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Abstract. Let a,b ∈ R
n be column vectors, and (u, v) be the inner product of vectors u and v

on R
n . Let G ⊂ GL(n,R) be a compact matrix group. For A ∈ G and a continue function f

on G , the integral
∫
G f (A)dA is the invariant integral of the compact group G . In this paper, we

study the inequality

∀x ∈ R
n

∫
G

e(Aa, x)dA �
∫

G
e(Ab, x)dA.

We prove that the above inequality holds if and only if b∈Conv(Ga) . This work follows a series
of results, that is, Muirhead (1903), Hardy, Littlewood and Pòlya (1932), Rado (1952), Daykin
(1971), Kimelfeld (1995) and Schulman (2009). Furthermore, We construct an determining
algorithm when G is finite. Compared with other effective algorithms, this one is symbolic and
easy to implement on computer.

1. Introduction

We continue to study the generalized Muirhead’s inequality. First we give the
definition of majorization in order to introduce Muirhead’s theorem. Let a,b ∈ R

n ,
we say that a � b (a majorizes b), if for a1 � . . . � an and b1 � . . . � bn , we have
n

i=1 ai = n
i=1 bi , and k

i=1 ai � k
i=1 bi (k = 1, . . . ,n−1).

In 1903, R. F. Muirhead proved the following theorem [1, 2].

THEOREM 1. (Muirhead’s theorem) If x ∈ R
n
>0 and a � b then we have the fol-

lowing inequality

1
n! ∈Sn

(x)a � 1
n! ∈Sn

(x)b, (1)

where Sn is the symmetric group of degree n.

In 1952, Rado generalized the Muirhead’s inequality [3] to an arbitrary permuta-
tion group. In 1971, D. E. Daykin gave an extension of the Muirhead-Rado inequality
without using group action [4]. In 1995, B. Kimelfeld generalized the inequality (1) to
finite groups [5].
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THEOREM 2. (Kimelfeld’s theorem) Let a = (a1, . . . ,an)T ∈ R
n . The inequality

1
|G| A∈G

exp( (Aa)) � 1
|G| A∈G

exp( (Ab)) (2)

holds for every linear function  on R
n if and only if b ∈ Conv(Ga) . In this case

equality occurs if and only if either b belongs to G-orbit of a or  is constant through-
out the orbit.

In 2009, based on the result of Rado, L. J., Schulman further generalized the in-
equality (2) to compact groups [6]. Before present Schulman’s work, we need to recall
the following notions and notations.

Let r,s ∈ R
n , and G be a compact subgroup of the group of invertible matrices

GL(n,R) . We say that r G-majorizes s , written as r �G s , if there is a probability
measure t on G such that

s =
∫

G
t(g)grd(g).

For u,v ∈ R
n , define

〈u,v〉G =
∫

G
eu†gvd(g),

where u†v is the nondegenerate inner product on R
n , and  is the left invariant Haar

measure on G .

THEOREM 3. (Schulman’s Theorem) Let G⊂ GL(n,R) be a compact group act-
ing unitarily on R

n and let u,v ∈ R
n . Then we have

u�G v⇐⇒ 〈u,w〉G � 〈v,w〉G, ∀w ∈ R
n.

In this paper, we will generalize the Muirhead’s inequality in two aspects.
1. We obtain an extension form of Muirhead inequality for compact groups which

does not need the condition “acting unitarily”. See the main Theorem 4 in Section 2.
2. We establish an algorithm for the finite group, which aims to eliminate the

quantifier implied in the results of Rado, Kimelfeld and Schulman. See Algorithm 1 in
Section 3.

Moreover, some corollaries and applications will be listed in Section 4.

