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SHARP EXPONENTIAL TYPE INEQUALITIES FOR THE

ARC LEMNISCATE SINE FUNCTION WITH APPLICATIONS

FAN ZHANG, MIAO-KUN WANG ∗ , WEI-MAO QIAN,
YU-MING CHU AND HUI-ZUO XU

(Communicated by T. Burić)

Abstract. In this paper, by proving some monotonicity theorems of certain combinations of the
arc lemniscate sine function and elementary functions, we obtain two classes of exponential
type inequalities for the arc lemniscate sine function. As applications, sharp bounds for the
lemniscatic mean in terms of the arithmetic, harmonic and geometric means are given, which
extend some previously known results.

1. Introduction

For p,q ∈ (1,+) , the generalized inverse trigonometric sine function with two
parameters is defined on [−1,1] by

arcsinp,q(x) =

⎧⎪⎨
⎪⎩
∫ x

0

dt

(1− tq)1/p
, 0 � x � 1,

−arcsinp,q(−x), −1 � x < 0

(cf. [11, 15]). Let

p,q = 2arcsinp,q(1) = 2
∫ 1

0

dt

(1− tq)1/p
,

then it is easy to see that the function x �→ arcsinp,q(x) is strictly increasing from
[−1,1] onto [−p,q/2,p,q/2] , and it has the inverse function sinp,q(x) defined on
[−p,q/2,p,q/2] . Particularly, when p = q = 2, sinp,q(x) = sin(x) , arcsinp,q(x) =
arcsin(x) and p,q =  , so we also call sinp,q and p,q the generalized trigonometric
sine function with two parameters and generalized circumference ratio respectively. For
more basic knowledge of the above functions and their applications in the theories of
differential equations and function spaces (cf. [4, 5, 6, 10, 13, 14, 22, 23]).

Mathematics subject classification (2020): 33E05, 26D07.
Keywords and phrases: Arc lemniscate function, Gaussian hypergeometric function, lemniscate mean;

monotonicity, inequality.
∗ Corresponding authors.

c© � � , Zagreb
Paper JMI-17-33

517

http://dx.doi.org/10.7153/jmi-2023-17-33


518 F. ZHANG, M.-K. WANG, W.-M. QIAN, Y.-M. CHU AND H.-Z. XU

As one of the most important special cases of arcsinp,q(x) , for x ∈ [−1,1] , the arc
lemniscate sine function arcsl(x) is defined as follows

arcsl(x) = arcsin2,4(x) =
∫ x

0

dt√
1− t4

(1.1)

(cf. [7, p. 259], [8, (2.5)]). It is well known that the arc lemniscate sine function has a
simple geometric interpretation that the arc length measured from the origin to a point
with polar coordinates (r, ) on the Bernoulli lemniscate r2 = cos is arcsl(r) . As
usual, we denote

 = arcsl(1) =
1√
2
K (1/

√
2) =

2(1/4)
4
√

2
= 1.31103 · · ·

the first lemniscate constant, where K (r) =
∫ /2
0 (1− r2 sin2  )−1/2d (0 < r < 1) and

(x) =
∫ 
0 tx−1e−tdt(Re(x) > 0) are the complete elliptic integral of the first kind and

the classical Euler gamma function respectively (cf. [1, 2, 3, 12, 20]).
Recently, the arc lemniscate sine function has attracted the attention of several

researchers. In particular, many remarkable inequalities for arcsl(r) and other related
special functions can be found in the literature [9, 16, 17, 18, 19, 25, 27, 28, 29]. For
example, in 2012, Neuman[17, Theorem 5.1, (5.1)] proved that inequality(

3+2
√

1− x4

5

)−1/2

<
arcsl(x)

x
<

1

(1− x4)1/10

holds for all 0 < |x| < 1.
In 2020, Zhao, Qian and Chu[28] refined Neuman’s result and obtained that the

double inequality(
3
5

+
2
5

√
1− x4

)−1/2

<
arcsl(x)

x
<

[
1
2 +

(
1− 1

2

)√
1− x4

]−1/2

, (1.2)

are valid for all 0 < |x| < 1 with the best possible constants 3/5 and 1/2 . Wei, He
and Wang[25] proved that the inequalities(

