ESTIMATING THE REMAINDER OF AN ALTERNATING p-SERIES USING HYPERGEOMETRIC FUNCTIONS

Othman Echi, Adel Khalfallah and Dhaker Kroumi

(Communicated by L. Mihokovic)

Abstract. In this paper, using hypergeometric functions, we provide sharp estimates of the remainder of the alternating p-series, $\sum_{n \geqslant 1} \frac{(-1)^{n-1}}{n^{p}}$, where $p \geqslant 2$ is an integer. We show that the largest ρ and the largest σ such that the inequalities

$$
\frac{1}{2(n+1)^{p}-\rho} \leqslant\left|\sum_{k=n+1}^{\infty} \frac{(-1)^{k-1}}{k^{p}}\right| \leqslant \frac{1}{2 n^{p}+\sigma}
$$

hold for any integer $n \geqslant 1$ are

$$
\rho(p)=2^{p+1}-\frac{1}{1-\left(1-2^{1-p}\right) \zeta(p)} \text { and } \sigma(p)=\frac{1}{1-\left(1-2^{1-p}\right) \zeta(p)}-2
$$

where $\zeta(p)=\sum_{k=1}^{\infty} \frac{1}{k^{p}}$, the Riemann zeta function.

1. Introduction

Let $f:[1, \infty) \longrightarrow(0, \infty)$ be a function, satisfying the following properties:

$$
\begin{align*}
& f(n+1)<f(n), \text { for all } n \in \mathbb{N} \tag{1.1a}\\
& \lim _{n \rightarrow \infty} f(n)=0 \tag{1.1b}\\
& \Delta f(n)<\Delta f(n+1), \text { for all } n \in \mathbb{N} \tag{1.1c}
\end{align*}
$$

where

$$
\begin{equation*}
\Delta f(n):=f(n+1)-f(n) . \tag{1.2}
\end{equation*}
$$

Throughout this paper, we denote by

$$
\begin{equation*}
g(n):=\frac{1}{f(n)} . \tag{1.3}
\end{equation*}
$$

Mathematics subject classification (2020): 40A25, 40A05.
Keywords and phrases: Alternating series, estimate of the remainder of a series, hypergeometric series.

Consider the Leibniz series $\sum_{n=1}^{\infty}(-1)^{n-1} f(n)$, we denote by

$$
\begin{equation*}
R_{n}:=\sum_{k=n+1}^{\infty}(-1)^{k-1} f(k) \tag{1.4}
\end{equation*}
$$

its remainder of order n. We have

$$
\begin{equation*}
\left|R_{n}\right|+\left|R_{n+1}\right|=f(n+1), \text { for } n \geqslant 1, \tag{1.5}
\end{equation*}
$$

and according to $[2,3]\left(\left|R_{n}\right|\right)_{n}$ is decreasing. Therefore the following inequalities hold:

$$
\begin{equation*}
\frac{f(n+1)}{2}<\left|R_{n}\right|<\frac{f(n)}{2} \tag{1.6}
\end{equation*}
$$

The above inequalities can be rewritten as follows:

$$
\begin{equation*}
\frac{1}{2 g(n+1)}<\left|R_{n}\right|<\frac{1}{2 g(n)} \tag{1.7}
\end{equation*}
$$

For more information about estimates of the remainder of some alternating series, see for instance $[5,7,8]$.

It is natural to ask the following question: which are the best constants ρ and σ (the largest ρ and the largest σ) such that the inequalities

$$
\begin{equation*}
\frac{1}{2 g(n+1)-\rho}<\left|R_{n}\right|<\frac{1}{2 g(n)+\sigma} \tag{1.8}
\end{equation*}
$$

hold, for every $n \geqslant 1$?
Similar questions have been stated (cf. [6]) for the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ and the Gregory-Leibniz series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1}$.

