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ALMOST SURELY STABILITY OF DELAY HYBRID

STOCHASTIC SYSTEM DRIVEN BY LÉVY NOISE
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(Communicated by T. Burić)

Abstract. This study is devoted to investigate the almost sure stability of a class of nonlinear
delay hybrid stochastic system driven by Lévy noise. We derive that the system has a unique
global solution. Then, we discuss the almost sure stability of the stochastic system. A numerical
example is provided to verify the results.

1. Introduction

In nature and production life, random phenomenon exists universally. For exam-
ple, an error occurring in a scientific experiment and interference received during the
transmission of a message. Many random phenomenon especially systems have been
described by stochastic differential equations. Furthermore, systems are always influ-
enced by noises. Hence, some authors has modelled the actual systems by stochastic
systems ([1, 9, 14, 22]). However, due to the continuity of the Gaussian process, there
is no advantage in describing instantaneous perturbation changes. Non-Gaussian Lévy
noise can more accurately reflect the objective random disturbances in the system. In
the last few years, Lévy noise has been utilized in financial, biological and medical
fields ([3, 19, 23]). Wei ([16]) analyzed the consistency and asymptotic distribution of
the estimators for CIR model with Lévy noise. Zhou et al. ([21]) discussed the syn-
chronization of stochastic system driven by Lévy noise. Zouine et al. ([25]) investigated
stability of highly nonlinear stochastic systems driven by Lévy noise.

With deepening of human production practice, time lags have been noticed in bio-
chemical, population, physics and engineering. It is found that the appearance of this
phenomenon may be related to the connection of each sub-component of the system
and the characteristics of sub-components. A system with time delay is called delay
system because the change of its state is not only dependent on the current state, but
also related to the previous state. In the past few decades, many authors investigated the
delay system ([2, 10, 13]). Li et al. ([4]) constructed a new slack variable-dependent
inequality involving double integrals of system state and derived an improved stability
criterion. Qi et al. ([11]) used a new criterion to design controller for delay stochastic
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system with actuator saturation. Zhou et al. ([20]) studied the exponential synchroniza-
tion for delay stochastic neural networks. During the actual operation of the project, the
system may be switched between systems described by the same model with different
coefficients due to the influence of component failure and repair and connection mode
change of subsystems. Therefore, some authors discussed the stochastic systems with
Markovian switching. For example, Liu et al. ([6]) studied the event-based distributed
filtering over Markovian switching topologies. Wang et al. ([12]) utilized aperiodically
intermittent control to analyze the stabilization of stochastic delayed networks with
Markovian switching. Xia et al. ([18]) considered delay-dependent extended dissipa-
tive analysis for generalized neural networks with Markovian switching.

In recent years, many authors studied the stability of systems ([7, 15, 17]). Li
and Zhu ([5]) analyzed the pth moment exponential stability and almost surely expo-
nential stability of stochastic differential delay equations with Poisson jump. Ma et al.
([8]) studied practical exponential stability of stochastic age-dependent capital system
with Lévy noise. Zhu ([24]) discussed pth moment exponential stability problem for
a class of stochastic delay differential equations driven by Lévy processes. Since Lévy
noise can more accurately reflect the objective random disturbances in the system and
stability is one of most important topics in economy and control, it is of great impor-
tance to study the stability of stochastic system driven by Lévy noise. Compared with
[8] and [24], we discussed the existence of unique global solution and the methods for
proving the stability are different. In this paper, the existence and almost sure stability
of unique global solution for nonlinear stochastic delay system driven by Lévy noise
are investigated by general Itô formula, Hölder inequality, Doob martingale inequality,
Chebyshev’s inequality and Bolzano-Weierstrass.

The rest of this paper is organized as follows: In Section 2, the delay hybrid
stochastic system driven by Lévy noise is introduced. In Section 3, we prove the ex-
istence, uniqueness and almost sure stability of the solution. In Section 4, we give a
numerical example. In Section 5, the conclusion is provided.

