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BLOCK DECOMPOSITION FOR HERZ SPACES

ASSOCIATED WITH BALL BANACH FUNCTION SPACES
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(Communicated by M. Krnić)

Abstract. In this paper, we establish the block decomposition for Herz spaces associated with
ball Banach function spaces. By using this decomposition, we obtain the boundedness for a class
of sublinear operators on Herz spaces associated with ball Banach function spaces.

1. Introduction

The classical Herz spaces, initially introduced by Herz [6] to study the Fourier
series and Fourier transform, are important extensions of Lebesgue spaces. Nowadays,
Herz spaces have been widely used in harmonic analysis and PDE. For instance, many
important operators in harmonic analysis, such as Hardy-Littlewood maximal operator
and singular integral operators, were proved to be bounded on Herz spaces, see [1, 9, 11,
17, 19, 21, 23, 24, 26]. We also refer the readers to [3, 20, 25, 30] for some applications
of Herz spaces in PDE.

In 1995, Lu and Yang [22] proved the block decomposition for classical Herz
spaces, from which the boundedness of a class of sublinear operator satisfying some
size conditions was established. For the block decomposition of some other block
spaces and its applications, we refer the readers to [18, 24, 34, 33].

As is well-known, Banach function spaces, initially introduced by Bennett [2],
unify various function spaces such as Lebesgue spaces, Orlicz spaces and Lorentz
spaces in harmonic analysis. Recently, Sawano et al. [28] extended Banach function
spaces to ball Banach function spaces, and proved that many function spaces, such as
Morrey spaces, mixed-norm Lebesgue spaces and Orlicz-slice spaces are all ball Ba-
nach function spaces, which may not be Banach function spaces. We refer the readers
to [4, 10, 16, 32, 38, 43, 44] for more studies on ball Banach function spaces.

By combining Herz spaces with ball Banach function spaces, Wei [41] introduced
Herz spaces associated with ball Banach function spaces, which are extensions of Herz
spaces with variable exponent [5, 12, 13, 15, 35, 36, 37, 42], mixed Herz spaces [39, 40]
and some other Herz-type spaces. Inspired by [22, 40], we will establish the block
decomposition for Herz spaces associated ball Banach function spaces in this paper. As
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an application of the decomposition, we further obtain the boundedness for a class of
sublinear operators satisfying some size conditions.

Throughout the paper, we use the following notations.
For any r > 0 and x ∈ Rn , let B(x,r) = {y : |y− x| < r} be the ball centered at

x with radius r . Let B = {B(x,r) : x ∈ Rn,r > 0} be the set of all such balls. We
use E and |E| to denote the characteristic function and the Lebesgue measure of a
measurable set E . Let M (E) be the class of Lebesgue measurable functions on E .
For any quasi-Banach space X , the space LX

loc(E) consists of all functions f ∈ M (E)
such that f F ∈ X for all compact subsets F ⊆ E . We denote the set of all non-
negative integers, all integers and all complex numbers by N , Z and C , respectively.
By A � B , we mean that A � CB for some constant C > 0, and A ∼ B means that
A � B and B � A . For all k ∈ Z , let Bk = B(0,2k) , Ck = Bk\Bk−1 . Denote k = Ck

for k ∈ Z , ̃k = Ck if k ∈ N+ and ̃0 = B0 .
This paper is organized as follows. Some definitions and preliminaries are pre-

sented in Sect. 2. The block decomposition for Herz spaces associated with ball Banach
function spaces is established in Sect 3. By applying the decomposition, we obtain the
boundedness for a class of sublinear operators satisfying some size conditions on Herz
spaces associated with ball Banach function spaces in Sect. 4.

2. Definitions and preliminaries

In this section, we give the defnitions and some basic properties of ball Banach
function spaces and Herz spaces associated with ball Banach function spaces.

We first recall the definition of ball Banach function spaces.

DEFINITION 2.1. A Banach space X ⊆ M (Rn) is called a ball Banach function
space if it satisfies

(i) ‖ f‖X = 0 implies that f = 0 almost everywhere;
(ii) |g| � | f | almost everywhere implies that ‖g‖X � ‖ f‖X ;
(iii) 0 � fm ↑ f almost everywhere implies that 0 � ‖ fm‖X ↑ ‖ f‖X ;
(iv) B ∈ B implies that B ∈ X ;
(v) for any B ∈ B , there exists a positive constant C(B) , depending on B , such

that, for any f ∈ X , ∫
B

f (x)dx � C(B)‖ f‖X .