The aim of this paper is to give a positive answer for the previous question for $g(n)=n^{p}$, where $p \geqslant 2$ is an integer. Indeed the best constants are

$$
\rho(p)=2^{p+1}-\frac{1}{1-\left(1-2^{1-p}\right) \zeta(p)} \text { and } \sigma(p)=\frac{1}{1-\left(1-2^{1-p}\right) \zeta(p)}-2,
$$

where $\zeta(p)=\sum_{k=1}^{\infty} \frac{1}{k^{p}}$ is the Riemann zeta function.
In order to achieve this goal, we introduce the following sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ defined by:

$$
\begin{equation*}
\left|R_{n}\right|=\frac{1}{2 g(n)+x_{n}}=\frac{1}{2 g(n+1)-y_{n}} \tag{1.9}
\end{equation*}
$$

In [9], the author has introduced the sequence $\left(\theta_{n}\right)$ by the implicit relation

$$
\begin{equation*}
\left|R_{n}\right|=\frac{1}{2 g\left(n+\theta_{n}\right)} \tag{1.10}
\end{equation*}
$$

and proved that

$$
\begin{equation*}
0<\theta_{n}<1 \tag{1.11}
\end{equation*}
$$

Immediately, we can derive the equalities

$$
\begin{align*}
& x_{n}=2\left(g\left(n+\theta_{n}\right)-g(n)\right) \tag{1.12a}\\
& y_{n}=2\left(g(n+1)-g\left(n+\theta_{n}\right)\right) \tag{1.12b}
\end{align*}
$$

In section 2 , we give some preliminary results regarding the monotonicity of the sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in the general setting. In section 3 , we focus on the particular case of p-series.

2. Preliminary results

Thanks to Equations (1.11), (1.12a) and (1.12b), we have the following lemma.

LEMMA 2.1. The sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ satisfy the following properties.
(i) $x_{n}+y_{n}=2 \Delta g(n)$ for all $n \geqslant 1$.
(ii) $0<x_{n}, y_{n}<2 \Delta g(n)$, for all $n \geqslant 1$.
(iii) The best constants in (1.8) are

$$
\begin{aligned}
\rho & =\inf _{n \geqslant 1}\left(y_{n}\right), \\
\sigma & =\inf _{n \geqslant 1}\left(x_{n}\right) .
\end{aligned}
$$

In order to find σ, we discuss the monotonicity of the sequence $\left(x_{n}\right)$. First, we introduce the sequence:

$$
\begin{equation*}
t_{n}:=\sqrt{(\Delta g(n))^{2}+g(n+1)^{2}}-g(n) \tag{2.1}
\end{equation*}
$$

for $n \geqslant 1$.

Proposition 2.2. Let n be a positive integer. Then the following statements are equivalent.
(i) $x_{n+1}>x_{n}$;
(ii) $x_{n}<t_{n}$;
(iii) $x_{n+1}>t_{n}$.

Proof. The equality (1.5) means

$$
\begin{equation*}
\frac{1}{2 g(n)+x_{n}}+\frac{1}{2 g(n+1)+x_{n+1}}=\frac{1}{g(n+1)} \tag{2.2}
\end{equation*}
$$

Hence $x_{n+1}>x_{n}$ is equivalent to each of the following inequalities.

$$
\begin{gather*}
\frac{1}{2 g(n)+x_{n}}+\frac{1}{2 g(n+1)+x_{n}}>\frac{1}{g(n+1)} \tag{2.3}\\
\frac{1}{2 g(n)+x_{n+1}}+\frac{1}{2 g(n+1)+x_{n+1}}<\frac{1}{g(n+1)} . \tag{2.4}
\end{gather*}
$$

Direct computations show that Inequalities (2.3) and (2.4) are equivalent to

$$
\left(x_{n}+g(n)\right)^{2}<2 g^{2}(n+1)-2 g(n+1) g(n)+g^{2}(n)=\left(t_{n}+g(n)\right)^{2}
$$

and

$$
\left(x_{n+1}+g(n)\right)^{2}>2 g^{2}(n+1)-2 g(n+1) g(n)+g^{2}(n)=\left(t_{n}+g(n)\right)^{2}
$$

respectively. This completes the proof, as x_{n}, x_{n+1}, t_{n} and $g(n)$ are positive real numbers.

