above condition is equivalent to the convexity of f . One can
easily notice that every convex function f satisfies (1). On the other hand, if p = 0,
then f satisfies (1) if and only if it can be decomposed as f = g+h , where g is convex
and ||h|| � /2. In the case p = 1 the results of the paper [39] show that f fulfills
(1) if and only if f = g+ � , where g is convex and � is Lipschitzian with a Lipschitz
modulus c . Surprisingly, for p > 2, the situation is completely different. Then (1)
holds if and only if f is convex.

The above described observations and results motivate the investigation of classes
of functions that obey a more general approximate convexity and also the related ap-
proximately affine property. In fact, the class of -convex functions was introduced
in the paper [30], but this property was only characterized therein. In this work, we
describe the structural properties of this function class and determine the error function
which is the most optimal one. We show that optimal error functions for approximate
convexity must possess the so-called  property. Then we offer a precise formula for
the -convex envelope and also obtain sandwich-type theorems.

2. Basic results

Let I be a nonempty open real interval throughout this paper and let �(I) ∈ ]0,]
denote its length. The symbols R and R+ denote the sets of real and nonnegative real
numbers, respectively.

The class of all functions  : [0, �(I)[→R+ , called error functions, will be denoted
by E (I) . Obviously, E (I) is a convex cone, i.e., it is closed with respect to addition
and multiplication by nonnegative scalars. In what follows, we are going to define
four properties related to an error function  ∈ E (I) . First we recall the notions of
-monotone and -Hölder functions that have been introduced in our former papers
[12, 13].

A function f : I → R will be called -monotone if, for all x,y ∈ I with x � y ,

f (x) � f (y)+(y− x). (2)

If this inequality is satisfied with the identically zero error function  , then we say that
f is monotone (increasing). The class of -monotone functions on I will be denoted
by M(I) .

A function f : I → R will be called -Hölder if, for all x,y ∈ I ,

| f (x)− f (y)| � (|x− y|). (3)

The class of -Hölder functions on I will be denoted by H(I) .
The following concept was introduced in the paper [30]. We say that a function

f : I → R is -convex if, for all x,y ∈ I and t ∈ [0,1] ,

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)+ t
(
(1− t)|x− y|)+(1− t)

(
t|x− y|). (4)
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If the above inequality is satisfied with the identically zero error function  , then we
say that f is convex. The class of -convex functions on I will be denoted by C(I) .
We mention that a similar type of approximate convexity, termed F -convexity, was
defined in the paper [1] by Adamek. In the notion, the structure of the error term is
different from ours.

Finally, a function f : I → R is said to be -affine if, for all x,y ∈ I and t ∈ [0,1] ,

| f (tx+(1− t)y)− t f (x)− (1− t) f (y)|� t
(
(1− t)|x− y|)+(1− t)

(
t|x− y|). (5)

If, in particular, the above inequality is satisfied with the identically zero error function
 , then we say that f is affine. The class of -affine functions on I will be denoted
by A(I) .

PROPOSITION 2.1. Let 1, . . . ,n ∈ E (I) and 1, . . . ,n ∈ R+ . Then

1C1(I)+ · · ·+nCn(I) ⊆ C11+···+nn(I).

In particular, for all functions  ∈ E (I) , the class C(I) is convex.

Proof. To prove the inclusion, let f ∈ 1C1(I)+ · · ·+nCn(I) . Then, f is of
the form

f = 1 f1 + . . .+n fn (6)

for some elements f1, . . . , fn belonging to C1(I), . . . ,Cn(I) , respectively. Then, for
all x,y ∈ I , t ∈ [0,1] , and i ∈ {1, . . . ,n} , we have

fi(tx+(1− t)y) � t fi(x)+ (1− t) fi(y)+ ti
(
(1− t)|x− y|)+(1− t)i

(
(t|x− y|).

Multiplying this inequality by i and summing up side by side, we will arrive at the
inequality (4), where  := n

i=1ii . This proves that f ∈ C(I) and completes the
proof of the second inclusion. �

The following result is the counterpart of the previous statement.

PROPOSITION 2.2. Let 1, . . . ,n ∈ E (I) and 1, . . . ,n ∈ R . Then

1A1(I)+ · · ·+nAn(I) ⊆ A|1|1+···+|n|n(I).

In particular, for all functions  ∈ E (I) , the class A(I) is convex and central sym-
metric, i.e., A(I) is closed with respect to multiplication by (−1) .

Proof. To prove the inclusion, let f ∈ 1A1(I) + · · ·+nAn(I) . Then, f is
of the form (6) for some elements f1, . . . , fn belonging to A1(I), . . . ,An(I) , respec-
tively. Then, for all x,y ∈ I , t ∈ [0,1] , and i ∈ {1, . . . ,n} , we have

| fi(tx+(1− t)y)− t fi(x)− (1− t) fi(y)| � ti
(
(1− t)|x− y|)+(1− t)i

(
t|x− y|).
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Multiplying this inequality by |i| and summing up side by side, we will arrive at the
inequality

| f (tx+(1− t)y)− t f (x)− (1− t) f (y)|

=
∣∣∣∣ n


i=1

i
(
fi(tx+(1− t)y)− t fi(x)− (1− t) fi(y)

)∣∣∣∣
�

n


i=1

|i|
∣∣ fi(tx+(1− t)y)− t fi(x)− (1− t) fi(y)

∣∣
�

n


i=1

|i|
(
ti((1− t)|x− y|)+ (1− t)i(t|x− y|))

= t
(
(1− t)|x− y|)+(1− t)

(
(t|x− y|),

where  := n
i=1 |i|i . This proves that (5) holds, i.e., f ∈ A(I) and completes the

proof of the second inclusion. �

PROPOSITION 2.3. Let  ∈ E (I) . Then

H(I) ⊆ A(I) and A(I) = C(I)∩ (−C(I)). (7)

Proof. To prove the inclusion, let f ∈ H(I) . Let x,y ∈ I and t ∈ [0,1] . By the
-Hölder property of f , we have

f (tx+(1− t)y) � f (x)+
(
(1− t)|x− y|),

f (tx+(1− t)y) � f (y)+
(
t|x− y|).