2. Problem formulation and preliminaries

Let (,F ,P) be a complete probability space equipped with a right continuous
and increasing family of  -algebras ({Ft}t�0) . Denote by C 1,2(Rn ×R+ × S;R+)
the family of positive real-valued functions V (x,t, i) defined on Rn ×R+ × S which
are continuously twice differentiable in x ∈ Rn and once differentiable in t ∈ R+ . Let
r(t),t � 0 be a right-continuous Markov chain on the probability space taking values in
a finite state space S = {1,2, . . . ,N} with generator  = (i j)N×N given by

P{r(t +) = j|r(t) = i} =

{
i j+o() i �= j

1+ ii+o() i = j

where > 0, i j � 0 is the transition rate from i to j if i �= j while ii = −i�= ji j .
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We consider the following nonlinear stochastic system

dx(t) = f (x(t),x(t − (t)),t,r(t))dt +g(x(t),x(t− (t)),t,r(t))dW (t) (1)

+
∫

Z
H(x(t−),x(t− (t)),t,r(t−),)N(dt,d),

where x(0) = {x( ) :− �  � 0}=  ∈C b
F0

([−,0);Rn) , C b
F0

([−,0);Rn) is boun-
ded random variable set with n-th order vector-valued continuous function, r(0) = r0 ∈
S , x(t−) = lims↓t x(s) , W (t) is an m-dimensional standard Brownian motion, N(t,)
is an Poisson random measure on [0,+)×R

n with compensator Ñ(t,) which satis-
fies Ñ(t,) = N(dt,d)−(d)dt ,  is a unique stable distribution of Markov chain,
0 � (t) �  , ˙(t) � d < 1, f : Rn ×Rn ×R+ ×S → Rn , g : Rn ×Rn ×R+ ×S →
Rn×m , H : Rn ×Rn ×R+×S×Rn → Rn . It is assumed that W (t) , N(t,) , and r(t)
in system (1) are independent.

Firstly, We provide some assumptions and definition.

ASSUMPTION 1.

sup
t�0,i∈S

{| f (0,0,t, i)| ∨ |g(0,0,t, i)|}� K0,

where K0 is a constant.

ASSUMPTION 2. ∀t � 0 , |x1| ∨ |x2| ∨ |y1| ∨ |y2| � K and i ∈ S ,

| f (x1,y1, t, i)− f (x2,y2,t, i)|2| ∨ |g(x1,y1,t, i)−g(x2,y2,t, i)|2

∨
∫

Z
|H(x1,y1, t, i,)−H(x2,y2,t, i,)|2(d) � LK(|x1− x2|2 + |y1− y2|2),

where LK > 0 .

ASSUMPTION 3.

lim
|x|→

inf
t�0,i∈S

V (x,y,t, i) = ,LV (x,y,t, i) � m(t)−1n1(x)+2n2(y)

where V (x,y, t, i)∈C 1,2(Rn×Rn×R+×S;R+) , m∈L1(R+;R+) , n1,n2 ∈C (Rn;R+) ,
1 > 0 , 2 > 0 .

DEFINITION 1. The solution of system (1) is almost surely stable if

P(lim
t→

x(t; ,r0) = 0) = 1,

for any  ∈ C b
F0

([−,0);Rn) and r0 ∈ S .
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Given V ∈ C 1,2(Rn×Rn×R+×S;R+) , we define the operator LV by

LV (x,y,t, i)
= Vt(x,y,t, i)+Vx(x,y,t, i) f (x,y, t, i)

+
1
2
trace[gT (x,y,t, i)Vxx(x,y,t, i)g(x,y,t, i)]

+
∫
Y

l


k=1

[V (x+Hk(x,t, i,yk),t, i)

−V (x,t, i)]k(dyk)+
N


j=1

i jV (x,y, t, j).

3. Main results and proofs

THEOREM 1. Under Assumptions 1–3, the solution {x(t),t � 0} of system (1)
exists and is unique.

Proof. For the given initial values x0 and r0 , it is assumed that |x0| �  . For
k �  , k ∈ N , let

f (k)(x,y, t, i) = f
( |x| ∧ k

|x| x,
|y| ∧ k
|y| y,t, i

)
, g(k)(x,y,t, i) = g

( |x| ∧ k
|x| x,

|y| ∧ k
|y| y,t, i

)
,

H(k)(x,y, t, i) = H
( |x| ∧ k

|x| x,
|y| ∧ k
|y| y,t, i

)
, (2)

where ( |x|∧k
|x| x) = 0 when x = 0.