We denote by

$$
\begin{align*}
& \delta_{n}:=2 \Delta g(n)-t_{n}, \tag{2.5a}\\
& \beta_{n}:=2 \Delta g(n+1)-t_{n} \tag{2.5b}
\end{align*}
$$

Then, combining Lemma 2.1 and Proposition 2.2, we get the following corollary.
COROLLARY 2.3. For any positive integer n, the following statements are equivalent.
(i) $x_{n+1}>x_{n}$;
(ii) $y_{n}>\delta_{n}$;
(iii) $y_{n+1}<\beta_{n}$.

In order to discuss the monotonicity of the sequence $\left(y_{n}\right)$, we introduce the sequence:

$$
\begin{equation*}
\lambda_{n}:=g(n+2)-\sqrt{(\Delta g(n+1))^{2}+g(n+1)^{2}} \tag{2.6}
\end{equation*}
$$

for $n \geqslant 1$.
Proposition 2.4. Let n be a positive integer. Then the following statements are equivalent:
(i) $y_{n+1}>y_{n}$;
(ii) $y_{n}<\lambda_{n}$;
(iii) $y_{n+1}>\lambda_{n}$.

Proof. Here, considering (1.5) and (1.9), we have

$$
\frac{1}{2 g(n+1)-y_{n+1}}+\frac{1}{2 g(n+2)-y_{n+1}}=\frac{1}{g(n+1)} .
$$

So $y_{n}<y_{n+1}$ is equivalent to each of the following inequalities:

$$
\begin{equation*}
\frac{1}{2 g(n+1)-y_{n}}+\frac{1}{2 g(n+2)-y_{n}}>\frac{1}{g(n+1)} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2 g(n+1)-y_{n+1}}+\frac{1}{2 g(n+2)-y_{n+1}}<\frac{1}{g(n+1)} . \tag{2.8}
\end{equation*}
$$

Again, direct computations show that Inequalities 2.7 and 2.8 are equivalent to

$$
\left(g(n+2)-y_{n}\right)^{2}>2 g^{2}(n+1)-2 g(n+1) g(n+2)+g^{2}(n+2)=\left(\lambda_{n}+g(n+2)\right)^{2}
$$

and

$$
\left(g(n+2)-y_{n+1}\right)^{2}<2 g^{2}(n+1)-2 g(n+1) g(n+2)+g^{2}(n+2)=\left(\lambda_{n}+g(n+2)\right)^{2}
$$

respectively. As, in addition, $g(n+2)-y_{n}>0$ and $g(n+2)-y_{n+1}>0$, these inequalities are equivalent to $y_{n}<\lambda_{n}$ and $\lambda_{n}<y_{n+1}$, respectively, completing the proof.

If we denote by

$$
\begin{align*}
& \mu_{n}:=2 \Delta g(n+1)-\lambda_{n} \tag{2.9a}\\
& \alpha_{n}:=2 \Delta g(n)-\lambda_{n}, \tag{2.9b}
\end{align*}
$$

then combining Lemma 2.1 and Proposition 2.4, we obtain the following corollary.

COROLLARY 2.5. For any positive integer n, the following conditions are equivalent:
(i) $y_{n+1}<y_{n}$;
(ii) $x_{n}<\alpha_{n}$;
(iii) $x_{n+1}>\mu_{n}$.

REMARK 2.6. The equivalences between the reversed inequalities in Proposition 2.2, Corollary 2.3, Proposition 2.4 and Corollary 2.5, remain true.

Now, we will discuss how the monotonicity of the sequence $\left(x_{n}\right)$ influences that of $\left(y_{n}\right)$ and vice versa.

PROPOSITION 2.7.

(i) If $\left(x_{n}\right)$ is increasing, then so is $\left(y_{n}\right)$.
(ii) If $\left(y_{n}\right)$ is decreasing, then so is $\left(x_{n}\right)$.

For the proof, we need a straightforward lemma.
LEMMA 2.8. For each $n \geqslant 2$, the following inequalities hold.
(i) $\lambda_{n-1}<\delta_{n}$.
(ii) $t_{n}<\mu_{n-1}$.

Proof of Proposition 2.7. Assume that $\left(x_{n}\right)$ is increasing. Then, according to Corollary 2.3, $y_{n}>\delta_{n}$ for every positive integer n. Hence, by Lemma 2.8, $y_{n}>\lambda_{n-1}$ for every integer $n \geqslant 2$. Thus, using Proposition 2.4, we conclude that $\left(y_{n}\right)$ is increasing.