Multiplying the above inequalities by t and 1− t , then summing up the inequalities so
obtained side by side, we get

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)+ t
(
(1− t)|x− y|)+(1− t)

(
(t|x− y|),

which shows that f ∈ C(I) . Repeating the same argument with (− f ) instead of f , it
follows that − f ∈ C(I) . Therefore, f ∈ C(I)∩ (−C(I)) = A(I) .

To show the equality assertion, assume that f is a -affine function. Then, for
any x,y ∈ I and t ∈ [0,1] , f will satisfy the inequality (5) and hence the inequalities

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)+ t
(
(1− t)|x− y|)+(1− t)

(
t|x− y|).

and

t f (x)+ (1− t) f (y) � f (tx+(1− t)y)+ t
(
(1− t)|x− y|)+(1− t)

(
t|x− y|).

(8)
holds. Rearranging theses two inequalities, we have that both f and − f are -affine.
That is f ∈ C(I)∩ (−C(I)).

To show the inverse inclusion, let f ∈ C(I)∩ (−C(I)). Due to the property
of -convexity of the two classes of function, f will satisfy the two inequalities in
(8). Hence, inequality (5) holds for any x,y ∈ I and t ∈ [0,1] . This inequality being
symmetric in x and y , we get that (5) is satisfied for all x,y ∈ I . �
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COROLLARY 2.4. Let , ∈ E (I) . Then

H(I)+C(I) ⊆ C+(I) and H(I)+A(I) ⊆ A+(I)

Proof. By Proposition 2.5, we have H(I) ⊆ A(I) ⊆ C(I) . Therefore, the
statement follows from Proposition 2.1. �

We say that a family F of real valued functions is closed with respect to the
pointwise supremum if { f : I → R |  ∈ } is a subfamily of F with a pointwise
supremum f : I → R , i.e.,

f (x) = sup
∈

f (x) (x ∈ I), (9)

then f ∈F . Similarly, we can define that a family F of real valued functions is closed
with respect to the pointwise infimum. A family { f : I → R |  ∈ } is called a chain
if, for all , ∈  , either f � f or f � f holds on I . We say that a family F
of real valued functions is closed with respect to the pointwise chain supremum (chain
infimum) if { f : I → R |  ∈ } ⊆ F is a chain with a pointwise supremum (infimum)
f : I → R , then f ∈ F .

The following result was established in the paper [30], therefore its proof is omit-
ted.

PROPOSITION 2.5. Let  ∈ E (I) . Then the class C(I) is closed under point-
wise supremmum and pointwise chain infimum.

COROLLARY 2.6. Let  ∈ E (I) . Then the class C(I) is closed with respect to
the limsup operation.

Proof. Assume that f : I → R is the upper limit of a sequence fn : I → R . Then

f = inf
n∈N

gn, where gn := sup
k�n

fk.

If all the functions fn are -convex, then for all n ∈ N , the function gn is -convex.
(Because these classes are closed with respect to the pointwise supremum.) On the other
hand, the sequence (gn) is decreasing, therefore f is the pointwise chain infimum of
{gn | n ∈ N} , thus f is also -convex. �

PROPOSITION 2.7. Let  ∈ E (I) . Then the class A(I) is closed under point-
wise chain infimum and pointwise chain supremum. Consequently A(I) is closed with
respect to the pointwise limit operation.

Proof. The statement easily follows from Proposition 2.5. The statement concern-
ing the pointwise limit operation is obvious. �

THEOREM 2.8. Let ∈ E0(I) , let f : I →R be a -convex function and g : R→
R+ be an increasing and sublinear function. Then (g◦ f ) is a (g◦)-convex function.
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Proof. Using the -convexity of f , the nondecreasingness and sublinearity and
properties of g , we arrive at

(g ◦ f )(tx+(1− t)y)

� g
(
t
(
f (x)+

(
(1− t)|y− x|))+(1− t)

(
f (y)+

(
t|y− x|)))

� t
(
g ◦ f (x)+g ◦(

(1− t)|y− x|))+(1− t)
(
g ◦ f (y)+g ◦(

t|y− x|)).
Therefore, we arrive at our desired conclusion. �

3. Characterizations of -convex and -affine functions

The equivalence of assertions (i), (ii) and (iii) of the following result was estab-
lished in the paper [30]. For the convenience of the reader, we provide the complete
proof.

THEOREM 3.1. Let  ∈ E (I) and f : I → R . Then the following conditions are
equivalent to each other:

(i) f is -convex;

(ii) For all x,u,y ∈ I with x < u < y,

f (u)− f (x)−(u− x)
u− x

� f (y)− f (u)+(y−u)
y−u

;

(iii) There exists a function  : I → R such that, for all x,u ∈ I ,

f (u)+ (x−u)(u) � f (x)+(|u− x|); (10)

(iv) For all n ∈ N , x1, . . . ,xn ∈ I, t1, . . . ,tn � 0 with t1 + . . .+ tn = 1 ,

f (t1x1 + . . .+ tnxn) �
n


i=1

ti
(
f (xi)+(|(t1x1 + . . .+ tnxn)− xi|)

)
.

