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ON COMPLETE MOMENT CONVERGENCE FOR WEIGHTED

SUMS UNDER NEGATIVELY ASSOCIATED SETUP

HAIWU HUANG ∗ , YANCHUN YI AND XIONGTAO WU

(Communicated by Z. S. Szewczak)

Abstract. In this work, the complete moment convergence for weighted sums of negatively as-
sociated random variables is discussed without assumptions of identical distribution. Under the
moment condition E|X |/(log (1+ |X |))/−1 <  for the case 0 <  <  with 1 <  � 2 ,
the complete moment convergence theorem for weighted sums of negatively associated setup is
presented. The main results obtained in this article extend and improve the corresponding ones
of Chen and Sung (Stat. Probabil. Lett., 92: 45–52 (2014)), Sung (Stat. Pap., 52: 447–454
(2011)).

1. Introduction

Let {Xn;n � 1} be a sequence of random variables and let {ani;1 � i � n,n � 1}
be an array of real constants. Since many useful linear statistics, such as least squares
estimators, nonparametric regression function estimators and jackknife estimates are

based on the weighted sums of
n

i=1

aniXi , it is important and meaningful to deeply in-

vestigate the probability limiting behaviors for them. Many scholars devoted to study
the limiting behaviors of the form of the weighted sums. We refer to the readers to
Cuzick [8], Wu [19], Bai and Cheng [2], Chen and Gan [4], Sung [16] and among
others.

In many probabilistic applications and stochastic models, the assumption of in-
dependent variables is not plausible. Hence, it is necessary to extend the results of
independent random variables to dependent cases. One of dependence structures is
negative association, which has attracted the interest by probabilists and statisticians.
The concept of negatively associated (NA, for short) random variables, which was in-
troduced by Alam and Saxena [1] and carefully studied by Joag-Dev and Proschan [10]
is as follows.
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DEFINITION 1.1. Random variables X1,X2, · · · ,Xn are said to be NA if for every
pair of disjoint subsets A , B of {1,2, · · · ,n} ,

Cov( f1 (Xi, i ∈ A) , f2 (Xj, j ∈ B)) � 0, (1.1)

whenever f1 and f2 are any real coordinatewise non-decreasing (or non-increasing)
functions such that this covariance exists. A sequence of random variables {Xn;n � 1}
is NA if every finite subfamily is NA.

Joag-Dev and Proschan [10] pointed out and proved that many known multivariate
distributions possess the NA property. Since the concept of NA random variables was
introduced by Alam and Saxena [1], many applications have been found. For example,
Shao [15] for the moment inequalities, Matula [14] for the almost sure convergence,
Chen et al. [5] and Kuczmaszewska [11] for the complete convergence, Cai [3], Sung
[18] and Liang et al. [13] for the strong convergence of weighed sums, and so forth.

A sequence of random variables {Xn;n � 1} is said to converge completely to a

constant  if



n=1
P(|Xn− |> ) <  for all  > 0. This notion was firstly given by

Hsu and Robbins [9]. In view of the Borel-Cantelli lemma, this implies that Xn → 
almost surely (a.s.). Hence, the complete convergence has been an important basic tool
to investigate the convergence properties for summation of random variables as well as
weighted sums.

Chow [7] introduced the complete moment convergenceas follows: Let {Zn;n � 1}
be a sequence of randomvariables, and an > 0, bn > 0, q > 0. If




n=1
anE

(
b−1

n |Zn|− 
)q
+

<  for all  � 0, then {Zn;n � 1} is called the complete moment convergence. It is
clearly seen that the complete moment convergence implies the complete convergence.
Thus, the complete moment convergence is the more general version of the complete
convergence.

For 0 <  <  and 1 <  � 2, Chen and Sung [6] discussed the complete conver-
gence for weighted sums of identically distributed NA random variables. They obtained
the following result under the moment condition E|X |/(log(1+ |X |))/−1 <  ,
which is weaker than that of Sung [18].