2. Main Theorem

It is known that one can define an invariant integration on every compact topolog-
ical group G (see [7, 8]). Let

∫
G f (A) dA denote the invariant integral of a continue

function f on G , where G ⊂ GL(n,R) is a compact matrix group. Consider the in-
equality

∀x ∈R
n

∫
G

e(Aa, x) dA �
∫

G
e(Ab, x) dA, (3)
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where (a,b) is the inner product. Let wi = logxi (xi > 0) , then e(a, w) = xa1
1 · · ·xan

n = xa.
It is easy to see that the inequality (3) is equivalent to the following inequality

∀x ∈ R
n
>0

∫
G

xAa dA �
∫

G
xAb dA, (a,b ∈ R

n). (4)

THEOREM 4. Let G ⊂ GL(n,R) be a compact matrix group. The inequality (3)
or (4) holds if and only if b ∈ Conv(Ga) .

We need several lemmas for the proof of Theorem 4.

LEMMA 1. ([5]) For any a ∈R
n the set of extrema points of Conv(Ga) is Ga .

REMARK 1. The proof of Lemma 1 in [5] is limited to finite groups, it is also
valid for compact groups.

LEMMA 2. (Carathéodory’s Theorem [9]) Let S ⊂ R
n and a point p ∈Conv(S) .

Then there is a set Y ⊆ S consisting of n+1 or fewer points such that p ∈Conv(Y) .

LEMMA 3. (Hyperplane separation theorem [10]) Let S1 and S2 be two disjoint
closed convex sets of R

n , one of which is compact. Then there is v �= 0 and c∈R such
that (v,u1) > c and (v,u2) < c for u1 ∈ S1 and u2 ∈ S2 .

Now it is time to prove Theorem 4.

Proof. Firstly, we prove that if b ∈ Conv(Ga) then the inequality (4) holds.
By Lemma 1 and Lemma 2, we have b∈Conv(Ga)⇐⇒ ∃

∈R
m
�0

b =m
i=1i(Aia) ,

where m
i=1i = 1 and Ai ∈ G . Thus∫

G
x(Ab) dA =

∫
G

x(Am
i=1i(Aia) dA (from b =i(Aia))

=
∫

G
x(m

i=1 i(AAia) dA (by distributing the A)

�
∫

G

m


i=1

ix(AAia) dA (from generalized mean inequality)

=
m


i=1

(∫
G
ix(AAia) dA

)
(by exchanging integral and sum)

=
m


i=1

(
i

∫
G

x(Aa) dA

)
(from the difinition of invariant integral)

=

(
m


i=1

i

) (∫
G

x(Aa) dA

)
(by separating integral and sum)

=
∫

G
x(Aa) dA.
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The next step is to prove that if the inequality (4) holds then b ∈ Conv(Ga) . Sup-
pose b /∈ Conv(Ga) . We will show the contradiction. Let S1 = b , S2 = Conv(Ga) .
Then by Lemma 3, there is a vector v = (v1, . . . ,vn)T ∈R

n such that (v, b)> max
A∈G

(v, Aa)

holds. Because of the continuity of the inner product on the compact group G , there
exists a closed subset Sb of G such that ∀

A′∈Sb
max A∈G(v, Aa) < (v, A′b).

Let w = min
A′∈Sb

(v, A′b) and k =
∫
A′∈Sb

dA′. Thus we have

max
A∈G

(v, Aa) < w and 0 < k < 1. (5)

Assume that f (x) =
∫
A∈G xAa dA− ∫A′∈Sb

xA′b dA′, then

f (ev1t , . . . ,evnt)

=
∫

A∈G
e(v, Aa)t dA−

∫
A′∈Sb

e(v, A′b)t dA′

=
(∫

A∈G
e(v, Aa)t dA−

∫
A′∈Sb

ewtdA′
)

+
(∫

A′∈Sb

ewt dA′ −
∫
A′∈Sb

e(v, A′b)t dA′
)

<

∫
A∈G

e(v, Aa)t dA− ewt
∫

A′∈Sb

dA′

= ewt
(∫

A∈G
e((v, Aa)−w)t dA− k

)
.

