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REMARKS ON THE STABILITY OF THE 3–VARIABLE

FUNCTIONAL INEQUALITIES OF DRYGAS

JEDSADA SENASUKH AND SATIT SAEJUNG ∗

(Communicated by I. Raşa)

Abstract. We give some remarks on the recent paper [J. Math. Inequal. 13 (4) (2019), 1235–
1244]. Some misleading conclusions of their stability results are carefully discussed and cor-
rected. Moreover, we reestablish their results with a more general assumption and a stronger
conclusion.

1. Introduction and preliminaries

In the theory of functional equations, the following is known as the stability prob-
lem of functional equations:

“When is it true that a function which approximately satisfies a functional
equation is close to an exact solution of the equation?”

The problem was first asked by Ulam [22] concerning the stability of group homomor-
phisms. The additive or Cauchy functional equation

f (x+ y) = f (x)+ f (y), (1.1)

seems to be the first functional equation that many authors studied its stability results.
By an additive mapping, we mean a mapping that satisfies (1.1). Hyers [10] asserted
that Ulam’s question is affirmative for the additive functional equation (1.1) defined
on Banach spaces. Some further generalizations of Hyers’ result were investigated in
[1, 7, 8, 20].

To study a stability result, some functional inequalities were introduced. For ex-
ample, Park et al. [18] investigated the following functional inequalities in a Banach
space:

‖ f (x)+ f (y)+ f (z)‖ � ‖ f (x+ y+ z)‖;

‖ f (x)+ f (y)+ f (z)‖ �
∥∥∥2 f

(
x+ y+ z

2

)∥∥∥;
‖ f (x)+ f (y)+2 f (z)‖ �

∥∥∥2 f

(
x+ y

2
+ z

)∥∥∥.
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It is not hard to see that every mapping satisfying one of the above functional inequal-
ities is additive. Moreover, the notion of a  -functional inequality is also introduced.
Park [16] proved that the following functional inequality is equivalent to the additive
functional equation:∥∥∥∥∥ f

(
k


i=1

xi

)
−

k


i=1

f (xi)

∥∥∥∥∥�
∥∥∥∥∥
(

k f

(
k

i=1 xi

k

)
−

k


i=1

f (xi)

)∥∥∥∥∥,
where k � 2 is a fixed positive integer and  ∈ C with | |< 1. We refer the readers to
[5, 9, 17, 19] for more results concerning the stability of functional inequalities.

In 2016, Lu et al. [15] introduced the 3-variable Jensen functional equations:

f (x+ y+ z)+ f (x+ y− z)= 2 f (x)+2 f (y);
f (x+ y+ z)− f (x− y− z)= 2 f (y)+2 f (z).

They also presented the  -functional inequality associated with the above two equa-
tions and derived some stability results by using the direct method based on the idea of
Găvruta [8].

To characterize a quasi-inner product space, Drygas [2] presented the following
functional equation (later, known as the Drygas functional equation):

f (x+ y)+ f (x− y) = 2 f (x)+ f (y)+ f (−y). (1.2)

Every mapping satisfying (1.2) is called a Drygas mapping. Given two vector spaces
X ,Y and a mapping f : X →Y that satisfies (1.2) for all x,y∈ X , we have the following
observations.

• If f is odd (that is, f (−x) = − f (x) for all x ∈ X ), then f is additive.

• If f is even (that is, f (−x) = f (x) for all x ∈ X ), then f satisfies the quadratic
functional equation, that is,

f (x+ y)+ f (x− y) = 2 f (x)+2 f (y) for all x,y ∈ X .

Inspired by the observations given above, Ebanks et al. [3] proved that a general solu-
tion of the Drygas functional equation (1.2) is the sum of a quadratic and an additive
mappings. Some stability results of the functional equation (1.2) have been studied in
various directions and can be seen for examples in [4, 11, 12, 14] and references therein.

In [21], Sun et al. introduced the following 3-variable Drygas functional equation
in a complex Banach space:

f (x+ y+ z)+ f (x+ y− z)= 2 f (x)+2 f (y)+ f (z)+ f (−z). (1.3)

Moreover, functional inequalities for (1.3) and their stability results were investigated.
We state their results as follows.
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THEOREM SJPL1. [21, Theorems 2.2 and 2.4] Suppose that X is a complex
normed space, Y is a complex Banach space, and , ∈ C satisfy ||+ | | < 2 and
|| < 1 . Suppose that f : X → Y and  : X3 → [0,) satisfy

‖ f (x+ y+ z)+ f (x+ y− z)−2 f (x)−2 f (y)− f (z)− f (−z)‖
� ‖ ( f (x+ y+ z)− f (x)− f (y)− f (z))‖ (1.4)

+‖ ( f (x+ y− z)− f (x)− f (y)− f (−z))‖+(x,y,z)

for all x,y,z ∈ X . Suppose that  satisfies one of the following conditions:

(a) ̃(x,y,z) := 
n=0

1
2n(2nx,2ny,2nz) <  for all x,y,z ∈ X ;

(b) ̃(x,y,z) := 
n=1 2n

(
x
2n ,

y
2n ,

z
2n

)
<  for all x,y,z ∈ X .