THEOREM A. Let {X ,Xn;n � 1} be a sequence of identically distributed NA ran-
dom variables with EXn = 0 , {ani;1 � i � n,n � 1} be an array of real constants such

that
n

i=1

|ani| = O(n) for 1 <  � 2 . Set bn = n1/(logn)1/ for 0 <  <  . If

E|X |/(log(1+ |X |))/−1 <  , then




n=1

1
n
P

(
max

1� j�n

∣∣∣∣∣
j


i=1

aniXi

∣∣∣∣∣> bn

)
<  for ∀ > 0. (1.2)

It is worthy noting that the main tool of Sung [18], Chen and Sung [6] is Theorem 1
of Chen et al. [5], which follows from an exponent inequality for NA random variables
established by Shao [15]. In addition, Li et al. [12] extended the result of Chen and
Sung [6] for NA random variables to ∗ -mixing cases by using the different method
from those of Chen and Sung [6].
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Inspired by Chen and Sung [6], Li et al. [12], we further study the convergence
behaviors for weighted sums of NA setup without assumptions of identical distribution.
Under the moment condition E|X |/(log(1+ |X |))/−1 <  for 0 <  <  with
1 <  � 2, we establish a complete moment convergence theorem for weighted sums
of NA random variables. As applications, the complete convergence theorem and the
Marcinkiewicz-Zygmund type strong law of large numbers for weighted sums of NA
cases are obtained. Our results extend and improve the corresponding ones of Chen and
Sung [6], Sung [18].

DEFINITION 1.2. A sequence of random variables {Xn;n � 1} is said to be sto-
chastically dominated by a random variable X if there exists a positive constant C such
that

P(|Xn| � x) � CP(|X | � x) ,

for all x � 0 and n � 1.
Throughout this paper, let I (A) be the indicator function of the set A and I(A,B)=

I(A
⋂

B) . The symbol C,C1,C2, . . . always present different positive constants in vari-
ous places, and an = O(bn) stands for an � Cbn .

2. Main results and proofs

In the following, the main results and proofs are given in this section.

THEOREM 2.1. Let {Xn;n � 1} be a sequence of mean zero NA random variables
which is stochastically dominated by a random variable X , let {ani;1 � i � n,n � 1}
be an array of real constants such that

n

i=1

|ani| = O(n) for 0 <  � 2 . Set bn =

n1/(logn)1/ for 0 <  <  with 1 <  � 2 . If E|X |/(log(1+ |X |))/−1 <  ,
then




n=1

1
n
E

(
1
bn

max
1� j�n

∣∣∣∣∣
j


i=1

aniXi

∣∣∣∣∣− 

)

+

<  for ∀ > 0. (2.1)

To prove this theorem, we will present the following important lemmas.

LEMMA 2.1. (Shao [15]) Let {Xn,n � 1} be a sequence of NA random vari-
ables. If { fn,n � 1} is a sequence of Borel functions all of which are monotone non-
decreasing (or all monotone non-increasing), then { fn (Xn) ,n � 1} is still a sequence
of NA random variables.

LEMMA 2.2. (Shao [15]) Let {Xn,n � 1} be a sequence of NA random variables
with EXn = 0 and E|Xn|M <  for 1 � M � 2 and all n � 1 . Then there exists a
positive constant depending only on M such that

E

⎛
⎝ max

1� j�n

∣∣∣∣∣
j


i=1

Xi

∣∣∣∣∣
M
⎞
⎠� C

n


i=1

E|Xi|M. (2.2)
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LEMMA 2.3. Let {Xn,n � 1} be a sequence of randomvariables which is stochas-
tically dominated by a random variable X . For all  > 0 and b > 0 , the following two
statements hold:

E|Xn| I (|Xn| � b) � C1
(
E|X | I (|X | � b)+bP(|X | > b)

)
, (2.3)

E|Xn| I (|Xn| > b) � C2E|X | I (|X | > b) , (2.4)

where C1 and C2 are different positive constants. Consequently, E|Xn| � CE|X | .

LEMMA 2.4. Let {Xn;n � 1} be a sequence of NA random variables which is
stochastically dominated by a random variable X , let {ani;1 � i � n,n � 1} be an ar-

ray of real constants such that
n

i=1

|ani| = O(n) for 0 < � 2 . Set bn = n1/(logn)1/

for 0 <  <  . Assume that EXn = 0 for 1 <  � 2 . If E|X |/(log(1+ |X |))/−1 <
 , then (1.2) holds.

