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COMPLETE CONVERGENCE AND COMPLETE MOMENT

CONVERGENCE FOR WEIGHTED SUMS OF m–EXTENDED

NEGATIVELY DEPENDENT RANDOM VARIABLES

XIANG HUANG AND YONGFENG WU ∗

(Communicated by X. Wang)

Abstract. The authors study the complete convergence and complete moment convergence for
weighted sums of m -extended negatively dependent (m -END) random variables. The results
obtained in this paper extend and improve the corresponding results of Wu, Zhai and Peng [Y. F.
Wu, M. Q. Zhai and J. Y. Peng, On the complete convergence for weighted sums of extended
negatively dependent random variables, Journal of Mathematical Inequalities, 13 (1) (2019),
251–260] and Zarei and Jabbari [H. Zarei and H. Jabbari, Complete convergence of weighted
sums under negative dependence, Statistical Papers, 52 (2011), 413–418].

1. Introduction

It is known that many elegant limit theorems were extended from independent
random variables to dependent random variables since the independent assumption is
rigorous in many realistic applications. Firstly, we will recall some concepts of de-
pendent random variables. The first one is the concept of negatively associated (NA)
random variables, which was studied in Joag-Dev and Proschan [1] as follows.

DEFINITION 1.1. The random variables X1,X2, . . . ,Xn are said to be NA if for
every pair of disjoint subsets A and B of {1,2, · · · ,n} and any real coordinatewise
nondecreasing (or nonincreasing) functions f1 on R

|A| and f2 on R
|B| ,

Cov( f1(Xi, i ∈ A), f2(Xj, j ∈ B)) � 0,

whenever the covariance above exists, where |A| and |B| stand for the cardinalities of
A and B , respectively.

The concept of negatively orthant dependent (NOD) random variables was intro-
duced by Ebrahimi and Ghosh [2] as follows.
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DEFINITION 1.2. The random variables X1,X2, · · · ,Xn are said to be negatively
upper orthant dependent (NUOD) if for all real numbers x1,x2, · · · ,xn ,

P(Xi > xi, i = 1,2, · · · ,n) �
n


i=1

P(Xi > xi),

and negatively lower orthant dependent (NLOD) if

P(Xi � xi, i = 1,2, · · · ,n) �
n


i=1

P(Xi � xi).

Random variables X1,X2, . . . ,Xn are said to be NOD if they are both NUOD and NLOD.

Joag-Dev and Proschan [1] mentioned that the NA structure must be NOD, but
NOD is not necessarily NA. Liu [3] extended the NOD structure to extended negatively
dependent (END) structure. The concept of END random variables is stated as follows.

DEFINITION 1.3. The random variables X1,X2, · · · ,Xn are said to be END if for
all real numbers x1,x2, · · · ,xn , there exists a constant M > 0 such that both

P(Xi > xi, i = 1,2, · · · ,n) � M
n


i=1

P(Xi > xi),

and

P(Xi � xi, i = 1,2, · · · ,n) � M
n


i=1

P(Xi � xi)

hold.

Liu [3] gave an example of END random variables according to the multivariate
copula function. She also pointed out that the END random variables can be taken as
negatively or positively dependent random variables. Further, taking M = 1, then END
is NOD. Since NA is NOD, it is also END. Hence, END contains independent, NA,
NOD and some other dependent structures and it is more interesting to investigate the
limit theorems for END random variables. There have already some scholars studying
the limit behaviors for END random variables. For example, Chen et al. [4] investigated
the strong law of large numbers for END random variables, Shen [5] established some
probability inequalities for END random variables, Wu and Guan [6] studied some
convergence properties for the partial sums of END random variables, Wang and Wang
[7] investigated a general precise large deviation result for random sums of END real-
valued random variables in the presence of consistent variation, Wang et al. [8] studied
the complete consistency for the estimator of nonparametric regression models based on
END errors, Shen and Volodin [9] obtained the Lr convergence, weak and strong laws
of large numbers for END random variables, Yi et al. [10] got the complete moment
convergence for weighted sums of END random variables, Wang et al. [11] investigated
the mean consistency, weak consistency, strong consistency, complete consistency and
strong convergence rate of the wavelet estimator in nonparametric regression model
with repeated measurements based on END errors, and so on.
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Wang et al. [12] introduced the following concept of m-extended negatively de-
pendent (m-END) random variables.

