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Abstract. In this paper, we introduce a new partial order called CS partial order, which is based
on the core partial order and star partial order. We give some characteristics of CS partial order
by using polar decomposition. Then we apply the polar-like decomposition to introduce another
new partial order called WC (weak CS) partial order, which is an extension of the CS partial
order. We illustrate the relationships of the two partial orders with some well-known partial
orders, such as minus, Löwner, GL, CL partial order. At the end of the paper, the application of
CS and WC partial orders is briefly discussed from the perspective of quantum physics.

1. Introduction

A binary relation on a nonempty set is called partial order if it satisfies reflexivity,
transitivity, and antisymmetry. In recent years, more and more mathematicians have
turned their attention to matrix partial ordering: Jan Hauke and Augustyn Markiewicz
[8] introduced the GL partial order on the set of rectangular matrices; Baksalary and
Trenkler [1] studied the core partial order of complex matrices; Hongxing Wang and
Xiaoji Liu [16] introduced the CL partial order on the class of core matrices; Hongxing
Wang and Xiaoji Liu [18] defined the WL partial order on the set of rectangular matri-
ces, which is the extension of GL partial order, by applying polar-like decomposition.
In this paper, a new partial order called CS partial order is introduced on the complex
matrix set by polar decomposition and core and star partial orders. Then, we introduce
another new partial order called WC partial order which is the extension of the CS order
by polar-like decomposition.

First of all, we use the following notation. The symbols Cm,n and Cn,n denote the
set of m×n and n×n matrices with complex entries, respectively. The subset of Cn,n

consisting of Hermitian nonnegative definite matrices will be denoted by C�
n , and its

subset consisting of positive definite matrices by C>
n . A∗ , (A) and rk (A) denote the

conjugate transpose, range space (or column space) and rank of A ∈ Cm,n , respectively.
The smallest positive integer k for which rk

(
Ak+1

)
= rk

(
Ak

)
is called the index of

A∈ Cn,n and is denoted by Ind(A) . The symbol CCM
n stands for a set of n×n matrices
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of index less than or equal to 1. Moreover, In is the identity matrix of order n . The
Moore-Penrose inverse of A∈Cm,n is defined as the unique matrix X ∈Cn,m satisfying
the equations

(1) AXA = A, (2) XAX = X , (3) (AX)∗ = AX , (4) (XA)∗ = XA,

and is usually denoted by X = A† . A matrix X is called a generalized inverse of
A , denoted as X = A− , if it satisfies AXA = A . Furthermore, we denote PA = AA† .
The group inverse of A ∈ Cn,n is defined as the unique matrix X ∈ Cn,n satisfying the
equations

(1) AXA = A, (2) XAX = X , (5) AX = XA,

and is usually denoted as X = A# .
We give the definitions of some well-known partial orders such as minus, Löwner,

star, core, GL and CL partial orders, which are defined in the following:

(a) A
−
� B : A,B ∈ Cm,n , rk (B)− rk (A) = rk (B−A);

(b) A
L
� B : A,B ∈ Cm,n , B−A = KK∗;

(c) A
∗
� B : A,B ∈ Cm,n , AA∗ = BA∗ and A∗A = A∗B;

(d) A
#©
� B : A,B ∈ CCM

n , A #©A = A #©B and AA #© = BA #©;

(e) A
GL
� B : A,B∈Cm,n , (A)⊆(B) , (A∗)⊆(B∗) ,max

(
B†A

)
� 1, AB∗ =

(AA∗)
1
2 (BB∗)

1
2 ;

(f) A
CL
� B : A,B ∈ CCM

n , A #©A
#©
� B #©B and A2A #©

L
� B2B #©.

In recent years, matrix partial order has attracted a lot of attentions and researches
in various aspects. For example, the simultaneous polar decomposability of a pair of
rectangular matrices is derived in [13]. The unique weighted polar decomposition theo-
rem and the WGL partial order is given in [21]. The core inverse and core partial order
can refer to [17, 15, 3, 12]. And the researches about other matrix partial orders can be
referred to [2, 4, 19, 6, 14, 10, 11, 5, 20].