REMARK 2.1. (i) In Definition 2.1, if we replace the ball B by any bounded mea-
surable set E , then the definitions are mutually equivalent.

(ii) From the definition, one can see that every Banach function space is a ball
Banach function space, and the converse is not necessary to be true. For instance,
it was shown in [8] that mixed-norm spaces are ball Banach function spaces, but not
Banach function spaces.

Now we give the definition of the associate space of a ball Banach function space,
see, for instance, [2, Chapter 1, Definitions 2.1 and 2.3].
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DEFINITION 2.2. For any ball Banach function space X , the associate space (also
called the Köthe dual) X ′ is defined by setting

X ′ := { f ∈ M (Rn) : ‖ f‖X ′ = sup
g∈X ,‖g‖X�1

‖ f g‖L1 < }, (1)

where ‖ · ‖X ′ is called the associate norm of ‖ · ‖X .

REMARK 2.2. From [28, Proposition 2.3], we know that, if X is a ball Banach
function space, then its associate space X ′ is also a ball Banach function space. We also
point out that X ′ is different form X∗ , the dual space of X . However, the condition
X ′ = X∗ may hold for a large class of ball Banach function spaces. In fact, we have
X ′ = X∗ as long as X has an absolutely continuous norm (see [2, Chapter 1, Corol-
lary 4.3]). As we know, many function spaces appeared in harmonic analysis have
absolutely continuous norms under some mild conditions, and therefore, they satisfy
X ′ = X∗ .

The Hölder’s inequality for ball Banach function spaces can be deduced from Def-
inition 2.1 and (1), see also [2, Theorem 2.4], for the proof.

LEMMA 2.1. Let X be a ball Banach function space, and X ′ its associate space.
If f ∈ X and g ∈ X ′ , then f g is integrable and∫

Rn
| f (x)g(x)|dx � ‖ f‖X‖g‖X ′ .

The Hardy-Littlewood maximal operator M is defined by setting, for any f ∈
L1

loc(R
n) and x ∈ Rn ,

M( f )(x) := sup
B	x

1
|B|
∫

B
| f (y)|dy, (2)

where the supremum is taken over all balls B ∈ B .
If we impose the boundedness of M on the associate space of the ball Banach func-

tion space X , then the norm ‖ · ‖X has properties similar to the classical Muckenhoupt
weights.

LEMMA 2.2. Let X be a ball Banach function space. Suppose that the Hardy-
Littlewood maximal operator M is bounded on X ′ . Then for all balls B ∈ B , we have

‖B‖X‖B‖X ′ � |B|. (3)

LEMMA 2.3. Let X be a ball Banach function space. Suppose that M is bounded
on the associate space X ′ . Then there exists a constant 0 < X < 1 , such that for all
balls B ⊆ B and all measurable sets E ⊆ B, we have

‖E‖X

‖B‖X
�
( |E|
|B|
)X

. (4)
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The proofs of Lemma 2.2 and Lemma 2.3 can be found in [14]. Although these
lemmas were proved only for Banach function spaces, the results also hold for ball Ba-
nach function spaces by checking the proofs carefully. One can see that in the particular
case X = Lq(Rn) (1 � q < ), X = 1/q . Throughout this paper, for any ball Banach
function spaces X , X is the same as in Lemma 2.3.

The definitions of the classical Herz spaces are as follows, see, for instance [22,
24].

DEFINITION 2.3. Let  ∈ R , 0 < p,q �  .
(i) The homogeneous Herz space K̇ ,p

q (Rn) is defined by

‖ f‖K̇,p
q

:=
{

f ∈ Lq
loc(R

n\{0}) : ‖ f‖K̇,p
q

< 
}

,

where

‖ f‖K̇,p
q

:=

{

k∈Z

2kp‖ f k‖p
Lq

}1/p

.

If p =  or q =  , then we have to make appropriate modifications.
(ii) The non-homogeneous Herz space K ,p

q (Rn) is defined by

‖ f‖K,p
q

:=
{

f ∈ Lq
loc(R

n) : ‖ f‖K,p
q

< 
}

,

where

‖ f‖K,p
q

:=

{

k∈N

2kp‖ f ̃k‖p
Lq

}1/p

.

If p =  or q =  , then we have to make appropriate modifications.

By replacing Lq(Rn) with some ball Banach function space X , Wei [41] intro-
duced Herz spaces associated with ball Banach function spaces.