Proof. Analogous to the proof of Theorem 1.1 in Li et al. [12], we need to substi-
tute the identical distribution condition of random variables with stochastic domination.
The rest is similar to that of Theorem 1.1 in Li et al. [12]. So we omit the detail. �

LEMMA 2.5. Under the conditions of Theorem 2.1, if E|X |/(log(1+ |X |))/−1

<  for 0 <  <  and 0 <  � 2 , then




n=1

1
n

∫ 

1

n


i=1

P
(
|aniXi| > bnt

1/
)
dt < . (2.5)

Proof. By the definition of the stochastic domination, it easily follows that




n=1

1
n

∫ 

1

n


i=1

P
(
|aniXi| > bnt

1/
)
dt � C




n=1

1
n

∫ 

1

n


i=1

P
(
|aniX | > bnt

1/
)
dt

� C



n=1

1
n

∫ 

0

n


i=1

P

( |aniX |
bn

> t

)
dt

� C



n=1

n−1b−n

n


i=1

E|aniX | I (|aniX | > bn).

Obviously,

E|aniX | I (|aniX | > bn) = E|aniX | I (|aniX | > bn, |X |� bn)
+E|aniX | I (|aniX | > bn, |X | > bn) . (2.6)

It is clearly shown that

E|aniX | I (|aniX | > bn, |X | � bn) � C3E|aniX | I (|X | � bn) , (2.7)

E|aniX | I (|aniX | > bn, |X |> bn) � C4E|aniX | I (|X | > bn) . (2.8)
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Note that




n=1

n−1b−n

n


i=1

|ani|E|X | I (|X |� bn)

� C



n=1

b−n E|X | I (|X | � bn)

� C



n=1

b−n

n


j=1

E|X | I
(
b j < |X | � b j+1

)

� C



j=1

E|X | I
(
b j < |X | � b j+1

)
(log j)1−(/)

� CE|X |/(log(1+ |X |))(/)−1 < , (2.9)

and




n=1

n−1b−n

n


i=1

|ani|E|X | I (|X | > bn)

� C



n=1

b−n E|X | I (|X | > bn)

= C



n=1

b−n




j=n

E|X | I
(
b j < |X | � b j+1

)

= C



j=1

E|X | I
(
b j < |X | � b j+1

) j


n=1

n−1(logn)−/

� C



j=1

(log j)1−(/)E|X | I
(
b j < |X | � b j+1

)
� CE|X |/(log(1+ |X |))(/)−1 < . (2.10)

Then, (2.5) follows from (2.9) and (2.10). �

LEMMA 2.6. Under the conditions of Theorem 2.1, if E|X |/(log(1+ |X |))/−1

<  for 0 <  <  with 1 <  � 2 , then

sup
t�1

1

bnt1/ max
1� j�n

∣∣∣∣∣
j


i=1

EaniXiI
(
|aniXi| � bnt

1/
)∣∣∣∣∣→ 0. (2.11)
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Proof. By EXn = 0 and (2.4) of Lemma 2.3, we have

sup
t�1

1

bnt1/ max
1� j�n

∣∣∣∣∣
j


i=1

EaniXiI
(
|aniXi| � bnt

1/
)∣∣∣∣∣

= sup
t�1

1

bnt1/ max
1� j�n

∣∣∣∣∣
j


i=1

EaniXiI
(
|aniXi| > bnt

1/
)∣∣∣∣∣

� Csup
t�1

1

bnt1/

n


i=1

E |aniXi| I
(
|aniXi| > bnt

1/
)

� Csup
t�1

1

bnt1/

n


i=1

E |aniX | I
(
|aniX | > bnt

1/
)
.

Obviously,

E |aniX | I
(
|aniX | > bnt

1/
)

= E |aniX | I
(
|aniX | > bnt

1/ , |X | � bn

)
+E |aniX |I

(
|aniX | > bnt

1/ , |X | > bn

)
. (2.12)

For 0 <  <  and 1 <  � 2, it is clearly shown that

E |aniX | I
(
|aniX | > bnt

1/ , |X | � bn

)
� C5b

1−
n t(1/)−1|ani|E|X | I (|X | � bn)

� C5b
1−
n t(1/)−1|ani|E

(
|X |

(log(1+ |X |))/−1
(log(1+ |X |))/−1

)
I (|X | � bn)

� C5t
(1/)−1n−1+(1/)|ani|(logn)(1/)−1, (2.13)

and

E |aniX | I
(
|aniX | > bnt

1/ , |X |> bn

)
� C6 |ani|E |X | I (|X | > bn)