DEFINITION 1.4. Let m � 1 be a fixed integer. A sequence {Xn,n � 1} of ran-
dom variables is said to be m-END if for any n � 2 and any i1, i2, · · · , in such that
|ik − i j| � m for all 1 � k �= j � n , we have that Xi1 ,Xi2 , · · · ,Xin are END.

Obviously, END is m-END with m = 1, and that is to say, the m-END structure is
a natural extension of END structure. Therefore, it is of general interest to investigate
the limit behaviors for m-END random variables. Since the concept of m-END ran-
dom variables was introduced, some related results have already been established. For
example, Xu et al. [13] studied the mean consistency of the weighted estimator in a non-
parametric regression model based on m-END random errors, Wang et al. [14] obtained
the complete and complete moment convergence for partial sums of m-END random
variables and gave their applications to the EV regression model, Wu and Wang [15]
studied the complete convergence and strong law of large numbers for weighted sums
of m-END random variables and gave the applications to multiple linear regression
models, conditional value-at-risk estimator and the quasi-renewal counting process.

The concept of complete convergence was first introduced by Hsu and Robbins
[16] as follows:

DEFINITION 1.5. A sequence of random variables {Un,n � 1} is said to converge
completely to a constant  if for any  > 0,




n=1

P(|Un− |> ) < .

By the Borel-Cantelli lemma, it is clear that the complete convergence result above
implies Un →  almost surely. Hence, the complete convergence is an important tool
in studying some strong convergence of partial sums or weighted sums of random vari-
ables.

Chow [17] introduced the concept of complete moment convergence as follows,
which is much stronger than complete convergence.

DEFINITION 1.6. Let {Un,n � 1} be a sequence of random variables and an >
0,bn > 0. If for any  > 0,




n=1

anE(b−1
n |Un|− )+ < ,

then the result above is defined as complete moment convergence.

The motivation of this paper originates from a result on complete convergence for
weighted sums of NOD random variables, which was obtained by Zarei and Jabbari
[18] as follows.
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THEOREM A. Let {Xn,n � 1} be a sequence of NOD and identically distributed
random variables with EX1 = 0 and let {ank,1 � k � n,n � 1} be an array of real
numbers satisfying An = n

k=1 a2
nk � Cn− , |ank| � CAn for some 0 < C <  and

0 <  < 1 . If E|X1|2/ <  , then




n=1

P

(∣∣∣∣∣
n


k=1

ankXk

∣∣∣∣∣� 

)
<  f or all  > 0.

Recently, Wu et al. [19] extended and improved Theorem A for NOD random
variables to END random variables as follows.

THEOREM B. Let {Xn,n � 1} be a sequence of END and identically distributed
random variables with EX1 = 0 and let {ank,1 � k � n,n � 1} be an array of real
numbers satisfying

n


k=1

a2
nk = O(n−) (1.1)

and
max

1�k�n
|ank| = O(n−) (1.2)

for some 1/p �  < 1 and p � 2 . If E|X1|p <  , then




n=1

n p−2P

(
max

1� j�n

∣∣∣∣∣
j


k=1

ankXk

∣∣∣∣∣� 

)
<  f or all  > 0.

In this work, the authors will further investigate the complete convergence for
maximal weighted sums of m-END random variables. The result not only extends
Theorem A and Theorem B from NOD random variables and END random variables
respectively to m-END random variables, but also improves the conditions of Theorem
A and Theorem B. Moreover, we also obtain the complete moment convergence for
maximal weighted sums of m-END random variables, which is much stronger than
complete convergence.

Throughout the current paper, C will be used to represent various positive con-
stants, which may differ from one place to another. The symbol I(A) will stand
for the indicator function of A . Let logx = lnmax(x,e) . an = O(bn) implies that
limsupn→ an/bn <  . x+ = max{x,0} and x− = max{−x,0} .

2. Main results

Now we state our main results. The proofs will be presented in the next section.

THEOREM 2.1. Let p � 1 and  p > 1 . Let {Xn,n � 1} be a sequence of m-END
and identically distributed random variables with EX1 = 0 and let {ank,1 � k � n,n �
1} be an array of real numbers satisfying

n


k=1

|ank|q = O(n1−q) (2.1)
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for some q > p. Assume further that

n


k=1

a2
nk = O(n− ) (2.2)

for some  > 0 if p � 2 . Then E|X1|p <  implies




n=1

n p−2P

(
max

1� j�n

∣∣∣∣∣
j


k=1

ankXk

∣∣∣∣∣� 

)
<  f or all  > 0.