DEFINITION 2.4. Let  ∈ R , 0 < p �  and X be a ball quasi-Banach function
space.

(i) The homogeneous Herz-type space associated with ball quasi-Banach function
spaces K̇ ,p

X (Rn) is defined by

‖ f‖K̇,p
X

:=
{

f ∈ LX
loc(R

n\{0}) : ‖ f‖K̇,p
X

< 
}

,

where

‖ f‖K̇,p
X

:=

{

k∈Z

2kp‖ f k‖p
X

}1/p

.



BLOCK DECOMPOSITION FOR HERZ SPACES 645

If p =  , then we have to make appropriate modifications.
(ii) The non-homogeneous Herz-type space K ,p

X (Rn) is defined by

‖ f‖K,p
X

:=
{

f ∈ LX
loc(R

n) : ‖ f‖K,p
X

< 
}

,

where

‖ f‖K,p
X

:=

{

k∈N

2kp‖ f ̃k‖p
X

}1/p

.

If p =  , then we have to make appropriate modifications.

For  ∈ R , 0 < p �  and any ball Banach function space X , K̇ ,p
X (Rn) and

K ,p
X (Rn) are quasi-Banach spaces, and if further p � 1, then they are Banach spaces.

Obviously, Herz spaces associated with ball Banach function spaces are extensions of
classical Herz spaces. If X = Lq(·)(Rn) , the variable exponent Lebesgue spaces, we
recover the Herz spaces with variable exponent studied in [12]. Moreover, by taking
different ball Banach function spaces, we can define some concrete Herz-type spaces
such as mixed Herz spaces and Herz-Lorentz spaces, see [39, 40, 41]. For more about
Herz spaces associated with ball Banach function spaces, the readers are referred to
[41].

3. Block decomposition for Herz spaces associated with
ball Banach function spaces

As is known, the classical Herz spaces possess block decomposition, see [22, 24].
Besides, block-type spaces can characterize various function spaces. For instance, the
pre-dual of various Morrey-type spaces can be identified with block spaces, see [7, 27,
29]. This section is devoted to establishing the block decomposition for Herz spaces
associated with ball Banach function spaces.

We first give the definition of central X -block.

DEFINITION 3.1. Let 0 <  <  , 0 < p <  and X be a ball Banach function
space.

(I) A function b on Rn is said to be a central X -block if
(a) suppb ∈ B(0,r) for some r > 0.
(b) ‖b‖X � r− .
(II) A function b on Rn is said to be a central X -block of restricted type if
(c) suppb ∈ B(0,r) for some r � 1.
(d) ‖b‖X � r− .

If r = 2i for some i ∈ Z in Definition 3.1, then the central X -block is also called
a dyadic central X -block.

Our first main result in this section is as follows.
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THEOREM 3.1. Suppose 0 <  < , 0 < p < and X be a ball Banach function
space. Then the following facts are equivalent.

(i) f ∈ K̇ ,p
X (Rn) .

(ii) f can be represented as

f (x) = 
i∈Z

ibi(x),

where each bi is a dyadic central X -block with the support Bi , and i∈Z |i|p <  .

Proof. We first prove (i) implies (ii). For f ∈ K̇ ,p
X (Rn) , rewrite f as

f (x) = 
i∈Z

f (x)i(x) = 
i∈Z

2i‖ f i‖X
f (x)i(x)

2i‖ f i‖X
= 

i∈Z

ibi,

where i = 2i‖ f i‖X and bi = f (x)i(x)
2i‖ f i‖X

.

It is obvious that suppbi ∈ Bi and ‖bi‖X = 2−i . Therefore each bi is a dyadic
central X -block with support Bi and


i∈Z

|i|p = 
i∈Z

2ip‖ f i‖p
X = ‖ f‖p

K̇,p
X (Rn)

< .

Next we prove that (ii) implies (i). Assume f (x) = i∈Zibi(x) be a decomposi-
tion of f which satisfies the hypothesis (ii).

For any i ∈ Z , using Minkowski’s inequality on ball Banach function spaces (see
[31, Lemma 3.4]), we obtain

‖ f i‖X �



j=i

| j| ‖b j‖X . (5)

Now we consider two different cases for the index p .
For 0 < p � 1, the inequality (5) yields that

‖ f‖p
K̇,p

X
= 

i∈Z

2ip‖ f i‖p
X

� 
i∈Z

2ip

(

j�i

| j|p‖b j‖p
X

)

� 
i∈Z

2ip

(

j�i

| j|p2− jp

)

= 
j∈Z

| j|p
i� j

2(i− j)p � 
j∈Z

| j|p,

since  > 0.
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When 1 < p <  , by using (5) and Hölder’s inequality, we get

‖ f i‖X � 
j�i

| j|‖b j‖1/2
X ‖b j‖1/2

X

�
(

j�i

| j|p‖b j‖p/2
X

)1/p(

j�i

‖b j‖p′/2
X

)1/p′

�
(

j�i

| j|p2− jp/2

)1/p(

j�i

2− jp′/2

)1/p′

.