Then there exists a unique additive mapping A : X → Y such that

‖A (x)− f (x)‖ � ̃(x,x,0)
2(2−||− | |) for all x ∈ X .

By making a slight modification of (1.4), the following theorem was investigated.

THEOREM SJPL2. [21, Theorems 3.1 and 3.3] Suppose that X is a complex
normed space, Y is a complex Banach space, and , ∈ C satisfy ||+ | | < 1 .
Suppose that f : X → Y and  : X3 → [0,) satisfy

‖ f (x+ y+ z)+ f (x+ y− z)−2 f (x)−2 f (y)− f (z)− f (−z)‖
� ‖ ( f (x+ y− z)+ f (x− y+ z)−2 f (x)− f (y)− f (−y)− f (z)− f (−z))‖ (1.5)

+‖ ( f (x+ y+ z)− f (x+ z)− f (y))‖+(x,y,z)

for all x,y,z ∈ X . Suppose that  satisfies one of the following conditions:

(a) ̃(x,y,z) := 
n=0

1
4n(2nx,2ny,2nz) <  for all x,y,z ∈ X ;

(b) ̃(x,y,z) := 
n=1 4n

(
x
2n ,

y
2n ,

z
4n

)
<  for all x,y,z ∈ X .

Then there exists a unique Drygas mapping D : X → Y such that

‖D(x)− f (x)− f (−x)‖ � ̃(x,0,x)+ ̃(−x,0,x)
4(1−||) for all x ∈ X .

Motivated by these two theorems, we present some further results and refinements.
The paper is organized as follows. In Section 2, we discuss Theorem SJPL1. In fact, we
show that a mapping satisfying the inequality (1.4) of Theorem SJPL1 is approximately
additive and hence the stability result can be obtained directly from the result of Kim
[13] in 2005. Moreover, the condition || < 1 is discarded. In Section 3, we improve
the conclusion of Theorem SJPL2 with a weaker assumption. The proof of this part is
obtained by the application of Forti’s result [6].
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2. Some remarks on Theorem SJPL1

We begin this section with a counterexample to Theorem SJPL1(a) together with
 =  := 0. A correction of this result is given later in Theorem 2.3(a).

EXAMPLE 2.1. Let f : C → C be defined by f (x) :=
√|x|−1 for all x ∈ C . We

also define  : C3 → [0,) by

(x,y,z) :=
∣∣∣√|x+ y+ z|+

√
|x+ y− z|−2

(√
|x|+

√
|y|+

√
|z|
)

+4
∣∣∣

for all x,y,z ∈ C . It follows that f and  satisfy (1.4) for all x,y,z ∈ C . We also see
that the condition (a) is satisfied. In fact,

̃(x,y,z) :=



n=0

(2nx,2ny,2nz)
2n

=



n=0

∣∣∣∣∣ 1

2n/2

(√
|x+ y+ z|+

√
|x+ y− z|−2

(√
|x|+

√
|y|+

√
|z|
))

+
4
2n

∣∣∣∣∣
< 

for all x,y,z ∈ C . We show that the conclusion of Theorem SJPL1 does not hold. To
show this, suppose that there exists an additive mapping A : C → C such that

|A (x)− f (x)| � ̃(x,x,0)
4

=
1
4




n=0

(2nx,2nx,0)
2n for all x ∈ C. (2.1)

We first prove that A ≡ 0 . For x ∈ C and k ∈ N , we see from the additivity of A and
(2.1) that∣∣∣∣∣A (x)− f (2kx)

2k

∣∣∣∣∣=
∣∣∣∣∣A (2kx)

2k − f (2kx)
2k

∣∣∣∣∣� ̃(2kx,2kx,0)
4 ·2k =

1
4




n=k

(2nx,2nx,0)
2n .

It follows that

A (x) = lim
n→

f (2nx)
2n = lim

n→

2
n
2
√|x|−1

2n = 0.

Thus, A (x) = 0. Hence, (2.1) becomes

| f (x)| � ̃(x,x,0)
4

for all x ∈ C. (2.2)

We can easily see that

(x,x,0) = 2
∣∣∣(√2−2)

√
|x|+2

∣∣∣ for all x ∈ C.

By letting x0 := (
√

2+2)2 , we see that

(2nx0,2
nx0,0) = 2

∣∣∣−2 ·2n/2 +2
∣∣∣= 4(2n/2−1) for all n ∈ N0 := N∪{0}.