REMARK 2.1. Comparing Theorem 2.1 with Theorem B, we can find the follow-
ing improvements or extensions: First, Theorem B is extended for END random vari-
ables to m-END random variables; Second, p � 2 in Theorem B is improved to p � 1;
Third, if (1.2) holds, then (2.1) also holds automatically, i.e., (2.1) is weaker than (1.2);
Fourth, if p � 2, (1.1) is improved to (2.2). To sum up, Theorem 2.1 improves and
extends Theorem B to m-END random variables.

REMARK 2.2. For p � 2, if  > 1/2, we have by (2.1) and Hölder’s inequality
that

n


k=1

a2
nk �

(
n


k=1

|ank|q
)2/q

·n1−2/q = O(n1−2).

That is to say, (2.2) holds with  = 2−1.

If we take p = 2/ , we can obtain the following conclusion.

COROLLARY 2.1. Let 0 <  � 2 . Let {Xn,n � 1} be a sequence of m-END and
identically distributed random variables with EX1 = 0 and let {ank,1 � k � n,n � 1}
be an array of real numbers satisfying (2.1) for some q > 2/ . Assume further (2.2)
holds for some  > 0 if  � 1 . If E|X1|2/ <  , then




n=1

P

(
max

1� j�n

∣∣∣∣∣
j


k=1

ankXk

∣∣∣∣∣� 

)
<  f or all  > 0.

REMARK 2.3. Since the corresponding conditions on the weights in Theorem A
are improved to (2.1) and (2.2), 0 <  < 1 is improved to 0 <  � 2, and normal
weighted sums are replaced by maximal weighted sums, Corollary 2.1 improves and
extends Theorem A from NOD random variables to m-END random variables.

If we replace p � 1 in Theorem 2.1 by a little stronger condition p > 1, we have
the following result of complete moment convergence.

THEOREM 2.2. Assume that the conditions of Theorem 2.1 hold for some p > 1 ,
then




n=1

n p−2E

(
max

1� j�n

∣∣∣∣∣
j


k=1

ankXk

∣∣∣∣∣− 

)+

<  f or all  > 0.
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REMARK 2.4. It is easy to check that

>



n=1

n p−2E

(
max
1� j�n

∣∣∣∣∣
j


k=1

ankXk

∣∣∣∣∣− 

)+

�



n=1

n p−2
∫ 

0
P

(
max

1� j�n

∣∣∣∣∣
j


k=1

ankXk

∣∣∣∣∣−  > t

)
dt

� 



n=1

n p−2P

(
max

1� j�n

∣∣∣∣∣
j


k=1

ankXk

∣∣∣∣∣> 2

)
.

That is to say, the result on complete moment convergence in Theorem 2.2 is much
stronger than complete convergence. Hence, Theorem 2.2 improves and extends the
corresponding results of Theorem A and Theorem B from complete convergence for
NOD random variables and END random variables respectively to complete moment
convergence for m-END random variables.

3. The proofs

LEMMA 3.1. (Wang et al. [12]) Let {Xk,k � 1} be a sequence of m-END ran-
dom variables. If fk(·),k � 1 are all nondecreasing (or nonincreasing) functions, then
{ fk(Xk),k � 1} is still a sequence of m-END random variables.

LEMMA 3.2. (Xu et al. [13]) Let {Xk,k � 1} be a sequence of m-END random
variables with EXk = 0 and E|Xk|s <  for all k � 1 with some s � 2 . Then there
exists a positive constant Cm,s depending only on m and s such that

E

∣∣∣∣∣
n


k=1

Xk

∣∣∣∣∣
s

� Cm,s

⎧⎨
⎩

n


k=1

E|Xk|s +

(
n


k=1

EX2
k

)s/2
⎫⎬
⎭ .

LEMMA 3.3. (Wu and Wang [15]) Let {Xk,k � 1} be a sequence of m-END ran-
dom variables with EXk = 0 and E|Xk|s < for all k � 1 and some s � 2 . Then there
exists a positive constant Cm,s depending only on m and s such that

E

(
max

1� j�n

∣∣∣∣∣
j


k=1

Xk

∣∣∣∣∣
s)

� Cm,s(logn)s

⎧⎨
⎩

n


k=1

E|Xk|s +
(

n


k=1

EX2
k

)s/2
⎫⎬
⎭ .

LEMMA 3.4. (Sung [20]) Let Y and Z be two random variables. Then for any
s > 1 ,  > 0 and a > 0 , we have

E(|Y +Z|− a)+ �
(
−s +(s−1)−1)a1−sE|Y |s +E|Z|.
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Now we give the proofs of the main results as follows.