4
5

+
1
5

√
1− x4

)−1

<
arcsl(x)

x
<

[
1


+
(

1− 1


)√
1− x4

]−1

(1.3)

and [
1


+
(

1− 1


)
4
√

1− x4

]−1

<
arcsl(x)

x
<

[
3
5

+
2
5

4
√

1− x4

]−1

(1.4)

hold for all 0 < |x| < 1.
Inspired by the lower and upper bounds for [arcsl(x)]/x in (1.2)–(1.4), in this

paper, for p,q ∈ R and , ∈ (0,1) , we introduce two classes of exponential type
functions A(p,;x) and B(q, ;x) defined on (0,1) as follows

A(p,;x) =

⎧⎨
⎩
[
(1−)+(1− x4)p

]−1/(2p)
, p �= 0,

(1− x4)−/2, p = 0,
(1.5)
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B(q, ;x) =

⎧⎨
⎩
[
(1− )+ (1− x4)q

]−1/(4q)
, q �= 0,

(1− x4)−/4, q = 0.
(1.6)

Using (1.5) and (1.6), it is not difficult to verify that both  �→ A(p,;x) and  �→
B(q, ;x) are increasing on (0,1) .

The main purpose of this paper is to find the best parameters , ∈ (0,1) depend-
ing on any fixed p ∈ R , and  , ∈ (0,1) depending on any fixed q ∈ R such that the
double inequalities

A(p,;x) <
arcsl(x)

x
< A(p, ;x), B(q, ;x) <

arcsl(x)
x

< B(q, ;x)

hold for all 0 < |x| < 1.
It is worth pointing out that arc lemniscate sine function arcsl(x) , as well as the

generalized inverse trigonometric sine function with two parameters arcsinp,q(x) , can
be expressed by

arcsl(x) = xF

(
1
2
,
1
4
;
5
4
;x4
)

and arcsinp,q(x) = xF

(
1
p
,
1
q
;1+

1
q
;xq
)

(1.7)

(cf. [6]), where

F(a,b;c;x) =



n=0

(a,n)(b,n)
(c,n)

xn

n!
, (|x| < 1)

is the classical Gaussian hypergeometric function (cf. [1, 3, 20, 24]) with the real
parameters a,b, and c �= 0,−1,−2, · · · , and (a,n) = (a + n)/(a) = a(a + 1)(a +
2) · · ·(a+n−1) is the shifted factorial function or the Pochhammer symbol for n ∈ N .

2. Lemmas

In order to prove the main theorems we need serval lemmas, which we present in
this section.

LEMMA 2.1. [3, Theorem 1.25] Let a,b ∈ R with a < b , f ,g : [a,b] → R be
continuous on [a,b] and differentiable on (a,b) . Let g′(x) �= 0 on (a,b) . Then, if
f ′/g′ is increasing (decreasing) on (a,b) , then so are the functions

f (x)− f (a)
g(x)−g(a)

and
f (x)− f (b)
g(x)−g(b)

.

If f ′/g′ is strict monotone, then the monotonicity in the conclusion is also strict.

LEMMA 2.2. [21, Lemma 2.1] Let f (x) =



k=0
akxk and g(x) =




k=0
bkxk be two

real power series converging on (−r,r) and bk > 0 for all k . If the non-constant se-
quence {ak/bk} is increasing (decreasing) for all k , then the function x �→ f (x)/g(x)
is strictly increasing (decreasing) on (0,r) .
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LEMMA 2.3. [26, p.298, Example 11] If a+b+1/2= c, then

[F(a,b;c;x)]2 =
(c)(2c−1)

(2a)(2b)(a+b)




n=0

(2a+n)(a+b+n)(2b+n)
n!(c+n)(2c−1+n)

xn

for all x ∈ (−1,1) .