Proof. (i)⇒(ii): Assume that f is  convex and let x < u < y be arbitrary ele-

ments of I . Choose t ∈ [0,1] such that u = tx+(1− t)y . That is let t =
y−u
y− x

. Then

(4) can be rewritten as

f (u) � y−u
y− x

f (x)+
u− x
y− x

f (y)+
y−u
y− x

(u− x)+
u− x
y− x

(y−u).

Therefore,

(y−u+u− x) f (u)�(y−u) f (x)+ (u− x) f (y)
+ (y−u)(u− x)+ (u− x)(y−u).
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Rearranging this inequality, it follows that

f (u)− f (x)−(u− x)
u− x

� f (y)− f (u)+(y−u)
y−u

.

(ii)⇒(iii): Assume that (ii) holds and define the function  on I by

(u) := sup
x<u

(
f (u)− f (x)−(u− x)

u− x

)
(u ∈ I).

In view of condition (ii), for all x < u < y in I , we have

f (u)− f (x)−(u− x)
u− x

� (u) � f (y)− f (u)+(y−u)
y−u

. (11)

From the left hand side inequality in (11), we get

f (u)+ (x−u)(u) � f (x)+(u− x) (x ∈ I, x < u). (12)

Similarly, from the right hand side inequality in (11) (replacing y by x , it follows that

f (u)+ (x−u)(u) � f (x)+(x−u) (x ∈ I, u < x). (13)

Now, combining inequalities (12) and (13), the condition (iii) follows (also in the case
x = u ).

(iii)⇒(iv): To deduce (iv) from (iii), let x1, . . . ,xn ∈ I,t1, . . . ,tn � 0 with t1 + . . .+
tn = 1 and u := t1x1 + . . .+tnxn . Substituting x by xi in the inequality of condition (iii),
then multiplying this inequality by ti , finally adding up the inequalities so obtained side
by side, we get

n


i=1

ti
(
f (u)+ (xi−u)(u)

)
�

n


i=1

ti
(
f (xi)+(|u− xi|)

)
.

Using that n
i=1 ti(xi −u) = 0, the above inequality simplifies to the inequality of con-

dition (iv).
(iv)⇒(i): To deduce the -convexity of f from condition (iv), let x,y ∈ I and

t ∈ [0,1] . Taking n = 2, x1 := x , x2 := y , t1 := t and t2 := 1− t in condition (iv),
it is immediate to see that the inequality reduces to the defining inequality of -
convexity. �

Motivated by the condition (iii) of Theorem 3.1, we say that  : I → R is a -
slope function for f if it satisfies inequality (10) for all x,u ∈ I . Then Theorem 3.1
states that the -convexity of a function f is equivalent to the existence of a -slope
function for f .

THEOREM 3.2. Let  ∈ E (I) and f : I → R . Then the following conditions are
equivalent to each other:

(i) f is -affine;
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(ii) For all x,u,y ∈ I with x < u < y,∣∣∣∣ f (u)− f (x)
u− x

− f (y)− f (u)
y−u

∣∣∣∣ � (u− x)
u− x

+
(y−u)

y−u
;

(iii) Provided that  is increasing, there exists a function  : I → R such that, for all
x,u ∈ I ,

| f (u)− f (x)− (u− x)(u)|� (|u− x|); (14)

(iv) For all n ∈ N , x1, . . . ,xn ∈ I, t1, . . . ,tn � 0 with t1 + . . .+ tn = 1 ,∣∣∣ f (t1x1 + . . .+ tnxn)−
n


i=1

ti
(
f (xi)

)∣∣∣ �
n


i=1

ti(|(t1x1 + . . .+ tnxn)− xi|
)
.

Proof. Assertions (i), (ii) and (iv) are equivalent by Theorem 3.1.
Assume that (ii) holds and  is increasing. First we are going to show the follow-

ing inequality:

max

(
sup
x<u

f (u)− f (x)−(u− x)
u− x

,sup
u<y

f (y)− f (u)−(y−u)
y−u

)

� min

(
inf
x<u

f (u)− f (x)+(u− x)
u− x

, inf
u<y

f (y)− f (u)+(y−u)
y−u

)
.

(15)

By condition (ii), for all x,u,y ∈ I with x < u < y , we have the following two inequal-
ities

f (u)− f (x)
u− x

− f (y)− f (u)
y−u

� (u− x)
u− x

+
(y−u)

y−u
,

− f (u)− f (x)
u− x

+
f (y)− f (u)

y−u
� (u− x)

u− x
+
(y−u)

y−u
.

(16)

Then, one can easily see that the first and the second of the above inequalities imply

sup
x<u

f (u)− f (x)−(u− x)
u− x

� inf
u<y

f (y)− f (u)+(y−u)
y−u

,

sup
u<y

f (y)− f (u)−(y−u)
y−u

� inf
x<u

f (u)− f (x)+(u− x)
u− x

for all u ∈ I , respectively. In order to show that (15) holds, it remains to prove that

sup
x<u

f (u)− f (x)−(u− x)
u− x

� inf
x<u

f (u)− f (x)+(u− x)
u− x

,

sup
u<y

f (y)− f (u)−(y−u)
y−u

� inf
u<y

f (y)− f (u)+(y−u)
y−u

.