It can be checked that f (k) and g(k) satisfy the existence and uniqueness condition
of the solution. Thus, the solution of the following system

dxk(t) = f (k)(xk(t),xk(t− (t)),t,r(t))dt +g(k)(xk(t),xk(t− (t)),t,r(t))dW (t) (3)

+
∫

Z
Hk(xk(t−),xk(t − (t)),t,r(t−),)N(dt,d),

exists and is unique.
∀k ∈ N , let

k = inf{t � 0 : |xk(t)| � k}, (4)

where inf =  .
When 0 � t � k , xk(t) = xk+1 . Then, there exists a stopping time  such that

 = lim
k→

k. (5)

When − � t < k , x(t) = xk(t) . Therefore, when t ∈ [−, ) , the solution x(t)
of system (1) is unique.

Next, P{ = } = 1 will be proved.
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From Itô formula, for t � 0, one has

EV (xk(t ∧k),t ∧k,r(t ∧k))

= EV (xk(0),0,r(0))+E

∫ t∧k

0
L (k)V (xk(s),xk(s− (s)),s,r(s))ds,

When 0 � s � t ∧k ,

L (k)V (xk(s),xk(s− (s)),s,r(s)) = LV (xk(s),xk(s− (s)),s,r(s)).

Thus, according to Assumption 3, we have

EV (xk(t ∧k),t ∧k,r(t ∧k))

= EV (xk(0),0,r(0))+E

∫ t∧k

0
LV (xk(s),xk(s− (s)),s,r(s))ds

� V (0,0,r0)+E

∫ t

0
(m(s)−1n1(x(s))+2n2(x(s− (s))))ds

= V (0,0,r0)+
∫ t

0
m(s)ds+E

∫ t

0
[−1n1(x(s))+2n2(x(s− (s)))]ds

� V (0,0,r0)+
∫ t

0
m(s)ds−E

∫ t

0
1n1(x(s))ds+E

∫ t−(t)

−
2

1−d
n2(x(s))ds

� V (0,0,r0)+
∫ t

0
m(s)ds−E

∫ t

0
1n1(x(s))ds+E

∫ 0

−
2

1−d
n2( ( ))d

+E

∫ t

0

2

1−d
n2(x(s))ds

� V (0,0,r0)+
∫ t

0
m(s)ds−E

∫ t

0
1(n1(x(s))−n2(x(s)))ds

+E

∫ 0

−
1n2( ( ))d

� V (0,0,r0)+
∫ t

0
m(s)ds+E

∫ 0

−
1n2( ( ))d .

Since

P{k � t} inf
|x|�k,t�0,i∈S

V (x,t, i)

�
∫
k�t

V (xk(t ∧k),t ∧k,r(t ∧k))dP

� EV (xk(t ∧k),t ∧k,r(t ∧k)),

we obtain

P{k � t} �
V (0,0,r0)+

∫ t
0 m(s)ds+E

∫ 0
− 1n2( ( ))d

inf|x|�k,t�0,i∈SV (x,t, i)
. (6)
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When t →  , we derive
P{ � t} = 0. (7)

Therefore,
P{ = } = 1. � (8)

THEOREM 2. Under Assumptions 1–3, ∀i ∈ S , if there exists function V ∈ C 1,2

(Rn×R+×S;R+) , m∈ L1(R+;R+) , n1,n2 ∈C (Rn;R+) , (x,y,t, i) ∈Rn×Rn×R+×
S satisfy

LV (x,y,t, i) � m(t)−1n1(x)+2n2(y),

n1(x) > n2(x), x �= 0,

lim
|x|→

inf
t�0,i∈S

V (x,t, i) = ,

the system (1) is almost sure stable.