Thus

f (ev1t , . . . ,evnt)
ewt <

∫
A∈G

e((v, Aa)−w)t dA− k. (6)

Note that the set Ga is a compact set over R
n . According to the Weierstrass extreme

value theorem, there is a maximum R and a minimum r , such that

∀
x∈Ga

r � (v, x)−w � R.

From inequality (5), we have r < R < 0 and

ert =
∫

A∈G
ertdA �

∫
A∈G

e((v, Aa)−w)t dA �
∫

A∈G
eRtdA = eRt . (7)

Taking limit for t→+ on the formula (7), we have

0 � lim
t→+

∫
A∈G

e((v, Aa)−w)tdA � 0.

From the inequality (6), we have

lim
t→+

f (ev1t , . . . ,evnt)
ewt � lim

t→+

∫
A∈G

e((v, Aa−w)tdA− k =−k < 0 (8)

But, we know for all x ∈R
n
>0

f (x) =
∫

A∈G
xAa dA−

∫
A′∈Sb

xA′b dA′ �
∫

A∈G
xAa dA−

∫
A′∈G

xA′b dA′ = 0. (9)

Inequalities (8) and (9) are contradictory. The proof is completed. �
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3. Algorithm

It is most basic for convex problems to determine wether b ∈ Conv(Ga) . As we
known, there are various algorithms for convex problems [9, 11]. Here we construct an
algorithm for the orbit Ga . Firstly, we need a lemma. Let us start from a definition.

DEFINITION 1. A set of finite points S = {a1, · · · ,ad} ⊂ R
n (1 � d � n+ 1) is

called affinely independent, if the vectors a2− a1, · · · ,ad − a1 are independent. Fur-
thermore, the matrix

BS =
(

a1 · · · ad

1 · · · 1

)
=
(

S
11×d

)

is named as a bordered matrix of S .

LEMMA 4. Let S = {a1, . . . ,ad} ⊂R
n be affinely independent. Let b∈R

n . Then
b ∈ Conv(S) if and only if

Rank(BS) = Rank(BS∪b) and (BT
S BS)−1BT

S

(
b
1

)
� 0.

Proof. “=⇒”: Firstly, we have

b ∈ Conv(a1, . . . ,ad)

⇐⇒ ∃
∈R

d
�0

(
b
1

)
= BS  , 1 + · · ·+d = 1

=⇒ Rank(BS) = Rank(BS∪b).

Furthermore,

b ∈ Conv(a1, · · · ,ad)

⇐⇒ ∃
∈R

d
�0

(
b
1

)
= BS  , 1 + · · ·+d = 1

=⇒ ∃
∈R

d
�0

BT
S

(
b
1

)
= BT

S BS

=⇒ ∃
∈R

d
�0

(
BT

S BS
)−1

BT
S

(
b
1

)
=  (since S is affinely independent)

=⇒ (
BT

S BS
)−1

BT
S

(
b
1

)
� 0.

“⇐=”: Obversely, Rank(BS) = Rank(BS∪b) =⇒ ∃
∈R

d

(
b
1

)
= BS . Denote this

 as  ′ . Next it suffice to show that  ′ � 0 . Note that BT
S BS is invertible due to S
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being affinely independent. Hence,

 ′ =
(
BT

S BS
)−1 (

BT
S BS

)
 ′

=
(
BT

S BS
)−1

BT
S

(
BS ′

)
=
(
BT

S BS
)−1

BT
S

(
b
1

)
� 0. �

It is well known that Conv(S) is a simplex when S is affinely independent. Fur-
thermore, a convex polyhedron can always be decomposed as the union of simplexes
[12, 13, 14]. Thus we can design the following algorithm based on Lemma 1 and
Lemma 4. The algorithm can determine whether b ∈ Conv(Ga) .

ALGORITHM 1. (FMGI)

In: G a finite subgroup of GL(n,R) , a,b elements of R
n

Out: b /∈ Conv(Ga) or a formula

b = 
A∈G

i(Aa), i = 1.