Proof of Theorem 2.1. Denote for each n � 1, 1 � k � n that

Ynk = −I(ankXk < −1)+ankXkI(|ankXk| � 1)+ I(ankXk > 1),
Znk = (ankXk +1)I(ankXk < −1)+ (ankXk −1)I(ankXk > 1).

Then ankXk =Ynk +Znk , where {Ynk,1 � k � n,n � 1} and {Znk,1 � k � n,n � 1} are
both m-END by Lemma 3.1. Hence,




n=1

n p−2P

(
max

1� j�n

∣∣∣∣∣
j


k=1

ankXk

∣∣∣∣∣� 

)

�



n=1

n p−2
n


k=1

P(|ankXk| > 1)+



n=1

n p−2P

(
max

1� j�n

∣∣∣∣∣
j


k=1

Ynk

∣∣∣∣∣� 

)

=: I1 + I2.

For I1 , we can easily get by (2.1) that

I1 =



n=1

n p−2
n


k=1

P(|ankXk| > 1, |Xk| > n)+



n=1

n p−2
n


k=1

P(|ankXk| > 1, |Xk| � n)

�



n=1

n p−2
n


k=1

P(|Xk| > n)+



n=1

n p−2
n


k=1

E|ankXk|qI(|Xk| � n)

�



n=1

n p−1P(|X1| > n)+C



n=1

n p−1−qE|X1|qI(|X1| � n)

� CE|X1|p +C



n=1

n p−1−q
n


i=1

E|X1|qI((i−1) < |X1| � i)

= CE|X1|p +C



i=1

E|X1|qI((i−1) < |X1| � i)



n=i

n p−1−q

� CE|X1|p +C



i=1

i p−qE|X1|qI((i−1) < |X1| � i)

� CE|X1|p < .

Now we prove I2 <  . Take t > 0 such that (p−1)t <  p−1 and denote

nk = −n−t I(ankXk < −n−t)+ankXkI(|ankXk| � n−t)+n−t I(ankXk > n−t),

nk = (ankXk −n−t)I(n−t < ankXk � 1)+ (1−n−t)I(ankXk > 1),

nk = (ankXk +n−t)I(−1 � ankXk < −n−t)+ (−1+n−t)I(ankXk < −1).

Then Ynk = nk +nk + nk with {nk,1 � k � n,n � 1} , {nk,1 � k � n,n � 1} and
{nk,1 � k � n,n � 1} being all m-END by Lemma 3.1. By (2.1) and Hölder’s in-
equality we have that for all 0 < r < q ,

n


k=1

|ank|r �
(

n


k=1

|ank|q
)r/q

·n1−r/q = O(n1−r). (3.1)
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Hence, by EX1 = 0 and (3.1) we have that

max
1� j�n

∣∣∣∣∣
j


k=1

Enk

∣∣∣∣∣= max
1� j�n

∣∣∣∣∣
j


k=1

E(ankXk − nk)

∣∣∣∣∣
�

n


k=1

E|ankXk|I(|ankXk| > n−t)

� n−t(1−p)
n


k=1

|ank|pE|X1|p � Cnt(p−1)+1− pE|X1|p → 0.

(3.2)

Similar to (3.2), we also have∣∣∣∣∣
n


k=1

Enk

∣∣∣∣∣=
n


k=1

Enk

�
n


k=1

E[(ankXk −n−t)I(n−t < ankXk � 1)+ (ankXk −n−t)I(ankXk > 1)]

=
n


k=1

E(ankXk −n−t)I(ankXk > n−t)

�
n


k=1

E|ankXk|I(|ankXk| > n−t) → 0,

(3.3)

and ∣∣∣∣∣
n


k=1

Enk

∣∣∣∣∣= −
n


k=1

Enk

� −
n


k=1

E(ankXk +n−t)I(ankXk < −n−t)

�
n


k=1

E|ankXk|I(|ankXk| > n−t) → 0.