Proof. Since

V (x(t), t,r(t))

= V ( (0),0,r0)+
∫ t

0
LV (x(s),x(s− (s)),s,r(s))ds

+
∫ t

0
Vx(x(s),s,r(s))g(x(s),x(s− (s),s,r(s))dW (s)

+
∫ t

0

∫
Z
[V ((x(s),s,r0 +H(x(s),x(s− (s)),s,r(s),))

−Vx(x(s),s,r(s))](d)

� V ( (0),0,r0)+
∫ t

0
m(s)ds−

∫ t

0
1n1(x(s))ds

+
∫ t

0
2n2(x(s− (s)))ds

+
∫ t

0
Vx(x(s),s,r(s))g(x(s),x(s− (s),s,r(s))dW (s)

+
∫ t

0

∫
Z
[V ((x(s),s,r0 +H(x(s),x(s− (s)),s,r(s),))

−Vx(x(s),s,r(s))](d)

� V ( (0),0,r0)+
∫ t

0
m(s)ds−1

∫ t

0
n1(x(s))ds+2

∫ 0

−
n2(x(s))ds

+
∫ t

0
Vx(x(s),s,r(s))g(x(s),x(s− (s),s,r(s))dW (s)

+
∫ t

0

∫
Z
[V ((x(s),s,r0 +H(x(s),x(s− (s)),s,r(s),))

−Vx(x(s),s,r(s))](d).
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As ∫ 

0
m(s)ds < , (9)

we have

lim
t→

∫ t

0
n1(x(s))ds <  (10)

and
lim
t→

supV (x(t),t,r(t)) < . (11)

Then, we obtain

sup
0�t<

inf
|x|�|x(t)|,0�t<,i∈S

V (x,t, i) � sup
0�t<

V (x(t),t,r(t)) <. (12)

From Assumption 2, we have

sup
0�t<

|x(t)| < . (13)

Since  ∈ C b
F0

([−,0);Rn) , there exists a positive k0 and | | < k0 . For k > k0 ,
we define a stopping time

k = inf{t � 0 : |x(t)| � k}, (14)

where inf =  .
When k →  , it is obvious that k →  a.s.
Thus, for any  > 0, there exists k � k0 , when k � k ,

P(k < ) � . (15)

According to (9) , we have

lim
t→

infn1(x(t)) = 0. (16)

Next we will prove that
lim
t→

n1(x(t)) = 0. (17)

Suppose (17) dose not hold, we can obtain

P{ lim
t→

supn1(x(t) > 0} > 0. (18)

Then, there exists the following stopping time sequence:

1 = inf{t � 0 : n1(x(t) � 21},

2 j = inf{t � 2 j−1 : n1(x(t) � 1}, j = 1,2, · · · ,
2 j+1 = inf{t � 2 j : n1(x(t) � 21}, j = 1,2, · · · ,
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and 0 > 0,  > 1 > 0 satisfy

P(2 j <  : j ∈ Z) � 0. (19)

According to local Lipschitz condition, ∀k > 0, there exists Lk > 0 satisfy

| f (x,y,t, i)| ∨ |g(x,y,t, i)| ∨ |H(x,y,t, i,)| � Lk,

for any t � 0, i ∈ S and |x| ∨ |y| � k .
According to Hölder inequality and Doob martingale inequality, for any j ∈ Z ,

when T < 2 j − 2 j−1 , we obtain

E[I{2 j<k} sup
0�t�T

|x(2 j−1 + t)− x(2 j−1)|2]

= E[I{2 j<k} sup
0�t�T

|
∫ 2 j−1+t

2 j−1

f (x(s),x(s− (s)),s,r(s))ds

+
∫ 2 j−1+t

2 j−1

g(x(s),x(s− (s)),s,r(s))dW (s)

+
∫ 2 j−1+t

2 j−1

∫
Z
H(x(s−),x(s− (s)),s,r(s−),)N(ds,d)|2 ]

� 4E[I{2 j<k} sup
0�t�T

|
∫ 2 j−1+t

2 j−1

f (x(s),x(s− (s)),s,r(s))ds|2 ]

+16E[I{2 j<k} sup
0�t�T

∫ 2 j−1+t

2 j−1

|g(x(s),x(s− (s)),s,r(s))|2ds

+4E[I{2 j<k} sup
0�t�T

∫ 2 j−1+t

2 j−1

∫
Z
|H(x(s−),x(s− (s)),s,r(s−),)|2(d)ds

� 4L2
kT (T +5),

where IA is the indicative function of set A .
Since n1(x) is continuous on Rn , it is uniformly continuous in Sk = {x ∈ Rn :

|x| � k} . Then, for any p > 0, when x,y ∈ Sk and |x− y| < cp , |n1(x)− n1(y)| < p .
Let  = 0

2 , k � k and p = 1 .
According to Chebyshev’s inequality, we have

P({k � 2 j})+P({2 j < k}∩{ sup
0�t�T

|n1(x(2 j−1 + t))−n1(x(2 j−1))| � 1})

� P({k � 2 j}∩{2 j = })+P({k � 2 j}∩{2 j < })
+P({2 j < k}∩{ sup

0�t�T
|x(2 j−1 + t)− x(2 j−1)| � c1})

� 4L2
kT (T +5)

c2
1

+1−2.