1. Ga←{Aa : A ∈G}

2. r1← Rank

(
Ga
1

)
, r2← Rank

(
Ga b
1 1

)

3. If r1 �= r2 , then return b /∈ Conv(Ga) .

4. If there exists S⊆ Ga such that |S|= r1, a ∈ S, S is affinely independent, and

(BT
S BS)−1BT

S

(
b
1

)
� 0,

then return the formula

b = S(BT
S BS)−1BT

S

(
b
1

)
.

5. Return b /∈ Conv(Ga) .

The above algorithm is implemented by the symbolic mathematics software Maple.
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4. Applications

Some special results based on Theorem 4 are presented at this section.

COROLLARY 1. Consider the following n×n cyclic matrices

C =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 1
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎠

n×n

, D =

⎛
⎜⎜⎜⎝

a1 a2 . . . an

a2 a3 . . . a1
...

...
...

an a1 . . . an−1

⎞
⎟⎟⎟⎠ .

C generates the cyclic group G = {C,C2, · · · ,Cn} . The determinant |D| �= 0 . Thus

∀
x∈Rn

�0

n


i=1

x(Cia) �
n


i=1

x(Cib)⇐⇒ai =bi ∧ D−1b � 0.

Proof. Note that |D| �= 0 means D is a invertible matrix. Then

b ∈ Conv(Ga)

⇐⇒ ∃
∈R

d
�0

⎛
⎜⎜⎜⎝

a1 a2 . . . an

a2 a3 . . . a1
...

...
...

an a1 . . . an−1

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝
1

2
...
n

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

b1

b2
...

bn

⎞
⎟⎟⎟⎠ , 1 + · · ·+n = 1

⇐⇒ai =bi ∧ D−1b � 0. �

COROLLARY 2. Let a,b,r,s,t,x,y,z be positive real numbers and satisfy a+b =
r+ s+ t . Then

xayb + yazb + zaxb � xryszt + yrzsxt + zrxsyt (10)

⇐⇒min{ar+bs,as+bt,at+br}� ab.

Proof. Let D =

⎛
⎝a b 0

b 0 a
0 a b

⎞
⎠ . We have

⎛
⎝a b 0

b 0 a
0 a b

⎞
⎠
−1

= 1
a3+b3

⎛
⎝ a2 b2 −ab

b2 −ab a2

−ab a2 b2

⎞
⎠ .

Since a+ b = r + s + t , (10) is equivalent to the following inequality by Corol-
lary 1. ⎛

⎝ a2 b2 −ab
b2 −ab a2

−ab a2 b2

⎞
⎠
⎛
⎝r

s
t

⎞
⎠� 0.

Again using a+b = r+ s+ t , the above inequality can be transformed as follows.⎛
⎝ a2r+b2s−abt

b2r−abs+a2t
−abr+a2s+b2t

⎞
⎠= (a+b)

⎛
⎝ ar+bs−ab

br−ab+at
−ab+as+bt

⎞
⎠� 0.
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That means min{ar+bs,as+bt,at+br}� ab. �

COROLLARY 3. Let a,b,b1,b2,b3,b4 be positive real numbers. Let a = (a,a +
b,b,0)T , b = (b1,b2,b3,b4)T . Then ∀xi > 0 , i = 1, . . . ,4 , the following cyclic inequal-
ity

xa
1x

a+b
2 xb

3 + xa
2x

a+b
3 xb

4 + xa
3x

a+b
4 xb

1 + xa
4x

a+b
1 xb

2

� xb1
1 xb2

2 xb3
3 xb4

4 + xb1
2 xb2

3 xb3
4 xb4

1 + xb1
3 xb2

4 xb3
1 xb4

2 + xb1
4 xb2

1 xb3
2 xb4

3

(11)

holds if and only if

(b1 +b3 = b2 +b4 = a+b)

∧ (ab � ab1 +bb2 � a2 +ab+b2)

∧ (−b2 � ab2−bb1 � a2).