In this paper, we consider the matrices on complex field. We introduce the first
new partial order on the set of m× n matrices based on the core partial order and
the star partial order by applying the polar decomposition, and then introduce another
new partial order which is the extension of the first new partial order by the polar-like
decomposition.

2. Preliminary results

In this section, we give some preliminary results which can refer to [1, Theorem
1], [7, Corollary 6], [1, Lemma 3], [8, Lemma 3], [8, Lemma 2], [1, Theorem 7], [18,
Theorem 2.1], [18, Theorem 2.6], [1, Lemma 5] and these results will be used in the
next section to induce the new partial orders and characterize them.

LEMMA 1. Let A ∈ C
CM
n . Then

A #© = A#AA†. (1)
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LEMMA 2. Let A ∈ Cn,n , and rk (A) = r . Then A can be represented in the form

A = U

[
K L
0 0

]
U∗, (2)

where U ∈Cn,n is unitary, = diag(1Ir1 , . . . ,t Irt ) is the diagonal matrix of singular
values of A, 1 > 2 > · · ·> t , r1 + r2 + · · ·+ rt = r , and K ∈ Cr,r , L ∈Cr,n−r satisfy

KK∗ +LL∗ = Ir.

LEMMA 3. Let A,B ∈ CCM
n , and let A be of the form (2). Then A

#©
� B if and only

if

B = U

[
K L
0 Z

]
U∗, (3)

where K is nonsingular and Z ∈ Cn−r,n−r is some matrix of index one.

LEMMA 4. Let A ∈ Cm,n . Then A can be written as

A = GAEA = EAHA, (4)

where EA ∈ Cm,n is a partial isometry, i.e., E∗
A = E†

A , and GA,HA ∈ C�
m . The matrices

EA,GA,HA are uniquely determined by (EA) = (GA) , (E∗
A) = (HA) in which

case GA = |A| , HA = |A∗| and EA is given by EA = G†
AA = AH†

A .

LEMMA 5. Let A,B ∈ Cm,n with rk (A) = a and rk (B) = b. Then A
∗
� B if and

only if there exist unitary matrices U and V such that

U∗AV =
[

Da 0
0 0

]
and U∗BV =

⎡
⎣Db 0 0

0 D 0
0 0 0

⎤
⎦ , (5)

where both matrices Da ∈ C>
a and Db ∈ C

>
b are diagonal.

LEMMA 6. Let A,B ∈ CCM
n , and let A be EP. Then A

#©
� B if and only if A

∗
� B.

LEMMA 7. Let A ∈ Cm,n . Then the polar-like decomposition of A can be written
as

A = G
1
2
AEAH

1
2
A , (6)

where EA,GA,HA are given in Lemma 4.

LEMMA 8. Let A∈Cm,n . Then the polar-like decomposition of A† can be written
as

A† =
(
H†

A

) 1
2
E∗

A

(
G†

A

) 1
2
, (7)

where EA,GA,HA are given in Lemma 4.
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LEMMA 9. Let A,B ∈ CCM
n ,

A = U

[
K L
0 0

]
U∗, B = U

[
W X
Y Z

]
U∗, (8)

where U,,K,L are given in Lemma 2, W ∈ Cr,r , Z ∈ Cn−r,n−r . Then A2
#©
� B2 if and

only if
(i) YW +ZY = 0,

(ii) W 2 +XY = (K)2 ,
(iii) WX +XZ = KL.

3. Main results

First, we introduce the definition of the CS order.

DEFINITION 1. Let A,B ∈ Cm,n and AA∗,BA∗ ∈ CCM
n , (A∗) ⊆(B∗) . We say

A is below B under the CS order if

AA∗ #©
� BA∗, (9)

if so, we write A
CS
� B .

THEOREM 1. The CS order is a partial order on Cm,n .

Proof. The reflexivity is obvious.