Now, suppose that $\left(y_{n}\right)$ is decreasing. Then by Lemma 2.4, $y_{n}<\lambda_{n-1}$ for all $n \geqslant$ 2. So, again, by Lemma 2.8, we obtain $y_{n}<\delta_{n}$. Consequently, combining Corollary 2.3 and Remark 2.6, we get $\left(x_{n}\right)$ is decreasing.

REMARK 2.9. The converse of each statement in Proposition 2.7 does not hold. It suffices to consider $g(n)=n$; then $x_{n}=2 \theta_{n}$ and $y_{n}=2\left(1-\theta_{n}\right)$. As $\left(\theta_{n}\right)$ is decreasing (see [10]), the sequence $\left(x_{n}\right)$ is decreasing and $\left(y_{n}\right)$ is increasing.

In the next result, we use the convexity of the function g and the monotonicity of the sequence $\left(\theta_{n}\right)$ to derive the monotonicity of $\left(x_{n}\right)$ or $\left(y_{n}\right)$.

PROPOSITION 2.10. The following properties hold.
(i) If g is strictly concave and $\left(\theta_{n}\right)$ is decreasing, then $\left(x_{n}\right)$ is decreasing.
(ii) If g is strictly convex and $\left(\theta_{n}\right)$ is decreasing, then $\left(y_{n}\right)$ is increasing.

Proof.
(i) As $x_{n}=2\left(g\left(n+\theta_{n}\right)-g(n)\right)$, it suffices to show that the sequence $(g(n+$ $\left.\left.\theta_{n}\right)-g(n)\right)$ is decreasing.

First, let us recall the Chordal Slope Lemma for a strictly convex function α : if $x<y<z$, then

$$
\frac{\alpha(y)-\alpha(x)}{y-x}<\frac{\alpha(z)-\alpha(x)}{z-x}<\frac{\alpha(z)-\alpha(y)}{z-y}
$$

Now, as $n<n+\theta_{n}<n+1<n+1+\theta_{n+1}$ and $-g$ is convex, we get

$$
\frac{g\left(n+\theta_{n}\right)-g(n)}{\theta_{n}}>\frac{g\left(n+1+\theta_{n+1}\right)-g(n+1)}{\theta_{n+1}}
$$

As a result, we obtain

$$
\frac{g\left(n+\theta_{n}\right)-g(n)}{g\left(n+1+\theta_{n+1}\right)-g(n+1)}>\frac{\theta_{n}}{\theta_{n+1}}>1
$$

showing that $\left(g\left(n+\theta_{n}\right)-g(n)\right)$ is decreasing. Therefore $\left(x_{n}\right)$ is decreasing.
(ii) As $y_{n}=2\left(g(n+1)-g\left(n+\theta_{n}\right)\right)$, it is sufficient to show that the sequence $\left(g(n+1)-g\left(n+\theta_{n}\right)\right)$ is increasing. Applying the Chordal Slope Lemma to the inequalities: $n+\theta_{n}<n+1<n+1+\theta_{n+1}<n+2$, we obtain

$$
\frac{g(n+1)-g\left(n+\theta_{n}\right)}{1-\theta_{n}}<\frac{g(n+2)-g\left(n+1+\theta_{n+1}\right)}{1-\theta_{n+1}}
$$

Thus $g(n+1)-g\left(n+\theta_{n}\right)<\left(g(n+2)-g\left(n+1+\theta_{n+1}\right)\right) \frac{1-\theta_{n}}{1-\theta_{n+1}}$. As the sequence $\left(\theta_{n}\right)$ is decreasing, we get $g(n+1)-g\left(n+\theta_{n}\right)<g(n+2)-g\left(n+1+\theta_{n+1}\right)$, as desired.

For the p-series, using the fact that $\left(\theta_{n}\right)$ is decreasing (see [10]) and that $g(x)=x^{p}$ is strictly convex for $p>1$ and strictly concave for $p<1$, we have the following corollary.

COROLLARY 2.11. Let p be a positive real number and $g(n)=n^{p}$.
(i) If $p>1$, then $\left(x_{n}\right)$ is decreasing.
(ii) If $p<1$, then $\left(y_{n}\right)$ is increasing.