LEMMA 2.4. Let x ∈ (−1,1) . Then one has the following Maclaurin formulas

[arcsl(x)]2 =



n=0

(3/4,n)
(2n+1)(5/4,n)

x4n+2 (2.1)

and
arcsl(x)√

1− x4
=




n=0

(3/4,n)
(5/4,n)

x4n+1. (2.2)

Proof. Putting a= 1/2, b = 1/4, c = 5/4 in Lemma 2.3 together with (1.7) yields

[arcsl(x)]2 =
[
xF(1/2,1/4;5/4;x4)

]2
=x2 (5/4)(3/2)

(1)(1/2)(3/4)




n=0

(n+1)(n+3/4)(n+1/2)
n!(n+5/4)(n+3/2)

x4n

=



n=0

(5/4)(n+3/4)
(2n+1)(3/4)(n+5/4)

x4n+2 =



n=0

(3/4,n)
(2n+1)(5/4,n)

x4n+2.

Thus
arcsl(x)√

1− x4
=

1
2

d [arcsl(x)]2

dx
=




n=0

(3/4,n)
(5/4,n)

x4n+1. �

LEMMA 2.5. For x ∈ (0,1) , let

1(x) = x(3− x4)arcsl(x)/
√

1− x4−4 [arcsl(x)]2 + x2,

2(x) = 2xarcsl(x)/
√

1− x4− (1+ x4) [arcsl(x)]2− x2,

3(x) = x(2− x4)arcsl(x)/
√

1− x4− [arcsl(x)]2 − x2.

Then we have the following conclusions:
(1) The function  (x)=1(x)/2(x) is strictly increasing from (0,1) onto (2/3,1);
(2) The function  (x)=1(x)/3(x) is strictly increasing from (0,1) onto (16/9,2) .

Proof. (1) Employing (2.1) and (2.2) gives

1(x) = x(3− x4)



n=0

(3/4,n)
(5/4,n)

x4n+1−4



n=0

(3/4,n)
(2n+1)(5/4,n)

x4n+2 + x2

=



n=1

3(3/4,n)
(5/4,n)

x4n+2−



n=1

4(3/4,n)
(2n+1)(5/4,n)

x4n+2−



n=0

(3/4,n)
(5/4,n)

x4n+6
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=



n=0

(6n+5)(3/4,n+1)
(2n+3)(5/4,n+1)

x4n+6−



n=0

(3/4,n)
(5/4,n)

x4n+6

=



n=0

16(n+1)(n+2)(4n+3)(3/4,n)
(2n+5)(4n+5)(4n+9)(5/4,n)

x4n+10,

2(x) = 2x



n=0

(3/4,n)
(5/4,n)

x4n+1− (1+ x4)



n=0

(3/4,n)
(2n+1)(5/4,n)

x4n+2− x2

=



n=1

2(3/4,n)
(5/4,n)

x4n+2−



n=1

(3/4,n)
(2n+1)(5/4,n)

x4n+2−



n=0

(3/4,n)
(2n+1)(5/4,n)

x4n+6

=



n=0

(4n+5)(3/4,n+1)
(2n+3)(5/4,n+1)

x4n+6−



n=0

(3/4,n)
(2n+1)(5/4,n)

x4n+6

=



n=0

8(n+1)(n+2)(4n+3)(3/4,n)
(2n+3)(2n+5)(4n+5)(5/4,n)

x4n+10

and therefore

 (x) = 
n=0 anx4n


n=0 bnx4n ,

where

an =
16(n+1)(n+2)(4n+3)(3/4,n)
(2n+5)(4n+5)(4n+9)(5/4,n)

, bn =
8(n+1)(n+2)(4n+3)(3/4,n)
(2n+3)(2n+5)(4n+5)(5/4,n)

.

(2.3)
Since an/bn = 1−3/(4n+9) is strictly increasing with respect to n , then  (x) is

strictly increasing on (0,1) by application of Lemma 2.2. Moreover,  (0+) = a0/b0 =
2/3 and  (1−) = 1.