Antisymmetry: If A
CS
� B and B

CS
� A , rk (A) = a , rk (B) = b , a � b , we can apply

the singular value decompositions for A =VAAW ∗
A and B =VBBW ∗

B , where A ∈C>
a

and B ∈ C
>
b are diagonal matrices, while VA ∈ Cm,a,WA ∈ Cn,a,VB ∈ Cm,b and WB ∈

Cn,b are isometries, i.e., V ∗
AVA = W ∗

AWA = Ia and V ∗
BVB = W ∗

BWB = Ib . By calculating

we have that V ∗
AVB =W ∗

AWB and WA =WBW ∗
BWA . Then with the Definition 1, A

CS
� B⇔

VAAW ∗
AWAAV ∗

A

#©
� VBBW ∗

BWAAV ∗
A . According to V ∗

AVA = W ∗
AWA = Ia and V ∗

AVB =

W ∗
AWB , we can convert the inequality to VAAV ∗

AVAAV ∗
A

#©
� VBBV ∗

BVAAV ∗
A . Then

postmultiplying the inequality by (VAAV ∗
A )−1 and we can get VAAV ∗

A

#©
� VBBV ∗

B .

Similarly, we can convert B
CS
� A to VBBV ∗

B

#©
� VAAV ∗

A . With the definition of core
partial order, we can have that VAAV ∗

A = VBBV ∗
B . Moreover, postmultiplying the

equality by VBW ∗
B and we derive that VAAW ∗

A =VBBW ∗
B , that is A = B , the antisym-

metry condition holds.

Transitivity: If A
CS
� B and B

CS
� C , using the singular value decompositions and the

Definition 1 once again and we can get A
CS
� B⇔VAAW ∗

AWAAV ∗
A

#©
�VBBW ∗

BWAAV ∗
A .

Then, converting the inequality to VAAV ∗
AVAAV ∗

A

#©
� VBBV ∗

BVAAV ∗
A and postmulti-

plying inequality by (VAAV ∗
A )−1 , and we can get VAAV ∗

A

#©
� VBBV ∗

B . Similarly, we
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can convert B
CS
� C to VBBV ∗

B

#©
�VCCV ∗

C . Then we can derive that VAAV ∗
A

#©
�VCCV ∗

C

with the definition of core partial order. Postmultiplying the inequality VAAV ∗
A

#©
�

VCCV ∗
C by VCW ∗

CWAAV ∗
A and we derive that AA∗ #©

� CA∗, which is A
CS
� C with the

Definition 1. The transitivity condition holds.
The proof is complete. �

THEOREM 2. For A,B ∈ Cm,n , A
CS
� B if and only if A∗ CS

� B∗ .

Proof. Let A,B ∈ Cm,n , and rk (A) = a , rk (B) = b , a � b . We consider the
singular value decompositions for A = VAAW ∗

A and B = VBBW ∗
B , where A ∈ C>

a
and B ∈ C

>
b are diagonal matrices, while VA ∈ Cm,a,WA ∈ Cn,a,VB ∈ Cm,b and WB ∈

Cn,b are isometries, i.e., V ∗
AVA = W ∗

AWA = Ia and V ∗
BVB = W ∗

BWB = Ib . With Definition
1, we have

VAAW
∗
AWAAV

∗
A

#©
� VBBW

∗
BWAAV

∗
A . (10)

Then, postmultiplying the inequality (10) by (WAAV ∗
A )−1 , and we get the equivalent

form

VAAW
∗
A

#©
� VBBW

∗
B . (11)

We notice that
V ∗

AVB = W ∗
AWB and WA = WBW

∗
BWA. (12)

Premultiplying the inequality (11) by WBV ∗
B and postmultiplying by WBV ∗

B , with (12),
we can get

WAAV
∗
A

#©
� WBBV

∗
B . (13)

Then postmultiplying inequality (13) by VAAW ∗
A , we obtain A∗A

#©
� B∗A , and applying

Definition 1 once more, i.e., A∗ CS
� B∗ . The proof is complete. �

It should be noted that in the proof of Theorem 2, we consider the property of
inequality not the core partial order. The proof can be done by a single transforma-
tion, which is premultiplying the inequality (10) by WBV ∗

B and postmultiplying by
(WAAV ∗

A )−1WBV ∗
BVAAW ∗

A .