Figure 1: According to Corollary 2.11, $\left(y_{n}\right)$ is decreasing for $p>1$. However, there is no similar conclusion for the sequence $\left(x_{n}\right)$. This figure illustrates some particular values of p. For $p=1.01,1.02$ or 1.03 , plotting the exact values of the sequence $\left(x_{n}\right)$ shows that it is neither increasing nor decreasing.

Figure 2: According to Corollary 2.11, $\left(x_{n}\right)$ is decreasing for $p<1$. However, there is no similar conclusion for the sequence $\left(y_{n}\right)$. This figure illustrates some particular values of p. For $p=0.97,0.98$ or 0.99 , plotting the exact values of the sequence $\left(y_{n}\right)$ shows that it is neither increasing nor decreasing.

3. Alternating p-series

In this section, we focus on the alternating p-series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{p}}$, for any integer $p \geqslant 2$. The main result of this paper is the following.

THEOREM 3.1. The best constants ρ and σ such that the inequalities

$$
\frac{1}{2(n+1)^{p}-\rho} \leqslant\left|\sum_{k=n+1}^{\infty} \frac{(-1)^{k-1}}{k^{p}}\right| \leqslant \frac{1}{2 n^{p}+\sigma}
$$

hold for any integer $n \geqslant 1$ are

$$
\rho(p)=2^{p+1}-\frac{1}{1-\left(1-2^{1-p}\right) \zeta(p)}
$$

and

$$
\sigma(p)=\frac{1}{1-\left(1-2^{1-p}\right) \zeta(p)}-2
$$

where $\zeta(p)=\sum_{k=1}^{\infty} \frac{1}{k^{p}}$ is the zeta Riemann function.
We break the proof of this theorem into a sequence of lemmas.
First, let us recall the hypergeometric function ${ }_{\mathrm{q}} F_{\mathrm{p}}$ defined as

$$
\begin{equation*}
{ }_{\mathrm{q}} F_{\mathrm{p}}\left(\left(a_{k}\right)_{k=1}^{q} ;\left(b_{k}\right)_{k=1}^{p} ; x\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \cdots\left(a_{q}\right)_{n}}{\left(b_{1}\right)_{n} \cdots\left(b_{p}\right)_{n}} \frac{x^{n}}{n!} \tag{3.1}
\end{equation*}
$$

where $(a)_{n}$ is the Pochhammer's symbol defined by $(a)_{n}:=a(a+1) \ldots(a+n-1)$, for any $n \geqslant 1$ and $(a)_{0}=1$, see [1].

Lemma 3.2. Let $p \geqslant 1$ be an integer and $R_{n}=\sum_{k=n+1}^{\infty} \frac{(-1)^{k-1}}{k^{p}}$. Then, we have

$$
\begin{equation*}
\left|R_{n}\right|=\frac{1}{(n+1)^{p}} \mathrm{p}+1 F_{\mathrm{p}}(1, n+1, \ldots, n+1 ; n+2, \ldots, n+2 ;-1) \tag{3.2}
\end{equation*}
$$

Proof. The series $\left|R_{n}\right|$ is given by

$$
\begin{aligned}
\left|R_{n}\right| & =\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(n+k)^{p}} \\
& =\frac{1}{(n+1)^{p}} \sum_{k=1}^{\infty} \frac{(n+1)^{p}}{(n+k)^{p}}(-1)^{k-1} \\
& =\frac{1}{(n+1)^{p}} \sum_{l=0}^{\infty} \frac{(1)_{l}(n+1)_{l} \cdots(n+1)_{l}}{(n+2)_{l} \cdots(n+2)_{l}} \frac{(-1)^{l}}{l!} \\
& =\frac{1}{(n+1)^{p}} \mathrm{p}+1 F_{\mathrm{p}}(1, n+1, \ldots, n+1 ; n+2, \ldots, n+2 ;-1)
\end{aligned}
$$

In [4], the authors gave an estimation of ${ }_{\mathrm{p}+1} F_{\mathrm{p}}$. Indeed, for $b_{k}>a_{k}>1$, with $k=1, \ldots, p$ and $x>0$, we have

$$
\frac{1}{1+x \prod_{i=1}^{p} \frac{a_{i}}{b_{i}}}<{ }_{\mathrm{p}+1} F_{\mathrm{p}}\left(1,\left(a_{k}\right)_{k=1}^{p} ;\left(b_{k}\right)_{k=1}^{p} ;-x\right)<\frac{1}{1+x \prod_{i=1}^{p} \frac{a_{i}-1}{b_{i}-1}}
$$

In particular, for $a_{k}=n+1$ and $b_{k}=n+2$ for $k=1, \ldots, p$, Lemma 3.2 yields the following.