(3.4)

Hence, by (3.2)–(3.4) we have that

I2 �



n=1

n p−2P

(
max

1� j�n

∣∣∣∣∣
j


k=1

nk

∣∣∣∣∣� /3

)
+




n=1

n p−2P

(
max

1� j�n

∣∣∣∣∣
j


k=1

nk

∣∣∣∣∣� /3

)

+



n=1

n p−2P

(
max
1� j�n

∣∣∣∣∣
j


k=1

nk

∣∣∣∣∣� /3

)

=



n=1

n p−2P

(
max

1� j�n

∣∣∣∣∣
j


k=1

nk

∣∣∣∣∣� /3

)
+




n=1

n p−2P

(∣∣∣∣∣
n


k=1

nk

∣∣∣∣∣� /3

)

+



n=1

n p−2P

(∣∣∣∣∣
n


k=1

nk

∣∣∣∣∣� /3

)



COMPLETE AND MOMENT CONVERGENCE FOR WEIGHTED SUMS 715

� C



n=1

n p−2P

(
max

1� j�n

∣∣∣∣∣
j


k=1

(nk −Enk)

∣∣∣∣∣� /6

)

+C



n=1

n p−2P

(∣∣∣∣∣
n


k=1

(nk −Enk)

∣∣∣∣∣� /6

)

+C



n=1

n p−2P

(∣∣∣∣∣
n


k=1

(nk −Enk)

∣∣∣∣∣� /6

)

� C



n=1

n p−2E

(
max

1� j�n

∣∣∣∣∣
j


k=1

(nk −Enk)

∣∣∣∣∣
s)

+C



n=1

n p−2E

∣∣∣∣∣
n


k=1

(nk −Enk)

∣∣∣∣∣
s

+C



n=1

n p−2E

∣∣∣∣∣
n


k=1

(nk −Enk)

∣∣∣∣∣
s

=: I21 + I22 + I23.

Take s > max{2,q, 2 p−2
 } . By Markov inequality, Lemma 3.3, and (3.1) we have that

if 1 � p < 2,

I21 � C



n=1

n p−2(logn)s

⎧⎨
⎩

n


k=1

E|nk|s +
(

n


k=1

E 2
nk

)s/2
⎫⎬
⎭

� C



n=1

n p−2(logn)s

⎧⎨
⎩n−t(s−p)

n


k=1

|ank|pE|X1|p +

(
n−t(2−p)

n


k=1

|ank|pE|X1|p
)s/2

⎫⎬
⎭

� C



n=1

n−1−t(s−p)(logn)s +C



n=1

n p−2(logn)s

(
n


k=1

|ank|pE|X1|p
)s/2

� C



n=1

n−1−t(s−p)(logn)s +C



n=1

n−1+( p−1)(1−s/2)(logn)s

< ,

and if p � 2,

I21 � C



n=1

n p−2(logn)s

⎧⎨
⎩

n


k=1

E|nk|s +

(
n


k=1

E 2
nk

)s/2
⎫⎬
⎭

� C



n=1

n p−2(logn)s

⎧⎨
⎩n−t(s−p)

n


k=1

|ank|pE|X1|p +

(
n


k=1

a2
nkEX2

1

)s/2
⎫⎬
⎭

� C



n=1

n−1−t(s−p)(logn)s +C



n=1

n p−2− s/2(logn)s

< .
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Now we prove I22 <  . Observe that |nk| � |ankXk|I(|ankXk| � 1)+ I(|ankXk| > 1) .
Hence, by Lemma 3.2 we have that for s > max{2,q, 2 p−2

 } ,

I22 � C



n=1

n p−2

⎧⎨
⎩

n


k=1

E|nk|s +

(
n


k=1

E2
nk

)s/2
⎫⎬
⎭

� C



n=1

n p−2
n


k=1

E|ankXk|sI(|ankXk| � 1)+C



n=1

n p−2
n


k=1

P(|ankXk| > 1)

+C



n=1

n p−2

(
n


k=1

E2
nk

)s/2

=: I221 + I222 + I223.

According to I1 <  , we have I222 <  . Furthermore, similar to the proof of I1 <  ,
we also have

I221 = C



n=1

n p−2
n


k=1

E|ankXk|sI(|ankXk| � 1, |Xk| > n)

+C



n=1

n p−2
n


k=1

E|ankXk|sI(|ankXk| � 1, |Xk| � n)

� C



n=1

n p−2
n


k=1

P(|Xk| > n)+C



n=1

n p−2
n


k=1

E|ankXk|qI(|Xk| � n)

� C



n=1

n p−1P(|X1| > n)+C



n=1

n p−1−qE|X1|qI(|X1| � n)

� CE|X1|p < .