(17)

For the first inequality, we need to prove that, for all x1,x2 < u ,

f (u)− f (x1)−(u− x1)
u− x1

� f (u)− f (x2)+(u− x2)
u− x2

. (18)
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If x1 = x2 , this follows from the nonnegativity of  . We have to consider two cases
according to the possibilites x1 < x2 or x2 < x1 . In the first case, using (16) for the
triplet x1 < x2 < u , then the monotonicity of  , we get

f (u)− f (x1)
u− x1

− f (u)− f (x2)
u− x2

=
x2 − x1

u− x1

(
f (x2)− f (x1)

x2− x1
− f (u)− f (x2)

u− x2

)

� x2− x1

u− x1

(
(x2− x1)

x2 − x1
+
(u− x2)

u− x2

)

� (x2− x1)
u− x1

+
x2− x1

u− x1

(u− x2)
u− x2

� (u− x1)
u− x1

+
(u− x2)

u− x2
,

which shows (18) in the case x1 < x2 . In the case x2 < x1 , the proof is analogous, and
hence the first inequality in (17) has been verified. The second inequality in (17) can be
shown in a similar manner. Thus, inequality (15) has been proved, too. Define now the
function  : I → R by

(u) := max

(
sup
x<u

f (u)− f (x)−(u− x)
u− x

,sup
u<y

f (y)− f (u)−(y−u)
y−u

)
.

Then, for all x < u < y , we get

f (u)− f (x)− (u− x)(u) � (u− x),
f (y)− f (u)+ (u− y)(u) � (y−u).

(19)

Based on inequality (15), we also have

(u) � min

(
inf
x<u

f (u)− f (x)+(u− x)
u− x

, inf
u<y

f (y)− f (u)+(y−u)
y−u

)
,

which implies, for all x < u < y , that

f (x)− f (u)+ (u− x)(u) � (u− x),
f (u)− f (y)− (u− y)(u) � (y−u).

(20)

The first inequalities in (19) and (20) yield, for all x < u , that

| f (u)− f (x)− (u− x)(u)|� (u− x).

On the other hand, the second inequalities in (19) and (20) show, for all u < y , that

| f (u)− f (y)− (u− y)(u)|� (y−u).

Combining these two inequalities, we can see that assertion (iii) must be valid.
Conversely, if assertion (iii) holds, then  is a -slope function for f , whence

it follows that f is -convex. Similarly, (iii) also implies that (−) is a -slope
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function for (− f ) , hence (− f ) is also -convex. These two -convexity properties
yield that f is -affine. �

Motivated by the condition (iii) of Theorem 3.2, we say that  : I → R is an
absolute -slope function for f if it satisfies inequality (14) for all x,u ∈ I . Then
Theorem 3.2 states that a function f is -affine (provided that  is increasing) if and
only if there exists an absolute -slope function for f .

The next two propositions state that the -slope function of a -convex (resp.
absolute -slope function of a -affine) function is approximately monotone (resp.
Hölder) with respect to a transformation ∗ of the error function  .

PROPOSITION 3.3. Let  ∈ E (I) , f : I →R be a -convex function and  : I →
R be a -slope function for f . Then  is ∗ -monotone, where

∗(t) :=

⎧⎨
⎩2

(t)
t

if 0 < t < �(I),

0 if t = 0.
(21)

Proof. Let  : I → R be a -slope function for f and let x,y ∈ I with x < y be
arbitrary. By obvious substitution into the inequality (10), we get

f (x)+ (y− x)(x) � f (y)+(y− x),
f (y)+ (x− y)(y) � f (x)+(y− x).

Adding these inequalities side by side, the values f (x) and f (y) cancel out, hence we
arrive at

(y− x)((x)−(y)) � 2(y− x).

Dividing by y− x , this inequality implies that  is ∗ -monotone, which was to be
proved. �

PROPOSITION 3.4. Let ∈ E (I) be increasing, f : I →R be a -affine function
and  : I →R be a -slope function for f . Then  is ∗ -Hölder, where ∗ is defined
by (21).

Proof. Let  : I → R be an absolute -slope function for f and let x,y ∈ I with
x 	= y be arbitrary. By obvious substitution into the inequality (14), we get

| f (x)− f (y)− (x− y)(x)|� (|x− y|),
| f (y)− f (x)− (y− x)(y)|� (|y− x|).

Therefore, by the triangle inequality,

|(y− x)((x)−(y))|� | f (x)− f (y)− (x− y)(x)|+ | f (y)− f (x)− (y− x)(y)|
� 2(|y− x|)

Dividing by |y− x| , this inequality shows that  is ∗ -Hölder, which was to be
proved. �
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4. Optimal error functions

We say that an error function  ∈ E (I) possesses the property  if it satisfies the
inequality

(x+ y) � (x)+
2x+ y

y
(y) (x � 0, y > 0, x+ y < �(I)). (22)

The subclass of error functions in E (I) with the property  will be denoted by E (I) .
The subset of E (I) whose elements also satisfy (0) = 0 will be denoted by E 

0 (I) .
One can easily see that any subadditive error function satisfies property  , how-

ever, as we will see later, the reversed implication is not true.
The next result establishes some necessary and some sufficient conditions for the

 property.

THEOREM 4.1. Let  ∈ E (I) . Then
√
 and the map t �→ t−1(t) is subad-

ditive on ]0, �(I)[ . If, in addition,  : [0, �(I)[→ R+ is decreasing on ]0, �(I)[ , then
 · ∈ E (I) . In particular, if  ∈ E (I) and t �→ t−2(t) is deccreasing on ]0, �(I)[ ,
then  ∈ E (I) .