THEOREM 3. For any A,B ∈ Cm,n ,

if A
∗
� B then A

CS
� B. (14)

Proof. It can be straightforward derived from Definition 1, Lemma 5 and the def-
inition of star partial order. �

The next theorem asserts that the CS partial order can imply the star partial order
under special conditions.
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THEOREM 4. Let A be EP. Then,

A
CS
� B ⇒ A

∗
� B. (15)

Proof. If A
CS
� B , with Definition 1, we know that AA∗ #©

� BA∗ and AA∗,BA∗ ∈
CCM

n . As A is EP matrix, we have AA∗ is still the EP matrix. Applying Lemma 6, we
can get

AA∗ ∗
� BA∗, (16)

and postmultiplying the inequality by (A∗)−1 , we have A
∗
� B . �

THEOREM 5. Let A,B ∈ Cm,n , the matrices A = GAEA and B = GBEB are their
polar decompositions, where (EA) = (GA) , (EB) = (GB) , GA,GB ∈ C

CM
m ∩

C�
m . Then

A
CS
� B ⇔ GA

#©
� GB and EA

∗
� EB. (17)

Proof. According to GA
#©
� GB , Lemma 2, Lemma 3 and the conditions of GA,GB ,

we can get

GA = U

[
1 0
0 0

]
U∗; GB = U

[
1 0
0 2

]
U∗, (18)

where U ∈ Cm,m is unitary matrix, 1 is the diagonal matrix of singular values of GA,
1 +2 is the diagonal matrix of singular values of GB . With Definition 1 and Lemma
4, we have

GAEA (GAEA)∗
#©
� GBEB (GAEA)∗ . (19)

This inequality (19) can be written as

GAEAE∗
AG∗

A

#©
� GBEBE∗

AG∗
A. (20)

We consider EAE∗
A , EBE∗

A as Q1 , Q2 , respectively. According to the conditions

of EA and EB , we can denote Q1 = U

[
X11 0
0 0

]
U∗ , Q2 = U

[
Y11 0
0 0

]
U∗ where X11 is

the diagonal matrix of singular values of EAE∗
A , Y11 is upper-triangular matrix which

the main diagonal is singular values of EBE∗
A . Then,

GAEAE∗
AG∗

A = U

[
S1 0
0 0

]
U∗; GBEBE∗

AG∗
A = U

[
S2 0
0 0

]
U∗, (21)

where S1 = 1X11 (1)
∗ , S2 = 1Y11 (1)

∗ .
With Lemma 1, we can calculate that

(GAEAE∗
AG∗

A) #© = U

[
S−1

1 0
0 0

]
U∗. (22)
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Applying the definition of core partial order and (21), (22) to calculate, we have
X11 = Y11 , and thus Q1 = Q2 which can indicate that EAE∗

A = EBE∗
A .

With Lemma 4 and Definition 1, observing that GAG†
A = E∗

AEA = PA∗ and GBG†
B =

E∗
BEB = PB∗ ; then the relation (A∗) ⊆ (B∗) is equivalent to E∗

BEBE∗
AEA = E∗

AEA .
In view of EAE∗

A = EBE∗
A , thus E∗

AEA = E∗
BEA which can indicate E∗

AEA = E∗
AEB . Ap-

plying the definition of star partial order, we get EA
∗
� EB . The proof is complete. �

Inspired by the characterizations of the WL partial order, which is a generalization
of the GL partial order, in [18]. We apply the polar-like decomposition to the CS partial
order, and introduce a new partial order called WC partial order.

THEOREM 6. Let A,B ∈ Cm,n , the binary operation:

A
WC
� B ⇔ G

1
2
A

#©
� G

1
2
B , EA

∗
� EB, H

1
2
A

#©
� H

1
2
B , (23)

where A = G
1
2
AEAH

1
2
A and B = G

1
2
BEBH

1
2
B are the polar-like decompositions of A

and B, respectively. Then the binary operation is a partial order.