For I223 , we also obtain by |nk| � min{|ankXk|,1} that if 1 � p < 2,

I223 � C



n=1

n p−2

(
n


k=1

|ank|pE|Xk|p
)s/2

� C



n=1

n−1+( p−1)(1−s/2) <,

and if p � 2,

I223 � C



n=1

n p−2

(
n


k=1

a2
nkEX2

k

)s/2

� C



n=1

n p−2− s/2 <

according to s > max{2,q, 2 p−2
 } . Hence, we have proved I22 <  . Similar to the

proof of I22 <  , we can also obtain I23 <  . The proof is completed. �
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Proof of Theorem 2.2. Observe that ankXk = nk+nk +nk+Znk , where nk , nk ,
nk and Znk are defined in the proof of Theorem 2.1. Hence, we have by (3.2)–(3.4)
that for all n sufficiently large,

max
1� j�n

∣∣∣∣∣
j


k=1

ankXk

∣∣∣∣∣� max
1� j�n

∣∣∣∣∣
j


k=1

nk

∣∣∣∣∣+ max
1� j�n

∣∣∣∣∣
j


k=1

nk

∣∣∣∣∣
+ max

1� j�n

∣∣∣∣∣
j


k=1

nk

∣∣∣∣∣+ max
1� j�n

∣∣∣∣∣
j


k=1

Znk

∣∣∣∣∣
= max

1� j�n

∣∣∣∣∣
j


k=1

nk

∣∣∣∣∣+
∣∣∣∣∣

n


k=1

nk

∣∣∣∣∣+
∣∣∣∣∣

n


k=1

nk

∣∣∣∣∣+ max
1� j�n

∣∣∣∣∣
j


k=1

Znk

∣∣∣∣∣
� max

1� j�n

∣∣∣∣∣
j


k=1

(nk −Enk)

∣∣∣∣∣+
∣∣∣∣∣

n


k=1

(nk −Enk)

∣∣∣∣∣
+

∣∣∣∣∣
n


k=1

(nk −Enk)

∣∣∣∣∣+
n


k=1

|Znk|+ 
2
.

(3.5)

Hence, using Lemma 3.4 with Y = max1� j�n | j
k=1(nk−Enk)|+ |n

k=1(nk−Enk)|+
|n

k=1(nk −Enk)| , Z = n
k=1 |Znk| and a = 1/2, we have by (3.5) and Cr inequality

that for s > max{2,q, 2 p−2
 } ,




n=1

n p−2E

(
max

1� j�n

∣∣∣∣∣
j


k=1

ankXk

∣∣∣∣∣− 

)+

� C



n=1

n p−2E

(
max
1� j�n

∣∣∣∣∣
j


k=1

(nk −Enk)

∣∣∣∣∣
s)

+C



n=1

n p−2E

∣∣∣∣∣
n


k=1

(nk −Enk)

∣∣∣∣∣
s

+C



n=1

n p−2E

∣∣∣∣∣
n


k=1

(nk −Enk)

∣∣∣∣∣
s

+C



n=1

n p−2
n


k=1

E|Znk|

= C(I21 + I22 + I23)+C



n=1

n p−2
n


k=1

E|Znk|,

where I21 , I22 and I23 are the same as those in the proof of Theorem 2.1. By the proof
of Theorem 2.1, we have that I21 + I22 + I23 <  . Now we only need to show




n=1

n p−2
n


k=1

E|Znk| < . (3.6)
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Actually, by |Znk| � |ankXk|I(|ankXk| > 1) and (3.1) we have that




n=1

n p−2
n


k=1

E|Znk| �



n=1

n p−2
n


k=1

E|ankXk|I(|ankXk| > 1)

=



n=1

n p−2
n


k=1

E|ankXk|I(|ankXk| > 1, |Xk| > n)

+



n=1

n p−2
n


k=1

E|ankXk|I(|ankXk| > 1, |Xk| � n)

�



n=1

n p−2
n


k=1

E|ankXk|I(|Xk| > n)+



n=1

n p−2
n


k=1

E|ankXk|qI(|Xk| � n)

� C



n=1

n p−1−E|X1|I(|X1| > n)+C



n=1

n p−1−qE|X1|qI(|X1| � n)

= C



i=1

E|X1|I(i < |X1| � (i+1))
i


n=1

n p−1−

+C



i=1

E|X1|qI((i−1) < |X1| � i)



n=i

n p−1−q

� C



i=1

i p−E|X1|I(i < |X1| � (i+1))

+C



i=1

i p−qE|X1|qI((i−1) < |X1| � i)

� CE|X1|p < .

The proof is completed. �
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