THE 3-VARIABLE FUNCTIONAL INEQUALITIES OF DRYGAS 725

It follows that

̃(x0,x0,0) :=



n=0

(2nx0,2nx0,0)
2n = 4

(



n=0

1

2n/2
−




n=0

1
2n

)
= 4

√
2.

One can see that | f (x0)| = |√2+ 1| > √
2 = 1

4 ̃(x0,x0,0) which contradicts to (2.2).
This shows that the additive mapping A satisfying (2.1) does not exist. Therefore,
Theorem SPJL1(a) is invalid.

The following proposition shows that: If a mapping f satisfies the functional
inequality (1.4), then it is almost additive in the following sense.

PROPOSITION 2.2. Suppose that X is a vector space, Y is a complex normed
space, and , ∈ C satisfy ||+ | | < 2 . If f : X → Y and  : X3 → [0,) satisfy
(1.4) for all x,y,z ∈ X . Then the following inequality holds true:

‖ f (x+ y)− f (x)− f (y)‖� (x,y,0)
2−||− | | +

2+ ||+ | |
2(2−||− | |)2(0,0,0) (2.3)

for all x,y ∈ X .

Proof. By letting x = y = z := 0 in (1.4), we obtain that

‖ f (0)‖ � (0,0,0)
2(2−||− | |).

For any x,y ∈ X , we see from (1.4) that

‖2 f (x+ y)−2 f (x)−2 f (y)‖
� ‖ f (x+ y+0)+ f (x+ y−0)−2 f (x)−2 f (y)− f (0)− f (0)‖+2‖ f (0)‖
� ‖ ( f (x+ y+0)− f (x)− f (y)− f (0))‖

+‖ ( f (x+ y−0)− f (x)− f (y)− f (0))‖+(x,y,0)+2‖ f (0)‖
= (||+ | |)‖ f (x+ y)− f (x)− f (y)‖+(x,y,0)+ (2+ ||+ | |)‖ f (0)‖.

This proves that (2.3) holds for all x,y ∈ X . �
To give a simpler proof of Theorem SJPL1, we recall the following theorem which

is a special case of [13].

THEOREM K. [13] Suppose that X is a vector space and Y is a Banach space.
Suppose that f : X → Y and  : X2 → [0,) satisfy

‖ f (x+ y)− f (x)− f (y)‖ � (x,y) for all x,y ∈ X .

If one of the following conditions is satisfied:

(1) (x,y) := 
n=0

1
2n(2nx,2ny) <  for all x,y ∈ X ;
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(2) (x,y) := 
n=1 2n

(
x
2n ,

y
2n

)
<  for all x,y ∈ X ,

then there exists a unique additive mapping A : X → Y satisfying

‖A (x)− f (x)‖ � (x,x)
2

for all x ∈ X .

With the help of Theorem K and Proposition 2.2, we obtain the following result.

THEOREM 2.3. Suppose that X is a vector space, Y is a complex Banach space,
and , ∈C satisfy ||+ | |< 2 . Suppose that f : X →Y and  : X3 → [0,) satisfy
(1.4) for all x,y,z ∈ X . Then the following statements hold true.

(1) If Condition (a) of Theorem SPJL1 is satisfied, then there exists a unique additive
mapping A : X → Y such that

‖A (x)− f (x)‖ � ̃(x,x,0)
2(2−||− | |) +

2+ ||+ | |
2(2−||− | |)2(0,0,0) for all x ∈ X .

(2) If Condition (b) of Theorem SPJL1 is satisfied, then there exists a unique additive
mapping A : X → Y such that

‖A (x)− f (x)‖ � ̃(x,x,0)
2(2−||− | |) for all x ∈ X .

Proof. We first define  : X2 → [0,) by

(x,y) :=
(x,y,0)

2−||− | | +
2+ ||+ | |

2(2−||−2| |)2(0,0,0) for all x,y ∈ X .

Proposition 2.2 shows that f satisfies

‖ f (x+ y)− f (x)− f (y)‖� (x,y) for all x,y ∈ X .

We also have the following observations.

• If  satisfies Theorem SJPL1(a), then 
n=0

1
2n(2nx,2ny) <  for all x,y ∈ X .

• If  satisfies Theorem SJPL1(b), then we can easily obtain that (0,0,0) = 0.
It follows that




n=1

2n
( x

2n ,
y
2n

)
=

̃(x,y,0)
2−||− | | for all x,y ∈ X .

Hence, the result follows from Theorem K. �

REMARK 2.4. Theorem 2.3 improves Theorem SJPL1 in the following ways.

(i) The condition || < 1 of Theorem SJPL1 can be omitted.

(ii) Theorem 2.3(a) is a correction of Theorem SJPL1(a).
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3. Some comments on Theorem SJPL2

We start this section with the following proposition.