Proof. Since the polar-like decomposition of a given matrix is unique, with Lemma
7 and Theorem 5, it is easy to check that the binary operation is a partial order. �

THEOREM 7. Let A,B ∈ Cm,n , then

A
WC
� B ⇔ A∗ WC

� B∗. (24)

Proof. Let A = G
1
2
AEAH

1
2
A , since G

1
2
A = H

1
2
A∗ ,EA = EA∗ ,H

1
2
A = G

1
2
A∗ , and similarly

let B = G
1
2
BEBH

1
2
B , we can derive it. �

THEOREM 8. Let A,B ∈ Cm,n , A = G
1
2
AEAH

1
2
A and B = G

1
2
BEBH

1
2
B be their polar-

like decompositions, and EA
∗
� EB . Then,

G
1
2
A

#©
� G

1
2
B ⇔ H

1
2
A

#©
� H

1
2
B . (25)

Proof. Considering the singular value decompositions for A = VAAW ∗
A and B =

VBBW ∗
B , rk (A) = a , rk (B) = b , and we can know that

GA = VAAV
∗
A , EA = VAW

∗
A , HA = WAAW

∗
A . (26)

First let G
1
2
A

#©
� G

1
2
B and EA

∗
� EB , then

VA
1
2
AV ∗

A

#©
� VB

1
2
BV ∗

B , (27)
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VAW
∗
A

∗
� VBW

∗
B , (28)

according to (28) we have WAV ∗
AVAW ∗

A = WAV ∗
AVBW ∗

B . With V ∗
AVA = W ∗

AWA = Ia and
W ∗

A (WAV ∗
AVAW ∗

A )WB = W ∗
A (WAV ∗

AVBW ∗
B )WB , we can have

W ∗
AWB = V ∗

AVB, (29)

with (27) and (29) we get W ∗
BWA

1
2
AW ∗

AWB
#©
� 

1
2
B , then

WBW
∗
BWA

1
2
AW ∗

AWBW
∗
B

#©
� WB

1
2
BW ∗

B , (30)

applying (28) and we have (VAW ∗
A )∗VAW ∗

A

∗
� (VBW ∗

B )∗VBW ∗
B , i.e.,

WAW
∗
A

∗
� WBW

∗
B , (31)

we can imply that WAW ∗
AWAW ∗

A = WAW ∗
A = WAW ∗

AWBW ∗
B , then

W ∗
AWAW

∗
A = W ∗

AWAW
∗
AWBW

∗
B ,

i.e., W ∗
A = W ∗

AWBW ∗
B . With (30) we get

WA
1
2
AW ∗

A

#©
� WB

1
2
BW ∗

B , (32)

i.e., H
1
2
A

#©
� H

1
2
B .

On the contrary, applying H
1
2
A

#©
� H

1
2
B and EA

∗
� EB , we can obtain G

1
2
A

#©
� G

1
2
B . �

According to Theorem 8 we can obtain the following corollary.

COROLLARY 1. Let A,B ∈ Cm,n ,

A
WC
� B ⇔ G

1
2
A

#©
� G

1
2
B ,EA

∗
� EB, (33)

⇔ H
1
2
A

#©
� H

1
2
B ,EA

∗
� EB. (34)

It is well known that the star partial order is preserved for the Moore-Penrose
inverse, that is,

A
∗
� B ⇔ A†

∗
� B†. (35)

However, we note that core partial order is not necessarily preserved for the Moore-
Penrose inverse, i.e., let A,B ∈ CCM

n , then

A
#©
� B � A†

#©
� B†, (36)

the following example can illustrate it.
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EXAMPLE 1. Let A =
[

1 1
0 0

]
, B =

[
1 1
0 1

]
, it is obviously that A,B ∈ CCM

n . We

can calculate that

A #© =
[

1 0
0 0

]
,

with the definition of core partial order, we have A
#©
� B . However, with calculating that

A† =
[ 1

2 0
1
2 0

]
, B† =

[
1 −1
0 0

]
, (A #©)† =

[
1 1
0 0

]
,

and applying the definition of core partial order, we obtain A† (A #©)† �= B† (A #©)† , i.e.,

A
#©
� B � A†

#©
� B† .