(2) Lemma 2.4 also shows

3(x) = x(2− x4)



n=0

(3/4,n)
(5/4,n)

x4n+1−



n=0

(3/4,n)
(2n+1)(5/4,n)

x4n+2− x2

=



n=1

2(3/4,n)
(5/4,n)

x4n+2−



n=1

(3/4,n)
(2n+1)(5/4,n)

x4n+2−



n=0

(3/4,n)
(5/4,n)

x4n+6

=



n=0

(4n+3)(3/4,n)
(2n+3)(5/4,n)

x4n+6−



n=0

(3/4,n)
(5/4,n)

x4n+6

=



n=0

2(n+1)(4n+3)(3/4,n)
(2n+5)(4n+5)(5/4,n)

x4n+10,

and therefore

 (x) =


n=0 anx4n


n=0 cnx4n ,

where an is defined in (2.3), and

cn =
2(n+1)(4n+3)(3/4,n)
(2n+5)(4n+5)(5/4,n)

.
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Note that an/cn = 2− 2/(4n + 9) , making use of Lemma 2.2, we conclude that
 (x) increases on (0,1) . For the limiting values,  (0+) = a0/c0 = 16/9 and  (1−) =
2. �

LEMMA 2.6. Let p ∈ R and p0 = (log5− 2log2)/(2log) = 0.41198 · · ·. De-
fine the function Fp on (0,1) by

Fp(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1− [x/arcsl(x)]2p

1− (1− x4)p , p �= 0,

log[x/arcsl(x)]

log
(√

1− x4
) , p = 0.

(2.4)

Then the following statements are true:
(1) Fp(x) is strictly increasing on (0,1) if and only if p ∈ [1/2,+) , in which

case the range of Fp(x) on (0,1) is (1/5,1−−2p);
(2) Fp(x) is strictly decreasing on (0,1) if and only if p ∈ (−,1/3] , and Fp(x)

ranges from (0,1) onto (1−−2p,1/5) if p ∈ (0,1/3] , and while onto (0,1/5) if
p ∈ (−,0];

(3) If p ∈ (1/3,1/2) , then there exists x0 = x0(p) ∈ (0,1) such that Fp(x) is
strictly increasing on (0,x0) and strictly decreasing on (x0,1) . Consequently, if p ∈
(1/3, p0] , then the inequality

1−−2p < Fp(x) � 0 (2.5)

holds for all x ∈ (0,1) , and while p ∈ (p0,1/2) ,

1/5 < Fp(x) � 0 (2.6)

holds for all x ∈ (0,1) , where 0 = 0(p) = Fp(x0) .

Proof. First, we investigate the case of p = 0. Let g1(x)= log[x/arcsl(x)] , g2(x)=
log(

√
1− x4) . Then

g1(0+) = g2(0) = 0, Fp(x) = g1(x)/g2(x),

g′1(x)
g′2(x)

=

√
1− x4

[
x−√

1− x4arcsl(x)
]

2x4arcsl(x)
,

[
g′1(x)
g′2(x)

]′
=

x(3− x4)arcsl(x)/
√

1− x4−4[arcsl(x)]2 + x2

2x5[arcsl(x)]2
= − 1(x)

2x5[arcsl(x)]2
. (2.7)

Here 1(x) is defined in Lemma 2.5.
It follows from Lemma 2.5 and (2.7) that the function g′1(x)/g′2(x) is strictly de-

creasing on (0,1) , so is Fp(x) by application of Lemma 2.1. By l’Höptial’s rule, we
obtain Fp(0+) = 1/5. Clearly, Fp(1−) = 0.
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Following we assume that p �= 0. Let f1(x) = 1− [x/arcsl(x)]2p , f2(x) = 1−(1−
x4)p . Then simple computations lead to

f1(0+) = f2(0) = 0, Fp(x) = f1(x)/ f2(x), (2.8)

f ′1(x) = 2p

[
x

arcsl(x)

]2p−1 x−√
1− x4arcsl(x)√

1− x4[arcsl(x)]2
,

f ′2(x) = 4px3(1− x4)p−1,

f ′1(x)
f ′2(x)

=
[

x
arcsl(x)

]2p−1 x−√
1− x4arcsl(x)

2x3(1− x4)p−1/2[arcsl(x)]2
,

[
f ′1(x)
f ′2(x)

]′
=

x2p−52(x)
2(1− x4)p[arcsl(x)]2p+2 [2p−  (x)], (2.9)

where 2(x) and  (x) are defined in Lemma 2.5.
We divide the proof into three cases.
Case 1 p ∈ [1/2,+) . Then Lemma 2.5(1) and (2.9) lead to the conclusion that

the function f ′1(x)/ f ′2(x) is strictly increasing on (0,1) . Hence the asserted monotonic-
ity of Fp(x) in part (1) follows from Lemma 2.1 and (2.8). Moreover, Fp(0+) = 1/5
and Fp(1−) = 1−−2p .