Let T = T (,1,k) be small enough to satisfy

4L2
kT (T +5)

c2
1

� . (20)
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Then, it can be checked that

P({2 j < k}∩{ sup
0�t�T

|n1(x(2 j−1 + t))−n1(x(2 j−1))| < 1}) � . (21)

Hence, we obtain

j=1T1 =
1
2
j=1T01 = 

� j=1T1P({2 j < k}∩{ sup
0�t�T

|n1(x(2 j−1 + t))−n1(x(2 j−1))| < 1})

� j=11E[I2 j<k(2 j − 2 j−1)]

� j=11E[I2 j<k

∫ 2 j−1+t

2 j−1

n1(x(t))dt]

� E[
∫ 

0
n1(x(t))dt]

< .

Obviously, the above result is contradictory. Then, there exists  ∈  such that
P() = 1 and

lim
t→

n1(x(t,)) = 0, sup
0�t<

|x(t,)| < , ∀ ∈. (22)

Therefore, for any given  ∈  , {x(t,)}t�0 ∈ Rn is bounded. There exists a
increasing sequence {ti}i�1 such that {x(ti,)}i�1 is convergent. Since n1(x) > 0 as
x �= 0, it is known that n1(x) = 0 when x = 0.

The proof is complete. �

4. Example

Let W (t) be a one-dimensional Brownian motion, The character measure  of
Poisson jump satisfies (d) = (d) , where  = 2 is the intensity of Poisson dis-
tribution and  is the probability intensity of the standard normal distributed variable
 , r(t) ∈ S = {1,2} and  = (i j)2×2 =(−0.8 0.8

0.5 −0.5

)
Consider the nonlinear delay hybrid stochastic system driven by Lévy noises as

follows:

dx(t) = f (x(t),x(t − (t)),t,r(t))dt +g(x(t),x(t− (t)),t,r(t))dW (t)

+
∫

Z
H(x(t−),x(t− (t)),t,r(t−),)N(dt,d),
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where

f (x,y,t,1) = −3x
1
3 +3y

2
3 ,

g(x,y,t,1) = −x
2
3 + y

2
3 ,

f (x,y,t,2) = 2(1+ t)−
1
3 −2x

1
3 ,

g(x,y,t,2) = 2x
2
3 cos(t)+

3
2
y

2
3 sin(t),

H(x,y,t,1,) = −2x
1
3 +2y

2
3 ,

H(x,y,t,2,) = 3x
1
3 + y

2
3 ,

where (t) = 0.5+0.5sin(t) .
Let V (x, i) = x2 . Then, we obtain

LV (x,y,t,1) � −9x
4
3 +5y

4
3 ,

LV (x,y,t,2) � 4x(1+ t)−
1
3 −4x

4
3 +

9
4
y

4
3 .

Since for any  > 0,

4x(1+ t)−
1
3 =

(4
3
x

4
3

) 3
4
(
4
(

3

)−3
(1+ t)−

4
3

) 1
4 � x

4
3 +

(
3

)−3
(1+ t)−

4
3 .

Thus, for all t � 0, i ∈ S , it is easy to check that

LV (x,y,t, i) �
(

3

)−3
(1+ t)−

4
3 − (4−)x

4
3 +5y

4
3 .

Let 0 = 3, r0 = 1. Figure 1 verify the results.

Figure 1: State trajectory
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5. Conclusion

In this paper, we have analyzed the almost surely stability of nonlinear delay hy-
brid stochastic system driven by Lévy noise. The existence and uniqueness of the
solution for nonlinear stochastic delay system has been discussed by general Itô for-
mula. The almost sure stability of the solution has been studied by Hölder inequality,
Doob martingale inequality, Chebyshev’s inequality and Bolzano-Weierstrass. Further
research topics will include stability of nonlinear delay stochastic system driven by
fractional Lévy noise.
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