Proof. To prove the subadditivity of
√
 on ]0, �(I)[ , let x,y > 0 with x + y <

�(I) . We have

(x+ y) � (x)+
2x+ y

y
(y) = (x)+(y)+2

x
y
(y).

and, interchanging the roles of x and y , we also have

(x+ y) � (x)+(y)+2
y
x
(x).

These two inequalities imply that

(x+ y) � (x)+(y)+2min
(x

y
(y),

y
x
(x)

)
. (23)

By using that the geometric mean of two numbers exceeds their minimum, we get

(x+ y) � (x)+(y)+2
√
(x)(y) =

(√
(x)+

√
(y)

)2
.

Taking square root of this inequality side by side, it follows that√
(x+ y) �

√
(x)+

√
(y),

which completes the proof of the subadditivity of
√
 .

To show the subadditivity of t �→ t−1(t) , we use that the minmimu of two num-
bers is smaller than their arithmetic mean. Thus, from (23) we arrive at

(x+ y) � (x)+(y)+
(x

y
(y)+

y
x
(x)

)
= (x+ y)

(x)
x

+(x+ y)
(y)

y
.
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Dividing both sides by x+ y , we can reach at our desired conclusion.
To prove the next assertion, denote  :=  · and let x > 0, y > 0 with x+ y <

�(I) . Using the  property of  and then the decreasingness of  , we get

(x+ y) = (x+ y)(x+ y) � (x+ y)(x)+
2x+ y

y
(x+ y)(y)

� (x)(x)+
2x+ y

y
(y)(y) = (x)+

2x+ y
y

(y),

which establishes the  property of  .
Finally, let  ∈ E (I) be arbitrary such that t �→ t−2(t) =: (t) is decreasing on

]0, �(I)[ . Since (t) := t2 possesses the  property, it follows that  =  · belongs
to E (I) . �

COROLLARY 4.2. Let p ∈ R and define p : [0,[→ R+ by p(t) := t p for
t > 0 and p(0) := 0 . Then p ∈ E (R+) if and only if p � 2 .

Proof. Assume that p possesses the  property. Then, according to the first part
of Theorem 4.1, t �→ t−1p(t) = t p−1 is subadditive on R+ . Therefore, p− 1 � 1,
which yields p � 2.

On the other hand, if p � 2, then t �→ t−2p(t) = t p−2 is decreasing, therefore the
last part of Theorem 4.1 yields that p ∈ E (R+) . �

PROPOSITION 4.3. Let  ∈ E (I) . Then, for all n ∈ N and for all u1 � 0 ,
u2, . . . ,un > 0 with u1 + . . .+un < �(I) , the following inequality holds

(u1 + . . .+un) � (u1)+
2u1 +u2

u2
(u2)+ . . .+

2(u1 + . . .+un−1)+un

un
(un).

(24)

Proof. Assume that  possesses the  property, i.e., (22) is satisfied.
If n = 1, then the statement trivially holds with equality. If n = 2, then (22) with

x := u1 and y := u2 is equivalent to (24). Assume that (24) has been proved for some
n � 2 and let u1 � 0, u2, . . . ,un+1 > 0 with u1 + . . . + un+1 < �(I) . Then, by the 
property with x := u1 + . . .+un , y := un+1 and then by inductive assumption, we get

(u1 + . . .+un+1)

� (u1 + . . .+un)+
2(u1 + . . .+un)+un+1

un+1
(un+1)

� (u1)+ . . .+
2(u1 + . . .+un−1)+un

un
(un)+

2(u1 + . . .+un)+un+1

un+1
(un+1),

which is exactly the inequality to be proved for n+1 variables. �

PROPOSITION 4.4. The classes E (I) and E 
0 (I) are closed with respect to ad-

dition, multiplication by nonnegative scalars, pointwise maximum, pointwise chain in-
fimum and the limsup operation.
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Proof. The proof is similar to that of Proposition 2.1 and Proposition 2.5, therefore
it is left to the reader. �

In view of the above proposition, we can see that the supremum of all error func-
tions with the  property which are smaller than a given error function  ∈ E (I) is the
largest error function below  with the  property, which will be denoted as  and
called the -envelope of  . In what follows, we describe a construction for  in the
class E 

0 (I) . For this aim, for any error function  ∈ E0(I) , we define its  -transform
 : [0, �(I)[→ R+ of  by

 (0) := 0, (u) := inf

{
(x)+

2x+ y
y

(y)
∣∣∣∣x � 0, y > 0: x+ y = u

}
(u > 0).

Obviously, taking x = 0 in the above definition, it follows from (0) = 0 that  � 
on [0, �(I)[ .

THEOREM 4.5. Let  ∈ E0(I) and define the sequence (n)n=0 by

1 := , n+1 := 
n (n ∈ N). (25)

Then (n) is a pointwise decreasing sequence on [0, �(I)[ whose pointwise limit func-
tion equals  on [0, �(I)[ .

Proof. The inequality 2 � 1 is the consequence of  �  . Now, using the
obvious monotonicity of the mapping  �→  , by induction on n , it follows that
n+1 � n holds on [0, �(I)[ , which proves the decreasingness of the sequence (n) .
This implies that the pointwise limit function of this sequence, denoted as 0 , exists
and is not greater than  .

By the construction, for all n∈N , we have that n(0)= 0 and, for all 0 < u < �(I)

n+1(u) = 
n(u) = inf

{
n(x)+

2x+ y
y

n(y)
∣∣∣∣x � 0, y > 0: x+ y = u

}
.

This implies that

n+1(x+ y) � n(x)+
2x+ y

y
n(y) (x � 0, y > 0, x+ y < �(I)).