Therefore,

‖ f‖p
K̇,p

X
� 

i∈Z

2ip

(

j�i

| j|p2− jp/2

)(

j�i

2− jp′/2

)p/p′

� 
j∈Z

| j|p
(

i� j

2(i− j)p/2

)
� 

j∈Z

| j|p.

As a consequence, we have f ∈ K̇ ,p
X (Rn) , which finishes the proof. �

REMARK 3.1. (i) One can see from the proof of Theorem 3.1 that if f ∈ K̇ ,p
X (Rn)

and f = i∈Zibi be a dyadic central X -block decomposition, then

‖ f‖K̇,p
X

∼
(

i∈Z

|i|p
)1/p

.

(ii) Theorem 3.1 extends the results in [22, 34], where the block decomposition for
some particular homogeneous Herz spaces associated with ball Banach function spaces
was build.

By an argument similar to the proof of Theorem 3.1, we have the block decompo-
sition for non-homogeneous Herz spaces associated with ball Banach function spaces.

THEOREM 3.2. Suppose 0 <  < , 0 < p < and X be a ball Banach function
space. Then the following facts are equivalent.

(i) f ∈ K ,p
X (Rn) .

(ii) f can be represented as

f (x) = 
i∈N

ibi(x), (6)

where each bi is a dyadic central X -block of restricted type with support contained Bi ,
and 

i=0 |i|p <  .

Moreover, the norms ‖ f‖K,p
X

and inf(i∈N |i|p)1/p are equivalent, where the

infimum is taken over all the decomposition of f as in (6) .
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4. Boundedness for a class of sublinear operators on Herz spaces associated
with ball Banach function spaces

In this section, we establish the boundedness for a class of sublinear operators on
Herz spaces associated with ball Banach function spaces. We first recall the definition
of sublinear operators.

Let V be a vector space. We say that an operator T : V → M (Rn) is a sublinear
operator if for any f ,g ∈V and t ∈ C ,

|T ( f +g)|� |T f |+ |Tg|
and

|T (t f )| = |t| |T f |.
Our main result in this section can be read as follows.

THEOREM 4.1. Let 0 <  <  , 0 < p <  and X be a ball Banach function
space such that  < nX ′ , X ′ = X∗ and the Hardy-Littlewood maximal operator M is
bounded on X . If a sublinear operator T initially defined on X satisfies

|T f (x)| � ‖ f‖L1/|x|n if dist(x,supp f ) > |x|/2, (7)

for any f ∈ L1
loc(R

n) with a compact support and T is bounded on X , then T can be
extended to a bounded operator on K̇ ,p

X (Rn) and K ,p
X (Rn) .

Proof. It suffices to prove the boundedness of T on K̇ ,p
X (Rn) . The non-homoge-

neous case can be proved in the similar way.
Assume f ∈ K̇ ,p

X (Rn) and f ∈C
c (Rn) , the set of smooth functions with compact

support. For such a nice function f , T f is well-defined since C
c (Rn) ⊆ X . By virtue

of Theorem 3.1, we may rewrite f as f (x) = i∈Z ibi(x) , where each bi is a dyadic
central X -block with support contained in Bi and

‖ f‖K̇,p
X

∼
(

i∈Z

|i|p
)1/p

.

Therefore, we have

‖T f‖p
K̇,p

X
= 

j∈Z

2 jp‖(T f ) j‖p
X

� 
j∈Z

2 jp

(
j−2


i=−

|i| ‖(Tbi) j‖X

)p

+ 
j∈Z

2 jp

(



i= j−1

|i| ‖(Tbi) j‖X

)p

=: I1 + I2.

Let us first estimate I1 . By the condition (7) and Lemma 2.1, for any x ∈Cj , we have

|Tbi(x)| � 2− jn
∫

Bi

|bi(x)|dx � 2− jn‖bi‖X‖Bi‖X ′ . (8)
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Therefore, from Lemma 2.2, Lemma 2.3 and the definition of dyadic central X -block,
we obtain

‖(Tbi) j‖X � 2− jn‖bi‖X‖Bi‖X ′ ‖Bj‖X

� 2− jn‖bi‖X
‖Bi‖X ′

‖Bj‖X ′
‖Bj‖X‖Bj‖X ′

� 2−i2(i− j)nX ′ .