� C6b
1−
n (log(1+bn))

(/)−1 |ani|
� C6n

−1+(1/)(logn)−1+(1/) |ani| . (2.14)

Hence,

sup
t�1

1

bnt1/

n


i=1

E |aniX | I
(
|aniX | > bnt

1/ , |X | � bn

)

� Cb−1
n n−1+(1/)(logn)(1/)−1

n


i=1

|ani|

� C(logn)−1 → 0, (2.15)
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and

sup
t�1

1

bnt1/

n


i=1

E |aniX | I
(
|aniX | > bnt

1/ , |X | > bn

)

� Cb−1
n n−1+(1/)(logn)−1+(1/)

n


i=1

|ani|

� C(logn)−1 → 0. (2.16)

Thus, (2.11) follows immediately from the above statements. �

LEMMA 2.7. Under the conditions of Theorem 2.1, if E|X |/(log(1+ |X |))/−1

<  for 0 <  <  and 0 <  � 2 , then




n=1

1
n

1
bn

n


i=1

E|aniXi| I (|aniXi| � bn) < . (2.17)

Proof. Analogous to the proof of Lemma 2.2 in Li et al. [12], it follows that

E|aniXi| I (|aniXi| � bn) = E|aniXi| I (|aniXi| � bn, |Xi| � bn)
+E|aniXi| I (|aniXi| � bn, |Xi| > bn) . (2.18)

By Lemma 2.3, it clearly follows that

E|aniXi| I (|aniXi| � bn, |Xi| � bn) � C7|ani|E|Xi| I (|Xi| � bn)
� C7|ani|E|X | I (|X | � bn)

+C7|ani|bn P(|X | > bn) . (2.19)

For ∀0 <  <  ,

E|aniXi| I (|aniXi| � bn, |Xi| > bn) � C8b
−
n |ani|E|Xi| I (|Xi| > bn)

� C8b
−
n |ani|E|X | I (|X |> bn) . (2.20)

Hence,




n=1

n−1b−n

n


i=1

|ani|E|X | I (|X | � bn)

� C



n=1

b−n E|X | I (|X | � bn)

� C



n=1

b−n

n


k=1

E|X | I (bk < |X | � bk+1)

� C



k=1

E|X | I (bk < |X | � bk+1) (logk)−(/)+1

� CE|X |/(log(1+ |X |))(/)−1 < . (2.21)
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Similarly, we have




n=1

n−1
n


i=1

|ani|P(|X | > bn)

=



n=1

P(|X | > bn)

=



n=1




k=n

P
(
k1/(logk)1/ < |X | � (k+1)1/(log(k+1))1/

)

=



k=1

P
(
k1/(logk)1/ < |X | � (k+1)1/(log(k+1))1/

)
k

� CE|X |/(log(1+ |X |))/ < . (2.22)

By
n

i=1

|ani| = O(n) , we have
n

i=1

|ani| = O(n) for ∀0 <  <  . Therefore,




n=1

n−1
n


i=1

b−n |ani|E|X | I (|X | > bn)

� C



n=1

b−n E|X | I (|X | > bn)

� C



k=1

E|X | I
(
k1/(logk)1/ < |X | � (k+1)1/(log(k+1))1/

)

×
k


n=1

n−/(logn)−/

� C



k=1

k1−(/)(logk)−/E|X |

×I
(
k1/(logk)1/ < |X | � (k+1)1/(log(k+1))1/

)
� C




k=1

(logk)−/E|X | I
(
k1/(logk)1/ < |X | � (k+1)1/(log(k+1))1/

)
� CE|X |/(log(1+ |X |))/ < . (2.23)

Based on the above statements, the desired result (2.17) follows immediately. �

Proof of Theorem 2.1. For ∀ > 0, it follows that




n=1

1
n
E

(
1
bn

max
1� j�n

∣∣∣∣∣
j


i=1

aniXi

∣∣∣∣∣− 

)