Case 2 p ∈ (−,0)∪ (0,1/3] . Then it follows from Lemma 2.5(1) and (2.9) that
the function f ′1(x)/ f ′2(x) is strictly decreasing on (0,1) , so is Fp(x) by Lemma 2.1.
For the limiting values, Fp(0+) = 1/5, and Fp(1−) = 1−−2p if p ∈ (0,1/3) , and
while Fp(1−) = 0 if p ∈ (−,0) .

Case 3 p ∈ (1/3,1/2) . Noting that

F ′
p(x) =

[
f1(x)
f2(x)

]′
=

f ′1(x) f2(x)− f1(x) f ′2(x)
[ f2(x)]2

=
f ′2(x)

[ f2(x)]2
Hf1, f2(x), (2.10)

where

Hf1, f2(x) =
f ′1(x)
f ′2(x)

f2(x)− f1(x), (2.11)

H ′
f1, f2(x) =

[
f ′1(x)
f ′2(x)

]′
f2(x) =

x2p−5[1− (1− x4)p]2(x)
2(1− x4)p[arcsl(x)]2p+2 [2p−  (x)], (2.12)

Hf1, f2(0
+) = lim

x→0+

f ′1(x)
f ′2(x)

lim
x→0+

f2(x)− lim
x→0+

f1(x) = 0, Hf1, f2(1
−) =

1
2p −1 < 0.

(2.13)
Since p ∈ (1/3,1/2) , then equation (2.12) and Lemma 2.5(1) show that Hf1, f2(x)

is piecewise monotone on (0,1) , first increasing then decreasing. This, together with
(2.13), gives that there exists x0 = x0(p)∈ (0,1) such that Hf1, f2(x) > 0 for x∈ (0,x0) ,
and Hf1, f2(x) < 0 for x ∈ (x0,1) . Hence Fp(x) is strictly increasing on (0,x0) and
strictly decreasing on (x0,1) by (2.10). Consequently,

min{Fp(0+),Fp(1−)} = min{1/5,1−−2p} < Fp(x) � Fp(x0) = 0 (2.14)
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for all x ∈ (0,1) . Furthermore, it can easily be checked that p �→ 1−−2p is strictly
increasing on (1/3,1/2) , and 1−−2p � 1/5 for p ∈ (1/3, p0) and 1−−2p > 1/5
for p ∈ (p0,1/2) . Therefore, inequalities (2.5) and (2.6) are clear. �

LEMMA 2.7. Let q ∈ R and q0 = (log5− log3)/(4log) = 0.4715 · · · . Define
the function Gq on (0,1) by

Gq(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1− [x/arcsl(x)]4q

1− (1− x4)q , q �= 0,

log[x/arcsl(x)]

log
(

4
√

1− x4
) , q = 0.

(2.15)

Then the following statements are true:
(1) Gq(x) is strictly increasing on (0,1) if and only if q ∈ [1/2,+) , in which

case the range of Gq(x) on (0,1) is (2/5,1−−4q);
(2) Gq(x) is strictly decreasing on (0,1) if and only if q ∈ (−,4/9] , and Gq(x)

ranges from (0,1) onto (1−−4q,2/5) if q ∈ (0,4/9] , and while onto (0,2/5) if
q ∈ (−,0];

(3) If p ∈ (4/9,1/2) , then there exists x1 = x1(q) ∈ (0,1) such that Gq(x) is
strictly increasing on (0,x1) and strictly decreasing on (x1,1) . Consequently, if q ∈
(4/9,q0] , then the inequality

1−−4q < Gq(x) � 0

holds for all x ∈ (0,1) , and while q ∈ (q0,1/2) ,

2/5 < Gq(x) � 0

holds for all x ∈ (0,1) , where 0 = 0(q) = Gq(x1) .