Upon taking the limit as n →  , it follows that 0 possesses the  property.
It remains to show that 0 is nonsmaller than any error function  ∈ E (I) with

�  which possesses the  property. We prove, by induction on n , that � n on
[0, �(I)[ . The inequality  � 1 =  holds by assumption. Assume that  � n is
valid for some n ∈ N . Let u ∈ ]0, �(I)[ and let x � 0, y > 0 such that u = x+ y . Then

(u) = (x+ y) � (x)+
2x+ y

y
(y) � n(x)+

2x+ y
y

n(y).

Upon taking the infimum for all x � 0, y > 0 with u = x+ y , it follows that

(u) � 
n(u) = n+1(u).
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This shows that � n+1 holds on [0, �(I)[ , which was to be verified.
Finally, taking the limit n→ , we can conclude that �0 is valid on [0, �(I)[ ,

which demonstrates that 0 is the largest error function below  possessing the 
property. Therefore, 0 =  holds. �

The next result establishes a sufficient condition that ensures the  envelope to be
zero.

THEOREM 4.6. Let  ∈ E (I) and assume that

lim
t→0+

t−2(t) = 0. (26)

Then (u) = 0 holds for u ∈ ]0, �(I)[ .

Proof. Let u ∈ ]0, �(I)[ and let n ∈ N . Then, with u1 := · · · := un := u
n , the in-

equality (24) applied for  (instead of ) and the inequality  �  yield that

(u) � (1+3+ . . .+(2n−1))
(u

n

)
= n2

(u
n

)
� n2

(u
n

)
= u2

(n
u

)2


(u
n

)
.

Upon taking the limit n → and using the relation (26), we get that (u) = 0, which
proves the statement. �

COROLLARY 4.7. Let p ∈ R and define p as in Corollary 4.2. Then


p =

{
p if p � 2,

0 if p > 2.

Proof. If p � 2, then, by Corollary 4.2, p possesses the  property, and hence,


p = p . In the case p > 2, we have that

lim
t→0+

t−2p(t) = lim
t→0+

t p−2 = 0.

Therefore, by Theorem 4.6, it follows that 
p = 0. �

THEOREM 4.8. Let  ∈ E0(I) . Then

C(I) = C(I) and A(I) = A(I).

Proof. Due to the inequality  �  , it follows that

C(I) ⊇ C(I) and A(I) ⊇ A(I).

To prove the reversed inclusions, we will first verify that C(I) ⊆ C (I) .
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Let f be a -convex function and let x,y ∈ I with x < y and t ∈ ]0,1[ . Define
u := tx + (1− t)y and then choose v ∈ [x,u[ and w ∈ ]u,y] arbitrarily. Applying the
-convexity of f three times, we obtain

f (u) � w−u
w− v

(
f (v)+(u− v)

)
+

u− v
w− v

(
f (w)+(w−u)

)
� w−u

w− v

(
u− v
u− x

(
f (x)+(v− x)

)
+

v− x
u− x

(
f (u)+(u− v)

)
+(u− v)

)

+
u− v
w− v

(
y−w
y−u

(
f (u)+(w−u)

)
+

w−u
y−u

(
f (y)+(y−w)

)
+(w−u)

)
.

After a simple calculation, this reduces to the inequality

f (u) � y−u
y− x

(
f (x)+(v− x)+

u+ v−2x
u− v

(u− v)
)

+
u− x
y− x

(
f (y)+(y−w)+

2y−u−w
w−u

(w−u)
)

.

(27)

Observe, that by the definition of  , we have that

inf
v∈[x,u[

(
(v− x)+

u+ v−2x
u− v

(u− v)
)

=  (u− x)

and

inf
w∈ ]u,y]

(
(y−w)+

2y−u−w
w−u

(w−u)
)

=  (y−u).

Therefore, upon taking the infimum with respect to v ∈ [x,u[ and w ∈ ]u,y] in (27), it
follows that

f (u) � y−u
y− x

(
f (x)+(u− x)

)
+

u− x
y− x

(
f (y)+(y−u)

)
,

which proves that f is  -convex.
Now define the sequence of error function n by the iteration (25). By the as-

sumption, f is 1 = -convex. On the other hand, using what we have proved above,
it follows that if f is n -convex, then it is also n+1 = 

n -convex. Therefore, f is
n -convex for all n ∈ N . Upon taking the limit n →  and using Theorem 4.5, we
obtain that f is  -convex.

For the second part of the assertion, observe that if f is -affine, then by Propo-
sition 2.3, f and (− f ) are -convex. Thus, by the first part, we get that f and (− f )
are  -convex, which according to Proposition 2.3 again implies that f is  -affine.
Therefore, the reversed inclusion A(I) ⊆ A(I) also holds. �

COROLLARY 4.9. Let p > 2 and define p as in Corollary 4.2. Then

Cp(I) = C0(I) and Ap(I) = A0(I).
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Proof. The statement directly follows from Theorem 4.8 and Corollary 4.7. �
In the following result we obtain a statement which is analogous to [1, Corollary

1.9].

THEOREM 4.10. Let  ∈ E (I) and assume that

lim
t→0+

t−2(t) = c and (t) � ct2 for t ∈ [0, �(I)[. (28)

Then f : I → R is -convex if and only if the function g : I → R defined by g(x) :=
f (x)+ cx2 is convex.