Consequently, when 0 < p � 1, according to  < nX ′ , we get

I1 = 
j∈Z

2 jp

(
j−2


i=−

|i| ‖(Tbi) j‖X

)p

� 
j∈Z

2 jp

(
j−2


i=−

|i|p 2−ip2(i− j)pnX ′

)

= 
i∈Z

|i|p
(




j=i+2

2(i− j)p(nX ′−)

)

� 
i∈Z

|i|p � ‖ f‖p
K̇,p

X
.

When 1 < p <  , by using  < nX ′ and Hölder’s inequality, we have

I1 � 
j∈Z

2 jp

(
j−2


i=−

|i| 2−i2(i− j)nX ′

)p

= 
j∈Z

(
j−2


i=−

|i| 2(i− j)(nX ′−)

)p

� 
j∈Z

(
j−2


i=−

|i|p 2(i− j)p(nX ′−)/2

)(
j−2


i=−

2(i− j)p′(nX ′−)/2

)p/p′

� 
i∈Z

|i|p



j=i+2

2(i− j)p(nX ′−)/2

� 
i∈Z

|i|p � ‖ f‖p
K̇,p

X
.

Let us now estimate I2 . By the boundedness of T on X and the definition of dyadic
central X -block, we get

‖(Tbi) j‖X � ‖bi‖X � 2−i . (9)
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We also consider two cases for p . When 0 < p � 1, in view of  > 0, we obtain

I2 = 
j∈Z

2 jp

(



i= j−1

|i| ‖(Tbi) j‖X

)p

� 
j∈Z

2 jp

(



i= j−1

|i| 2−i

)p

= 
j∈Z

(



i= j−1

|i| 2( j−i)

)p

� 
j∈Z

(



i= j−1

|i|p 2( j−i)p

)

= 
i∈Z

|i|p
(

i+1


j=−

2( j−i)p

)
� 

i∈Z

|i|p � ‖ f‖p
K̇,p

X
.

When 1 < p <  , we have

I2 � 
j∈Z

(



i= j−1

|i| 2( j−i)

)p

� 
j∈Z

(



i= j−1

|i|p 2( j−i)p/2

)(



i= j−1

2( j−i)p′/2

)p/p′

� 
i∈Z

|i|p
(

i+1


j=−

2( j−i)p/2

)
� 

i∈Z

|i|p � ‖ f‖p
K̇,p

X

since  > 0.
Combining all the estimates for I1 and I2 , we have for any f ∈ K̇ ,p

X (Rn) ∩
C

c (Rn) , ‖T f‖K̇,p
X

� ‖ f‖K̇,p
X

.
To finish the proof, we also need some denseness results. Fortunately, it was

pointed out in [41, Proof of Theorem 4.1] that C
c (Rn) is dense in K̇ ,p

X (Rn) if X ′ = X∗ .
One can also refer to [9, Proposition 4.2] for the detailed proof in the particular case
X = Lq(·)(Rn) .

Since T is a sublinear operator on X , we have |T f −Tg| � |T ( f −g)| for f ,g ∈
C

c (Rn) ⊆ K̇ ,p
X (Rn) . Consequently,

‖T f −Tg‖K̇,p
X

� ‖T ( f −g)‖K̇,p
X

� ‖ f −g‖K̇,p
X

for f ,g ∈C
c (Rn) .

The above inequalities, together with the denseness of C
c (Rn) in K̇ ,p

X (Rn) , guar-
antee that T can be extended to be a bounded operator on K̇ ,p

X (Rn) . �

REMARK 4.1. (i) By taking X = Lq(Rn) in Theorem 4.1, we recover the results
of [22, Theorem 1.3]. Moreover, if we choose X = Lq(·)(Rn) , then we obtain the result
of [34, Theorem 4]. In general, we can obtain the boundedness for a class of sublinear
operators satisfying condition (7) on various Herz-type spaces by taking concrete ball
Banach function spaces in Theorem 4.1.

(ii) The size condition (7) is satisfied by many operators in harmonic analysis. For
instance, the Hardy-Littlewood maximal operator and the Calderón-Zygmund singular
integral operators fulfill the condition (7).
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