Proof. The monotonicity property and range of G0(x) on (0,1) directly follow
from those of F0(x) in Lemma 2.6. Following it suffices to investigate the case of
q �= 0. Suppose that q �= 0. Let h1(x) = 1− [x/arcsl(x)]4q , h2(x) = 1− (1− x4)q .
Then h1(0+) = h2(0) = 0, Gq(x) = h1(x)/h2(x) and

h′1(x) = 4q

[
x

arcsl(x)

]4q−1 x−√
1− x4arcsl(x)√

1− x4[arcsl(x)]2
, h′2(x) = 4qx3(1− x4)q−1, (2.16)

h′1(x)
h′2(x)

=
[

x
arcsl(x)

]4q−1 x−√
1− x4arcsl(x)

x3(1− x4)q−1/2[arcsl(x)]2
, (2.17)

[
h′1(x)
h′2(x)

]′
=

x4q−53(x)
(1− x4)q[arcsl(x)]2q+2 [4q−  (x)] , (2.18)
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where 3(x) and  (x) are defined in Lemma 2.5. Therefore, parts (1) and (2) follow
from Lemma 2.5(2), Lemma 2.1 and (2.16)–(2.18) and together with the limiting values

Gq(0+) = lim
x→0+

h′1(x)
h′2(x)

=
2
5
, Gq(1−) =

{
1−−4q, q > 0,
0, q � 0.

For part (3), employing the auxiliary function Hf ,g = ( f ′/g′)g− f defined in
(2.11), one has

G′
q(x) =

[
h1(x)
h2(x)

]′
=

h′2(x)
[h2(x)]2

Hh1,h2(x),

H ′
h1,h2

(x) =
[
h′1(x)
h′2(x)

]′
h2(x) =

x4q−5[1− (1− x4)q]3(x)
(1− x4)q[arcsl(x)]2q+2 [4q−  (x)] ,

Hh1,h2(0
+) = 0, Hh1,h2(1

−) =
1
4q −1 < 0.

Thus there exists x1 = x1(q)∈ (0,1) such that Hh1,h2(x)> 0 for x∈ (0,x1) and Hh1,h2(x)
< 0 for x ∈ (x1,1) , which shows that Gq(x) is strictly increasing on (0,x1) and strictly
decreasing on (x1,1) . The proof of the remaining conclusions are completely similar
to those given earlier for Fp(x) with p ∈ (1/3,1/2) in Lemma 2.6(3) and so is omit-
ted. �

3. Main results

THEOREM 3.1. Let , ∈ [0,1] , and let p0 = (log5−2log2)/(2log)=0.41198 · · ·
and 0 be defined in Lemma 2.6. Then for any fixed p ∈ R , the double inequality

A(p,;x) � arcsl(x)
x

� A(p, ;x) (3.1)

holds for all 0 < |x| < 1 if and only if  � 0 and  � 0 , where

0 =

⎧⎪⎪⎨
⎪⎪⎩

0, p ∈ (−,0],

1−−2p, p ∈ (0, p0],

1/5, p ∈ (p0,+),

0 =

⎧⎨
⎩

1/5, p ∈ (−,1/3],
0, p ∈ (1/3,1/2),
1−−2p, p ∈ [1/2,+).

Inequality (3.1) becomes equality only for the case of  = 0 = 0 .

Proof. Without loss of generality, we assume that x ∈ (0,1) . A routine computa-
tion shows that the inequality (3.1) is equivalent to

 � Fp(x) �  , (3.2)

where Fp(x) is defined in (2.4).
Therefore, Theorem 3.1 follows directly from Lemma 2.6 and (3.2). �
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THEOREM 3.2. Let  , ∈ [0,1] , and let q0 = (log5− log3)/(4log)= 0.4715 · · ·
and 0 be defined in Lemma 2.7. Then for any fixed q ∈ R , the double inequality

B(q, ;x) � arcsl(x)
x

� B(q, ;x) (3.3)

holds for all 0 < |x| < 1 if and only if  � 0 and  � 0 , where

0 =

⎧⎪⎪⎨
⎪⎪⎩

0, q ∈ (−,0],

1−−4q, q ∈ (0,q0],

2/5, q ∈ (q0,+),

0 =

⎧⎪⎪⎨
⎪⎪⎩

2/5, q ∈ (−,4/9],

0, q ∈ (4/9,1/2),

1−−4q, q ∈ [1/2,+).