Proof. Define (t) := (t)− ct2 . Then, by the inequlity in (28),  is an error
function and

lim
t→0+

t−2(t) = lim
t→0+

t−2((t)− ct2) = 0. (29)

Assume that f is -convex and let g(x) := f (x)+ cx2 . Then

g(tx+(1− t)y)= f (tx+(1− t)y)+ c(tx+(1− t)y)2

� t f (x)+ (1− t) f (y)+ t((1− t)|y− x|)+(1− t)(t|y− x|)
+ c(tx+(1− t)y)2

= tg(x)+ (1− t)g(y)+ t((1− t)|y− x|)+(1− t)(t|y− x|)
+ c(tx+(1− t)y)2− ctx2− c(1− t)y2

= tg(x)+ (1− t)g(y)+ t((1− t)|y− x|)+(1− t)(t|y− x|)
− ct((1− t)(x− y))2− c(1− t)(t(x− y))2

= tg(x)+ (1− t)g(y)+ t((1− t)|y− x|)+ (1− t)(t|y− x|).
Therefore, g is -convex. In view of (29), we can apply Theorem 4.6 and obtain that
 = 0, and hence, by Theorem 4.8, we obtain that g is convex. �

5. The -convex envelop

For  ∈ E0(I) and f : I → R , define C( f ) : I → [−,) by

C( f )(u) := inf
x,y ∈ I, t ∈ [0,1]
u = tx+(1− t)y

t
(
f (x)+((1− t)|y− x|))+(1− t)

(
f (y)+(t|y− x|)).

(30)

THEOREM 5.1. Let  ∈ E0(I) . Then the operator C is monotone and concave
in the pointwise sense, i.e., for f ,g : I → R and  ∈ [0,1] , we have

C( f )+ (1− )C(g) � C( f +(1− )g).

Furthermore, for all f : I → R , the inequality C( f ) � f holds and here equality is
valid if and only if f is -convex. In other words, the fixed points of C are exactly
the -convex functions.
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Proof. The monotonicity of C is obvious. To see its concavity, observe that, by
the definition, for all u ∈ I and x,y ∈ I, t ∈ [0,1] with u = tx+(1− t)y , we have

C( f )(u)+ (1− )C(g)(u)

� 
(
t
(
f (x)+((1− t)|y− x|))+(1− t)

(
f (y)+(t|y− x|)))

+(1− )
(
t
(
g(x)+((1− t)|y− x|))+(1− t)

(
g(y)+(t|y− x|)))

= t
(
( f +(1− )g)(x)+((1− t)|y− x|))
+(1− t)

(
( f +(1− )g)(y)+(t|y− x|)).

Upon taking the infimum for x,y ∈ I, t ∈ [0,1] with u = tx+(1− t)y , it follows that

C( f )(u)+ (1− )C(g)(u) � C( f +(1− )g)(u).

Taking x := y := u in the definition of C( f )(u) and using (0) = 0, we can see that
C( f )(u) � f (u) holds for all u ∈ I .

On the other hand, if f = C( f ) holds for some f : I → R , then, for all x,y ∈ I
and t ∈ [0,1] with u := tx+(1− t)y , we get

f (tx+(1− t)y) = f (u) = C( f )(u)

� t
(
f (x)+((1− t)|y− x|))+(1− t)

(
f (y)+(t|y− x|)),

which shows that f is -convex.
Conversely, if f is -convex, then, for all x,y ∈ I and t ∈ [0,1] with u = tx +

(1− t)y ,

f (u) = f (tx+(1− t)y) � t
(
f (x)+((1− t)|y− x|))+(1− t)

(
f (y)+(t|y− x|)).

Now, taking the infimum for x,y ∈ I, t ∈ [0,1] with u = tx+ (1− t)y , it follows that
f (u) � C( f )(u) . This implies that, in fact f (u) = C( f )(u) an completes the proof
of the equality f = C( f ) . �

In what follows, we construct the -convex envelope of any function which ad-
mits a -convex minorant in terms of the operator C . The following auxiliary result
will be useful.

LEMMA 5.2. Let  ∈ E0(I) be increasing and subadditive. Then the function
(u) := −(|u|) is -convex on J := I− I . In particular, for p ∈ [0,1] , the function
p(u) := −p(|u|) is p -convex on R .

Proof. Let x,y ∈ J and t ∈ [0,1] . Then

−(x) = (|x|) � (|tx+(1− t)y|+ |(1− t)(x− y)|)
� (|tx+(1− t)y|)+(|(1− t)(x− y)|)
= −(tx+(1− t)y)+(|(1− t)(x− y)|)
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and
−(y) = (|y|) � (|tx+(1− t)y|+ |t(y− x)|)

� (|tx+(1− t)y|)+(|t(x− y)|)
= −(tx+(1− t)y)+(|t(x− y)|).

Multiplying the first inequality by t and the second one by (1− t) and then adding up
the inequalities so obtained side by side, we obtain that

−t(x)− (1− t)(y)
� −(tx+(1− t)y)+ t(|(1− t)(x− y)|)+(1− t)(|t(x− y)|),

which proves that  is -convex.
The last assertion of the lemma follows from the fact the p is nondecreasing and

subadditive provided that p ∈ [0,1] . �

THEOREM 5.3. Let  ∈ E0(I) such that (u) := −(|u|) is -convex on J :=
I− I . Let f : I →R be a function which admits a -convex minorant. Then the function
C( f ) is the largest -convex function which is smaller than or equal to f .

Proof. The inequality C( f ) � f follows from the previous theorem.
Now suppose g is a -convex function such that g � f holds (by the assumption,

there is at least one such function g ). Then, according to Theorem 5.1, g = C(g) �
C( f ) , which proves that g � C( f ) .