It follows from Lemma 8 that we drive the following Theorem.

THEOREM 9. Let A,B ∈ Cm,n , A = G
1
2
AEAH

1
2
A and B = G

1
2
BEBH

1
2
B be their polar-

like decompositions. Then

A†
WC
� B† ⇔ G

† 1
2

A

#©
� G

† 1
2

B ,EA
∗
� EB, (37)

⇔ H
† 1

2
A

#©
� H

† 1
2

B ,EA
∗
� EB. (38)

Next, we exemplify the relationships of the CS and WC partial orders from the
minus, Löwner, GL and CL partial orders.

EXAMPLE 2. Let A =
[

1 2
2 4

]
, B =

[
5 0
0 5

]
. Then rk (A) = 1, rk (B) = 2 and

GA =
[

1 2
2 4

]
, EA =

[
0.2 0.4
0.4 0.8

]
,

GB =
[

5 0
0 5

]
, EB =

[
1 0
0 1

]
.

With Lemma 1, we obtain

A #© =
[

0.04 0.08
0.08 0.16

]
, B #© =

[
0.2 0
0 0.2

]
, G #©

A =
[

0.04 0.08
0.08 0.16

]
.

By calculating, we find GA
#©
� GB and EA

∗
� EB , i.e., A

CS
� B .

(1) Since rk (B−A) = 1 = rk (B)− rk (A) , A is below B under the minus partial
order;

(2) Since B−A =
[

4 −2
−2 1

]
is a positive semidefinite matrix, A is below B

under the Löwner partial order;
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(3) Since

AB∗ =
[

5 10
10 20

]
, AA∗ =

[
5 10
10 20

]
, BB∗ =

[
25 0
0 25

]
,

and
AB∗ = (AA∗)

1
2 (BB∗)

1
2 ,

A is below B under the GL partial order;

(4) Since B2B #© −A2A #© =
[

4 −2
−2 1

]
is a positive semidefinite matrix, we have

A2A #©
L
� B2B #© . And A #©A =

[
0.2 0.4
0.4 0.8

]
, B #©B =

[
1 0
0 1

]
, (A #©A) #© =

[
0.2 0.4
0.4 0.8

]
, we

can show that A #©A
#©
� B #©B , so A is below B under the CL partial order.

EXAMPLE 3. Let A =
[

5 10
10 20

]
, B =

[
25 0
0 25

]
. Then rk (A) = 1, rk (B) = 2 and

GA =
[

5 10
10 20

]
, EA =

[
0.2 0.4
0.4 0.8

]
, HA =

[
5 10
10 20

]
;

GB =
[

25 0
0 25

]
, EB =

[
1 0
0 1

]
, HB =

[
25 0
0 25

]
.

We can calculate that

G
1
2
A =

[
1 2
2 4

]
, H

1
2
A =

[
1 2
2 4

]
, G

1
2
B =

[
5 0
0 5

]
, H

1
2
B =

[
5 0
0 5

]
;

A #© =
[

0.008 0.016
0.016 0.032

]
, B #© =

[
0.04 0
0 0.04

]
, G #©

A =
[

0.008 0.016
0.016 0.032

]
, G

1
2 #©
A =

[
0.04 0.08
0.08 0.16

]
.

By calculating, we find G
1
2
A

#©
� G

1
2
B , EA

∗
� EB , H

1
2
A

#©
� H

1
2
B , i.e., A

WC
� B .