+

=



n=1

1
n

∫ 

0
P

(
1
bn

max
1� j�n

∣∣∣∣∣
j


i=1

aniXi

∣∣∣∣∣−  > t1/

)
dt
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=



n=1

1
n

∫ 1

0
P

(
1
bn

max
1� j�n

∣∣∣∣∣
j


i=1

aniXi

∣∣∣∣∣>  + t1/

)
dt

+



n=1

1
n

∫ 

1
P

(
1
bn

max
1� j�n

∣∣∣∣∣
j


i=1

aniXi

∣∣∣∣∣>  + t1/

)
dt

�



n=1

1
n
P

(
max

1� j�n

∣∣∣∣∣
j


i=1

aniXi

∣∣∣∣∣> bn

)

+



n=1

1
n

∫ 

1
P

(
max

1� j�n

∣∣∣∣∣
j


i=1

aniXi

∣∣∣∣∣> bnt
1/

)
dt

� I + J. (2.24)

To prove (2.1), it suffices to show that I < and J < . By Lemma 2.4 (or Theo-
rem A for identical distribution condition of random variables substituted by stochastic
domination), I <  clearly follows.

Without loss of generality, we can assume that ani � 0. For any t � 1 and all
1 � i � n , n ∈ N , define

Yi =−bnt
1/I

(
aniXi < −bnt

1/
)

+aniXiI
(
|aniXi| � bnt

1/
)

+bnt
1/I

(
aniXi > bnt

1/
)

.

It is easily seen that(
max

1� j�n

∣∣∣∣∣
j


i=1

aniXi

∣∣∣∣∣> bnt
1/

)
⊂
(

max
1� j�n

∣∣∣∣∣
j


i=1

Yi

∣∣∣∣∣> bnt
1/

)⋃( n⋃
i=1

(
|aniXi| > bnt

1/
))

,

which implies

P

(
max

1� j�n

∣∣∣∣∣
j


i=1

aniXi

∣∣∣∣∣> bnt
1/

)
� P

(
max

1� j�n

∣∣∣∣∣
j


i=1

Yi

∣∣∣∣∣> bnt
1/

)

+P

(
n⋃

i=1

(
|aniXi| > bnt

1/
))

. (2.25)

Hence, it suffices to show that

J1 =



n=1

1
n

∫ 

1
P

(
max

1� j�n

∣∣∣∣∣
j


i=1

Yi

∣∣∣∣∣> bnt
1/

)
dt < ,

J2 =



n=1

1
n

∫ 

1
P

(
n⋃

i=1

(
|aniXi| > bnt

1/
))

dt <.

By Lemma 2.4, we have

J2 � C



n=1

1
n

∫ 

1

n


i=1

P
(
|aniXi| > bnt

1/
)
dt < .
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By Lemma 2.5, for n large enough, max
1� j�n

∣∣∣∣ j

i=1

EYi

∣∣∣∣ � bnt1/

2 holds uniformly for

all t � 1. Hence, by the Markov’s inequality, Lemma 2.2 and (2.3) of Lemma 2.3, we
have

J1 � C



n=1

1
n

∫ 

1
P

(
max

1� j�n

∣∣∣∣∣
j


i=1

(Yi −EYi)

∣∣∣∣∣> bnt1/

2

)
dt

� C



n=1

1
n

∫ 

1

1

b2
nt2/ E

⎛
⎝ max

1� j�n

∣∣∣∣∣
j


i=1

(Yi −EYi)

∣∣∣∣∣
2
⎞
⎠dt

� C



n=1

1
n

∫ 

1

1

b2
nt2/

(
n


i=1

E|Yi−EYi|2
)

dt

� C



n=1

1
n

∫ 

1

1

b2
nt2/

(
n


i=1

E|aniXi|2I
(
|aniXi| � bnt

1/
))

dt

+C



n=1

1
n

∫ 

1

n


i=1

P
(
|aniXi| > bnt

1/
)
dt

� C



n=1

1
n

∫ 

1

1

b2
nt2/

(
n


i=1

E|aniX |2I
(
|aniX |� bnt

1/
))

dt

+C



n=1

1
n

∫ 

1

n


i=1

P
(
|aniX | > bnt

1/
)
dt

� C



n=1

1
n

∫ 

1

1

b2
nt2/

(
n


i=1

E|aniX |2I (|aniX | � bn)

)
dt

+C



n=1

1
n

∫ 

1

1

b2
nt2/

(
n


i=1

E|aniX |2I
(
bn < |aniX | � bnt

1/
))

dt

+C



n=1

1
n

∫ 

1

n


i=1

P
(
|aniX | > bnt

1/
)
dt

= J11 + J12 + J13. (2.26)