To complete the proof, it will be sufficient to show that g := C( f ) is -convex.
Let u ∈ I be fixed arbitrarily. Then, for all x < u < y , with t := y−u

y−x , we have u =
tx+(1− t)y . Thus, the definition of g(u) = C( f )(u) yields

g(u) � y−u
y− x

(
f (x)+(u− x)

)
+

u− x
y− x

(
f (y)+(y−u)

)
.

This inequality implies

(u) := sup
x<u

g(u)− f (x)−(u− x)
u− x

� inf
u<y

f (y)+(y−u)−g(u)
y−u

.

Therefore, for every z ∈ I , we have

g(u)+(u)(z−u) � f (z)+(|z−u|). (31)

Let v ∈ I and  > 0 be arbitrary. Then, by the definition of g(v) = C( f )(v) , there
exist x,y ∈ I , t ∈ [0,1] with v = tx+(1− t)y such that

t
(
f (x)+((1− t)|y− x|))+(1− t)

(
f (y)+(t|y− x|)) < g(v)+ .
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Now, applying the inequality (31) for z := x and z := y , and in the last step using the
-convexity of  , it follows that

g(u)+(u)(v−u)

= t
(
g(u)+(u)(x−u)

)
+(1− t)

(
g(u)+(u)(y−u)

)
� t

(
f (x)+(|x−u|))+(1− t)

(
f (y)+(|y−u|))

< g(v)+ + t
(
(|x−u|)−((1− t)|y− x|))+(1− t)

(
(|y−u|)−(t|y− x|))

= g(v)+ + t
(−(x−u)−((1− t)|y− x|))+(1− t)

(−(y−u)−(t|y− x|))
� g(v)+ −((tx+(1− t)y)−u)= g(v)+ +(|v−u|).

Upon taking the limit  → 0+ , we obtain that g satisfies the inequality

g(u)+(u)(v−u)� g(v)+(|v−u|) (u,v ∈ I).

Therefore, according to the characterization theorem of -convexity, this implies that
g is -convex. �

Combining the assertions of Lemma 5.2 and Theorem 5.3, we immediately obtain
the following consequence.

COROLLARY 5.4. Let  ∈ E0(I) be nondecreasing and subadditive. Let f : I →
R be a function which admits a -convex minorant. Then the function C( f ) is the
largest -convex function which is smaller than or equal to f .

The next result is an extension of a sandwhich-type theorem of Baron–Matkowski–
Nikodem [2].

THEOREM 5.5. Let  ∈ E0(I) and let f ,g : I → R such that g � h � f for some
-convex function h : I → R . Then, for all x,y ∈ I and t ∈ [0,1] , the functional in-
equality

g(tx+(1− t)y)� t f (x)+ (1− t) f (y)+ t((1− t)|y− x|)+(1− t)(t|y− x|) (32)

holds. Conversely, if (u) := −(|u|) is -convex on J := I− I and (32) is valid for
all x,y ∈ I and t ∈ [0,1] , then there exists a -convex function h : I → R such that
g � h � f holds on I .

Proof. Let f ,g : I → R such that g � h � f holds for some -convex function
h . Then, for all x,y ∈ I and t ∈ [0,1] , we have

g(tx+(1− t)y) � h(tx+(1− t)y)
� th(x)+ (1− t)h(y)+ t((1− t)|y− x|)+(1− t)(t|y− x|)
� t f (x)+ (1− t) f (y)+ t((1− t)|y− x|)+(1− t)(t|y− x|).

This shows the validity of (32) on the indicated domain.
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Assume that f ,g : I →R satisfy (32). Then, this inequality yields that g �C( f ) .
In view of Theorem 5.3 and the -convexity of  , it follows that C( f ) is -convex.
Therefore, the statement is fulfilled with h := C( f ) . �

Combining the assertions of Lemma 5.2 and Theorem 5.5, we immediately obtain
the following consequence.

COROLLARY 5.6. Let ∈ E0(I) be nondecreasing, subadditive and let f ,g : I →
R . Then the inequalities g � h � f hold for some -convex function h : I → R if and
only if, for all x,y ∈ I and t ∈ [0,1] , the functional inequality (32) is satisfied.

THEOREM 5.7. Let  ∈ E0(I) . Let f : I → R be a function which admits a -
convex minorant and define the sequence fn : I → R by

f1 := f , fn+1 := C( fn) (n ∈ N).

Then the sequence ( fn) is pointwise decreasing and its limit function is the largest
-convex function which is smaller than or equal to f .

Proof. The pointwise monotonicity of the sequence follows from the property
C( f ) � f established in Theorem 5.1. Let f0 denote the pointwise limit function
of the sequence ( fn) . Now suppose g is an arbitrary -convex function such that
g � f Then g � C(g) � C( f ) = C( f1) = f2 . Using the same iterative argument,
we can show that g � fn for all n ∈ N. Upon taking the limit, we get that g � f0 holds.

Finally, we show the -convexity of f0 . Let x,y ∈ I and t ∈ [0,1] be arbitrary.
From definition of fn+1 it follows that

fn+1(tx+(1− t)y) � t
(
fn(x)+((1− t)|y− x|))+(1− t)

(
fn(y)+(t|y− x|)).

Upon taking the limit as n →  , we get that

f0(tx+(1− t)y) � t
(
f0(x)+((1− t)|y− x|))+(1− t)

(
f0(y)+(t|y− x|)),

which shows that f0 is -convex, indeed. �
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Tabor type error terms for set-valued maps, Set-Valued Var. Anal., 25 (2): 441–462, 2017.
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[12] A. GOSWAMI AND ZS. PÁLES, On approximately monotone and approximately Hölder functions,
Per. Math. Hungar., 81 (1): 65–87, 2020.
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