Lemma 3.3. For any integers $p \geqslant 2$ and $n \geqslant 1$, we have

$$
\begin{equation*}
\frac{(n+1)^{-p}}{1+\left(\frac{n+1}{n+2}\right)^{p}}<\left|R_{n}\right|<\frac{(n+1)^{-p}}{1+\left(\frac{n}{n+1}\right)^{p}} \tag{3.3}
\end{equation*}
$$

The first inequality can be rewritten as

$$
\frac{1}{g(n+1)\left(1+\frac{g(n+1)}{g(n+2)}\right)}<\left|R_{n}\right|
$$

where $g(n)=n^{p}$. As $\left|R_{n}\right|=\frac{1}{2 g(n)+x_{n}}$, the above inequality is equivalent to

$$
\begin{equation*}
x_{n}<\Delta g(n)-g(n)+\frac{g^{2}(n+1)}{g(n+2)} \tag{3.4}
\end{equation*}
$$

PROPOSITION 3.4. The sequence $\left(x_{n}\right)$ is increasing.
The proof follows immediately from Proposition 2.2, Inequality (3.4) and the next lemma.

LEmma 3.5. For any two real integers $p \geqslant 2$ and $n \geqslant 1$, we have

$$
\Delta g(n)-g(n)+\frac{g^{2}(n+1)}{g(n+2)} \leqslant t_{n}
$$

Proof. Using the expression of t_{n}, we will show the inequality

$$
\Delta g(n)+\frac{g^{2}(n+1)}{g(n+2)} \leqslant \sqrt{(\Delta g(n))^{2}+g^{2}(n+1)}
$$

which is equivalent to

$$
\frac{2 \Delta g(n)}{g(n+2)}+\frac{g^{2}(n+1)}{g^{2}(n+2)} \leqslant 1
$$

Now, letting

$$
H(n)=g^{2}(n+2)-2 \Delta g(n) g(n+2)-g^{2}(n+1)
$$

the above inequality is equivalent to $H(n) \geqslant 0$, for any two integers $p \geqslant 2$ and $n \geqslant 1$.
Using Bernoulli inequality which states

$$
(1+x)^{r} \geqslant 1+r x
$$

for any two real numbers $r \geqslant 1$ and $x \geqslant-1$, we have two useful inequalities

$$
\begin{aligned}
& \left(1+\frac{1}{n+1}\right)^{p} \geqslant 1+\frac{p}{n+1} \\
& \left(1-\frac{1}{(n+1)^{2}}\right)^{p} \geqslant 1-\frac{p}{(n+1)^{2}}
\end{aligned}
$$

Then, we get

$$
\begin{aligned}
\frac{H(n)}{(n+1)^{2 p}} & =\left(\frac{n+2}{n+1}\right)^{2 p}-2\left(\frac{n+2}{n+1}\right)^{p}-1+2\left(\frac{n(n+2)}{(n+1)^{2}}\right)^{p} \\
& =\left(1+\frac{1}{n+1}\right)^{2 p}-2\left(1+\frac{1}{n+1}\right)^{p}-1+2\left[1-\frac{1}{(n+1)^{2}}\right]^{p} \\
& =\left[\left(1+\frac{1}{n+1}\right)^{p}-1\right]^{2}-2+2\left[1-\frac{1}{(n+1)^{2}}\right]^{p} \\
& \geqslant\left[\frac{p}{n+1}\right]^{2}-2+2\left[1-\frac{p}{(n+1)^{2}}\right]=\frac{p(p-2)}{(n+1)^{2}} \geqslant 0
\end{aligned}
$$

as long as $p \geqslant 2$. This achieves the proof.