For 1 <  � 2 and Lemma 2.7, note that

J11 =



n=1

1
n

∫ 

1

1

b2
nt2/

(
n


i=1

E|aniX |2I (|aniX | � bn)

)
dt

�



n=1

1
n

1
bn

(
n


i=1

E|aniX | I (|aniX | � bn)

)
< . (2.27)

Letting t = x . By (2.3) of Lemma 2.3, the Markov’s inequality and Lemma 2.5,
we have

J12 =



n=1

1
n

∫ 

1

1

b2
nt2/

(
n


i=1

E|aniX |2I
(
bn < |aniX | � bnt

1/
))

dt
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� C



n=1

1
nb2

n

∫ 

1
x−3

n


i=1

E|aniX |2I (bn < |aniX | � bnx)dx

� C



n=1

1
nb2

n




m=1

∫ m+1

m
x−3

n


i=1

E|aniX |2I (bn < |aniX | � bnx)dx

� C



n=1

1
nb2

n




m=1

m−3
n


i=1

E|aniX |2I (bn < |aniX | � bn (m+1))

= C



n=1

1
nb2

n

n


i=1




m=1

m


s=1

m−3E|aniX |2I (bns < |aniX | � bn (s+1))

= C



n=1

1
nb2

n

n


i=1




s=1

E|aniX |2I (bns < |aniX | � bn (s+1))



m=s

m−3

� C



n=1

1
nb2

n

n


i=1




s=1

E|aniX |2I (bns < |aniX | � bn (s+1))s−2

� C



n=1

1
nbn

n


i=1

E|aniX | I (|aniX | > bn)

� CE|X |/(log(1+ |X |))/−1 < . (2.28)

Analogous to the proof of Lemma 2.5, it follows that

J13 =



n=1

1
n

∫ 

1

n


i=1

P
(
|aniX | > bnt

1/
)
dt

� CE|X |/(log(1+ |X |))/−1 < . (2.29)

Hence, the desired result J1 <  follows immediately. The proof of Theorem 2.1 is
completed. �

REMARK 2.1. Under the conditions of Theorem 2.1, it is easy to check that

 >



n=1

1
n
E

(
1
bn

max
1� j�n

∣∣∣∣∣
j


i=1

aniXi

∣∣∣∣∣− 

)

+

=



n=1

1
n

∫ 

0
P

(
1
bn

max
1� j�n

∣∣∣∣∣
j


i=1

aniXi

∣∣∣∣∣−  > t1/

)
dt

�



n=1

1
n

∫ 

0
P

(
1
bn

max
1� j�n

∣∣∣∣∣
j


i=1

aniXi

∣∣∣∣∣>  + t1/

)
dt

= 



n=1

1
n
P

(
max

1� j�n

∣∣∣∣∣
j


i=1

aniXi

∣∣∣∣∣> 2bn

)
. (2.30)

Since  > 0 is arbitrary. Therefore, from (2.30), we obtain that the complete moment
convergence implies the complete convergence. Compared with the corresponding ones
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of Sung [18], Chen and Sung [6], it is worth pointing out that the main result is an
extension and improvement under the same moment condition.

Taking ani = ai in Theorem 2.1, we can get the following result.

COROLLARY 2.1. Let {Xn;n � 1} be a mean zero sequence of NA random vari-
ables which is stochastically dominated by a random variable X , let {an;n � 1} be

a sequence of real constants such that
n

i=1

|ai| = O(n) for 0 <  � 2 . Set bn =

n1/(logn)1/ for 0 <  <  with 1 <  � 2 . If E|X |/(log(1+ |X |))/−1 <  ,
then




n=1

1
n
P

(
max

1� j�n

∣∣∣∣∣
j


i=1

aiXi

∣∣∣∣∣> bn

)
<  for ∀ > 0, (2.31)

and
1
bn

n


i=1

aiXi → 0 a.s., n → . (2.32)

Proof of Corollary 2.1. By Remark 2.1, it is easily to show that




n=1

1
n
P

(
max

1� j�n

∣∣∣∣∣
j


i=1

aiXi

∣∣∣∣∣> bn

)
<  for ∀ > 0,

which implies (2.32) by a standard computation method (see for example, Lemma 2.4
in Sung [17]). �
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