(1) Since rk (B−A) = 1 = rk (B)− rk (A) , A is below B under the minus partial
order;

(2) Since B−A =
[

20 −10
−10 5

]
is a positive semidefinite matrix, A is below B

under the Löwner partial order;
(3) Since

AB∗ =
[

125 250
250 500

]
, AA∗ =

[
125 250
250 500

]
, BB∗ =

[
625 0
0 625

]
,

and
AB∗ = (AA∗)

1
2 (BB∗)

1
2 ,

A is below B under the GL partial order;
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(4) Since B2B #© − A2A #© =
[

20 −10
−10 5

]
is a positive semidefinite matrix, we

have A2A #©
L
� B2B #© . And A #©A =

[
0.2 0.4
0.4 0.8

]
, B #©B =

[
1 0
0 1

]
, (A #©A) #© =

[
0.2 0.4
0.4 0.8

]
,

we can show that A #©A
#©
� B #©B , so A is below B under the CL partial order.

From the Example 2 and 3 above, we can see that the CS and WC partial orders
can imply the minus, Löwner, GL and CL partial orders in some special cases. The
following remark is discussed whether the CS partial order can imply the WC partial
order.

REMARK 1. With Theorem 5 and Corollary 1, we only need to prove that

GA

#©
� GB =⇒ G

1
2
A

#©
� G

1
2
B , HA

#©
� HB =⇒ H

1
2
A

#©
� H

1
2
B .

Let A = U

[
K L
0 0

]
U∗ , B = U

[
W X
Y Z

]
U∗ , A �= B , with the definition of core

partial order, we have A #© = U

[
(K)−1 0

0 0

]
U∗ . If A2

#©
� B2 , we suppose that A

#©
� B .

According to A #©A = A #©B , AA #© = BA #© and Lemma 9, we have

W = K, X = L, Y = 0, Z = 0,

i.e., B = A =U

[
K L
0 0

]
U∗ , it is obviously contradicted with A �= B . In other words,

A
CS
� B � A

WC
� B in the general case.

Next, we give another remark to discuss whether the CS partial order can be de-
rived from the WC partial order.

REMARK 2. Analysis similar to Remark 1, we need to prove that

G
1
2
A

#©
� G

1
2
B =⇒ GA

#©
� GB, H

1
2
A

#©
� H

1
2
B =⇒ HA

#©
� HB.

If A,B∈CCM
n , A

#©
�B, with Lemma 2 and Lemma 3 we know A =U

[
K L
0 0

]
U∗ ,

B =U

[
K L
0 Z

]
U∗. By taking A =U

[
K L
0 0

]
U∗ , B =U

[
K L
0 Z

]
U∗ into Lemma

9, and then we find the B is contradicted with the condition WX + XZ = KL of

Lemma 9 by calculating, i.e., A
#©
� B � A2

#©
� B2 . Therefore, we conclude that A

1
2

#©
�

B
1
2 � A

#©
� B . In other words, A

WC
� B � A

CS
� B.
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4. Discussion

In quantum physics, we often discuss and describe the properties and qualities of
observables. A supplementary point of view is obtained when we compare different
observables. In ([9] chapter 3, section 5), there are three relations between observables
and these relations can be used to make ststements like ‘A is better than B’ precise.
Here we consider one pre-order which called state distinction.

DEFINITION 2. Let A and B be observables. If, for all states 1,2 ∈ S (H) ,

A (1) = A (2) ⇒B (1) = B (2) ,

then we write B �i A and say that the state-distinction power of A is greater than or
equal to that of B . If B �i A �i B , we say that A and B are informationally equivalent,
and write A ∼i B .

According to the Definition 2, we can easily confirm that �i is a preorder which
satisfies the reflexivity and transitivity, and ∼i is an equivalence relation. With Example
2 and 3, we know that CS and WC partial order can lead to minus, Löwner, GL and CL
partial orders in some special cases. However, in [16] the CL partial order cannot lead
to minus, Löwner and GL partial orders. So we can say that CS and WC order are the
better informationally equivalences than CL order. As the construction of partial order
is still being studied, so we have not yet got a best or worst partial order to describe
these relationships in quantum physics.

The more details about the relevant knowledge in quantum physics can be referred
to [9].
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