Proof of Theorem 3.1. Note that $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are increasing (see Corollary 2.11 and Proposition 3.4). By Lemma 2.1, we have $\rho(p)=\inf _{n \geqslant 1}\left(y_{n}\right)=y_{1}$ and $\sigma(p)=$ $\inf _{n \geqslant 1}\left(x_{n}\right)=x_{1}$.

Proposition 3.6. We have

$$
\lim _{n \rightarrow+\infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}=+\infty
$$

Proof. By the mean value theorem, there exists c_{n} between n and $n+\theta_{n}$ such that

$$
x_{n}=2\left(g\left(n+\theta_{n}\right)-g(n)\right)=2 g^{\prime}\left(c_{n}\right) \theta_{n}=2 p c_{n}^{p-1} \theta_{n}
$$

As $\lim _{n \rightarrow+\infty} \theta_{n}=\frac{1}{2}$ (see [10]), we get $\lim _{n \rightarrow+\infty} x_{n}=+\infty$. With a similar argument, we obtain $\lim _{n \rightarrow+\infty} y_{n}=+\infty$.

Example 3.7. The following table provides the values of $\rho(p)$ and $\sigma(p)$ for few values of p.

p	$\rho(p)$	$\sigma(p)$
2	$\frac{4\left(21-2 \pi^{2}\right)}{12-\pi^{2}}$	$\frac{2\left(\pi^{2}-6\right)}{12-\pi^{2}}$
4	$\frac{16\left(1395-14 \pi^{4}\right)}{720-7 \pi^{4}}$	$\frac{2\left(7 \pi^{4}-360\right)}{720-7 \pi^{4}}$
6	$\frac{32\left(120015-124 \pi^{6}\right)}{30240-31 \pi^{6}}$	$\frac{61 \pi^{6}-30240}{30240-31 \pi^{6}}$

Finally, we expect that the estimates of the remainder in Theorem 3.1 are valid for real numbers $p>1$.

Acknowledgement. The authors acknowledge the funding support received from the Deanship of Research Oversight and Coordination (DROC) at King Fahd University of Petroleum and Minerals (KFUPM).

REFERENCES

[1] G. E. Andrews, R. Askey, R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press (1999).
[2] P. Calabrese, A note on alternating series, Amer. Math. Monthly 69 (1962), 215-217.
[3] R. Johnsonbaugh, Summing an alternating series, Amer. Math. Monthly 86 (1979), 637-648.
[4] D. Karp, S. M. Sitnik, Inequalities and monotonicity of ratios for generalized hypergeometric function, J. Approx. Theory 161 (2009), 337-352.
[5] V. LAMPRET, Efficient estimate of the remainder for the Dirichlet function $\eta(p)$ for $p \in \mathbb{R}^{+}$, Miskolc Math. Notes 21 (2020), 241-247.
[6] L. Tóth, J. Bukor, On the alternating series $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$, J. Math. Anal. Appl. 282 (2003), 21-25.
[7] A. SîntĂmĂRIAN, A new prooffor estimating the remainder of the alternating harmonic series, Creat. Math. Inform. 21 (2012), 221-225.
[8] A. SîntĂmărian, Sharp estimates regarding the remainder of the alternating harmonic series, Math. Inequal. Appl. 18 (2015), 347-352.
[9] L. Tóth, On a class of Leibniz series, Rev. Anal. Numér. Théor. Approx. 21 (1992), 195-199.
[10] V. Timofte, On Leibniz series defined by convex functions, J. Math. Anal. Appl. 300 (2004), 160171.

Othman Echi
Department of Mathematics King Fahd University of Petroleum and Minerals Dhahran 31261, Saudi Arabia e-mail: echi@kfupm.edu.sa

Adel Khalfallah
Department of Mathematics
King Fahd University of Petroleum and Minerals
Dhahran 31261, Saudi Arabia e-mail: khelifa@kfupm.edu.sa

Dhaker Kroumi
Department of Mathematics
King Fahd University of Petroleum and Minerals
Dhahran 31261, Saudi Arabia
e-mail: dhaker.kroumi@kfupm.edu.sa