(12)

Proof. For matrix C4 =

⎛
⎜⎜⎝

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ , consider its cyclic group G = {C4,C2

4 ,C
3
4 ,C

4
4}.

The inequality (11) can be presented as follows.

4


i=1

x(Ci
4a) �

4


i=1

x(Ci
4b).

According to Theorem 4, it is left to prove (12) is equivalent to b ∈ Conv(Ga) . Let

A = C4a = (0,a,a+b,b)T , B = C2
4a = (b,0,a,a+b)T ,

C = C3
4a = (a+b,b,0,a)T , D = a = (a,a+b,b,0)T .

It is easy to verify that Conv(Ga) , namely Conv(A,B,C,D) , is on a two-dimensional
plane of R

4 . Denote the plane by Pa . The equation of the plane Pa is y1 + y3 =
y2 + y4 = a+b . Furthermore,

|−→AB|= |−→BC|= |−→CD|= |−→DA|=
√

2(a2 +b2).
−→
AB ·−→BC =

−→
BC ·−→CD =

−→
CD ·−→DA =

−→
DA ·−→AB = 0 (inner product).

So the Conv(A,B,C,D) is a square. Consider a projection mapping  from Pa to the
y1y2 -coordinate plane Py1y2 .

 : Pa �−→ Py1y2

(y1,y2,y3,y4)T −→ (y1,y2)T .

Obviously,  is an invertible mapping, and images of points A,B,C,D,b are points
A′,B′,C′,D′,b′ ,

A′ = (0,a)T , B′ = (b,0)T , C′ = (a+b,b)T , D′ = (a,a+b)T , b′ = (b1,b2)T .
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In view of geometry, b ∈ Conv(A,B,C,D)⇐⇒ b ∈ Pa ∧ b′ ∈ Conv(A′,B′,C′,D′).
Firstly, we have

b ∈ Pa⇐⇒ (b1 +b3 = b2 +b4 = a+b),

which is the first part of the formula (12).
Next, by calculating the determinant of∣∣∣∣∣∣

0 b a+b
a 0 b
1 1 1

∣∣∣∣∣∣= a2 +b2 > 0, (13)

we know A′,B′,C′,D′ are arranged in counter clockwise.

A′ B′

C′D′

b′

+

−

+

+

b′ is out of �A′B′C′D′
A′ B′

C′D′

b′

+

+

+

+

b′ is in �A′B′C′D′

Then b′ ∈Conv(A′,B′,C′,D′) if and only if the four triples (A′,B′,b′) , (B′,C′,b′) ,
(C′,D′,b′) , (D′,A′,b′) are all arranged in counter clockwise. Its formula is expressed
as follows∣∣∣∣∣∣

0 b b1

a 0 b2

1 1 1

∣∣∣∣∣∣� 0,

∣∣∣∣∣∣
b a+b b1

0 b b2

1 1 1

∣∣∣∣∣∣� 0,

∣∣∣∣∣∣
a+b a b1

b a+b b2

1 1 1

∣∣∣∣∣∣� 0,

∣∣∣∣∣∣
a 0 b1

a+b a b2

1 1 1

∣∣∣∣∣∣� 0.

After simplification, they are the rest of the formula (12). �

COROLLARY 4. Let a,b be real numbers. Then ∀ (x > 0, y > 0) , the following
inequality

∫ 2

0
xcos(t)ysin(t)dt �

∫ 2

0
xacos(t)−b sin(t)ya sin(t)+bcos(t)dt

holds if and only if a2 +b2 � 1 .

Proof. Let a = (1,0)T , b = (a,b)T , and

G =
{(

cos(t) −sin(t)
sin(t) cos(t)

)
: t ∈ [0,2)

}
.
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Then Conv(Ga) = {(x,y)T : x2 +y2 � 1} . So b∈Conv(Ga) if and only if a2+b2 � 1.
According to Theorem 4, we completed the proof. �
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