Inequality (3.3) becomes equality only for the case of  = 0 = 0 .

Proof. Suppose that x ∈ (0,1) . Rewrite the inequality (3.3) as

 � Gq(x) �  , (3.4)

where Gq(x) is defined in (2.15).
Therefore, Theorem 3.2 follows easily from Lemma 2.7 and (3.4). �
As an immediate consequence of Theorem 3.1, we obtain

COROLLARY 3.3. Let p0 = (log5−2log2)/(2log)= 0.41198 · · ·, and p1, p2 ∈
R . Then inequality

A

(
p1,

1
5
;x

)
<

arcsl(x)
x

< A

(
p2,

1
5
;x

)
(3.5)

holds for all 0 < |x| < 1 with the best possible constants p1 = p0 and p2 = 1/3 .

Proof. Inequality (3.5) can be directly derived from Theorem 3.1. Following it
suffices to prove that p0 and 1/3 are the best possible constants. In fact, if p ∈
(1/3, p0) , then from Theorem 3.1 we obtain that

A
(
p,1−−2p;x

)
<

arcsl(x)
x

� A(p,0;x)

holds for all 0 < |x| < 1 with the optimal parameters 1−−2p and 0 . This, in
conjunction with the fact that 1−−2p < 1/5 and 0 > 1/5 for p ∈ (1/3, p0) and
the monotonicity of  �→ A(p,;x) , shows that there exists x1,x2 ∈ (0,1) such that
A(p,1/5;x1) > [arcsl(x)]/x and [arcsl(x)]/x > A(p,1/5;x2) . �

Similarly, an application of Theorem 3.2 yields

COROLLARY 3.4. Let q0 =(log5− log3)/(4log)= 0.4715 · · · , and q1,q2 ∈R .
Then inequality

B

(
q1,

2
5
;x

)
<

arcsl(x)
x

< B

(
q2,

2
5
;x

)
holds for all 0 < |x| < 1 with the best possible constants q1 = q0 and q2 = 4/9 .
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REMARK 3.5. Put p = 1/2, Theorem 3.1 reduces to inequality (1.3), and substi-
tute 1/2 and 1/4 for q in (3.3), we also obtain inequalities (1.2) and (1.4) immediately.

4. Applications

In this section, by applying our main results in Section 3, some new inequalities
between the lemniscatic mean and several classical means will be established.

For a,b > 0 with a �= b , the lemniscatic mean LM(a,b) was introduced by Neu-
mann in [16] as follows:

LM(a,b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
a2−b2[

arcsl
(

4
√

1−b2/a2
)]2 , a > b,

√
b2−a2[

arcslh
(

4
√

b2/a2−1
)]2 , a < b,

(4.1)

where

arcslh(x) =
∫ x

0

dt√
1+ t4

, x ∈ R

is the hyperbolic arc lemniscate sine function (cf. [8, (2.6)]). It is apparent from (4.1)
that the lemniscatic mean is homogenous of degree one in its variables and LM(a,b) �=
LM(b,a) for a �= b .

Let H(a,b) = 2ab/(a+ b) , A(a,b) = (a+ b)/2 and G(a,b) =
√

ab be the har-
monic, arithmetic and geometric mean of two positive numbers a and b . Then it is
well known that H(a,b) < G(a,b) < A(a,b) for all a,b > 0 with a �= b . Using A(a,b)
and G(a,b) in place of a and b in LM(a,b) respectively, a new mean can be derived
(cf. [16, (6.4)]):

LMAG(a,b) = LM [A(a,b),G(a,b)] . (4.2)

Since H(a,b) , G(a,b) , A(a,b) and LMAG(a,b) are symmetric in a and b , with-
out loss of generality, we assume that a > b > 0. Then simple computations yield

H(a,b) = A(a,b)(1− x4), G(a,b) = A(a,b)
√

1− x4 (4.3)

and

LMAG(a,b) = A(a,b)
[

x
arcsl(x)

]2

, (4.4)

where x =
√

(a−b)/(a+b)∈ (0,1) .
Combining (4.3) and (4.4) with our main results in Section 3 leads to the following

propositions.

PROPOSITION 4.1. Let , ∈ [0,1] , and let p0 = (log5− 2log2)/(2log) =
0.41198 · · · and 0 be defined as in Lemma 2.6. Then for any fixed p∈R , the following
mean inequality

[(1− )Ap(a,b)+Hp(a,b)]1/p � LMAG(a,b) � [(1−)Ap(a,b)+Hp(a,b)]1/p
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holds for all a,b > 0 with a �= b if and only if  � 0 and  � 0 , where

0 =

⎧⎪⎪⎨
⎪⎪⎩

1/5, p ∈ (−,1/3],

0, p ∈ (1/3,1/2),

1−−2p, p ∈ [1/2,+),

0 =

⎧⎪⎪⎨
⎪⎪⎩

0, p ∈ (−,0],

1−−2p, p ∈ (0, p0],

1/5, p ∈ (p0,+).

Inequality becomes equality only for the case of  = 0 = 0 .

PROPOSITION 4.2. Let  , ∈ [0,1] , and let q0=(log5− log3)/(4log)=0.4715 · · ·
and 0 be defined as in Lemma 2.7. Then for any fixed q ∈ R , the double inequality

[
(1−)A2q(a,b)+G2q(a,b)

]1/(2q) � LMAG(a,b)�
[
(1− )A2q(a,b)+G2q(a,b)

]1/(2q)

holds for all all a,b > 0 with a �= b if and only if  � 0 and  � 0 , where

0 =

⎧⎪⎪⎨
⎪⎪⎩

2/5, q ∈ (−,4/9],

0, q ∈ (4/9,1/2),

1−−4q, q ∈ [1/2,+),

0 =

⎧⎪⎪⎨
⎪⎪⎩

0, q ∈ (−,0],

1−−4q, q ∈ (0,q0],

2/5, q ∈ (q0,+).

Inequality becomes equality only for the case of  = 0 = 0 .

PROPOSITION 4.3. Let p0 = (log5−2log2)/(2log)= 0.41198 · · ·, and p1, p2 ∈
R . Then the inequality

[
4
5
Ap2(a,b)+

1
5
Hp2(a,b)

]1/p2

< LMAG(a,b) <

[
4
5
Ap1(a,b)+

1
5
Hp1(a,b)

]1/p1

holds for all a,b > 0 with a �= b with the best possible constants p1 = p0 and p2 = 1/3 .

By (4.1) and (4.2), Proposition 4.2 can be rewritten as

PROPOSITION 4.4. Let  ∗,∗ ∈ [0,1] , and let q∗0 = (log5− log3)/(2log) =
0.9431 · · ·. Then for any fixed q ∈ R , the double inequality

[(1− )aq + bq]1/q � LM(a,b) � [(1− )aq +bq]1/q

holds for all all a > b > 0 if and only if ∗ � ∗
0 and  ∗ �  ∗

0 , where

∗
0 =

⎧⎪⎪⎨
⎪⎪⎩

2/5, q ∈ (−,8/9],

∗0 , q ∈ (8/9,1),

1−−2q, q ∈ [1,+),

 ∗
0 =

⎧⎪⎪⎨
⎪⎪⎩

0, q ∈ (−,0],

1−−2q, q ∈ (0,q∗0],

2/5, q ∈ (q∗0,+),

and ∗0 = ∗0 (q) = max
x∈(0,1)

[1− (x/arcsl(x))2q]/[1− (1 − x4)q/2] . Inequality becomes

equality only for the case of ∗ = ∗
0 = ∗0 .
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PROPOSITION 4.5. Let q∗0 = (log5− log3)/(2log) = 0.9431 · · · , and q∗1,q
∗
2 ∈

R . Then the inequality

[
3
5
aq∗2 +

2
5
bq∗2
]1/q∗2

< LM(a,b) <

[
3
5
aq∗1 +

2
5
bq∗1
]1/q∗1

holds for all all a > b > 0 with the best possible constants q∗1 = q∗0 and q∗2 = 8/9 .

REMARK 4.6. If we put p = 1, then Proposition 4.1 reduces to [28, Theorem
3.2].
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