PROPOSITION 3.1. Suppose that X is a vector space, Y is a complex normed
space, and , ∈ C such that 4||+ | | < 4 . Suppose that f : X → Y and  : X3 →
[0,) satisfy (0,0,0) = 0 and (1.5) for all x,y,z ∈ X . Then the following statements
are true.

(1) The mapping f satisfies

‖ f (x)+ f (−x)‖ � 1
2(1−||) min{(x,−x,−x),(−x,x,x)}

for all x ∈ X .

(2) The mapping f satisfies

‖ f (x+ y)+ f (x− y)−2 f (x)‖� (x,0,y)
1−|| +

1+ ||
2(1−||)2(y,−y,−y)

for all x,y ∈ X .

Proof. For convenience, we first let s := || and t := | | . Letting x = y = z := 0
in (1.5), we have

4‖ f (0)‖ = ‖4 f (0)‖ � ‖4 f (0)‖+‖ f (0)‖= (4s+ t)‖ f (0)‖.

Since 4s + t < 4, one can obtain that f (0) = 0. Moreover, one can see from our
condition that s < 1 since 4s � 4s+ t < 4.

Now, we prove that (1) holds. Let (x,y,z) := (x,−x,−x) where x ∈ X . It follows
from (1.5) that

‖ f (−x)+ f (x)−2 f (x)−2 f (−x)− f (−x)− f (x)‖
� s‖ f (x)+ f (x)−2 f (x)− f (−x)− f (x)− f (−x)− f (x)‖

+ t‖ f (−x)− f (0)− f (−x)‖+(x,−x,−x)

for all x ∈ X . So, we have

‖ f (x)+ f (−x)‖ � 1
2(1− s)

(x,−x,−x)

for all x ∈ X . By replacing x by −x , we obtain that

‖ f (x)+ f (−x)‖ � 1
2(1− s)

(−x,x,x)
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for all x ∈ X . Next, we prove that (2) holds true. For x,y,z ∈ X , we see from (1.5) that

‖ f (x+ y+ z)+ f (x+ y− z)−2 f (x)−2 f (y)‖
� ‖ f (x+ y+ z)+ f (x+ y− z)−2 f (x)−2 f (y)− f (z)− f (−z)‖+‖ f (z)+ f (−z)‖
� s‖ f (x+ y− z)+ f (x− y+ z)−2 f (x)− f (y)− f (−y)− f (z)− f (−z)‖

+ t‖ f (x+ y+ z)− f (x+ z)− f (y)‖+(x,y,z)+‖ f (z)+ f (−z)‖
� s‖ f (x+ y− z)+ f (x− y+ z)−2 f (x)‖+ s‖ f (y)+ f (−y)‖

+(1+ s)‖ f (z)+ f (−z)‖+ t‖ f (x+ y+ z)− f (x+ z)− f (y)‖+(x,y,z).

So, we have

‖ f (x+ y+ z)+ f (x+ y− z)−2 f (x)−2 f (y)‖
� s‖ f (x+ y− z)+ f (x− y+ z)−2 f (x)‖+ s‖ f (y)+ f (−y)‖ (3.1)

+(1+ s)‖ f (z)+ f (−z)‖+ t‖ f (x+ y+ z)− f (x+ z)− f (y)‖+(x,y,z)

for all x,y,z ∈ X . We see by letting y := 0 in (3.1) that

‖ f (x+ z)+ f (x− z)−2 f (x)‖
� s‖ f (x− z)+ f (x+ z)−2 f (x)‖+(s+1)‖ f (z)+ f (−z)‖+(x,0,z)

for all x,z ∈ X . It follows from (1) that

‖ f (x+ z)+ f (x− z)−2 f (x)‖� 1
1− s

((1+ s)‖ f (z)+ f (−z)‖+(x,0,z))

� 1+ s
2(1− s)2(z,−z,−z)+

1
1− s

(x,0,z)

for all x,z ∈ X . �

REMARK 3.2. We see from Proposition 3.1(1) that if f satisfies (1.5) for all
x,y,z ∈ X then its even part fe (where fe(x) := 1

2 ( f (x) + f (−x)) for all x ∈ X ) is
approximately zero.

The following example shows that our two estimates in Proposition 3.1 are sharp
where  =  := 0.

EXAMPLE 3.3. We consider the following two examples.

(i) Let f : C → C be defined by f (x) :=
√|x| for all x ∈ C . For any x,y,z ∈ C , we

see that

| f (x+ y+ z)+ f (x+ y− z)−2 f (x)−2 f (y)− f (z)− f (−z)|
=
∣∣∣√|x+ y+ z|+

√
|x+ y− z|−2

(√
|x|+

√
|y|+

√
|z|
)∣∣∣=: (x,y,z).
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This shows that f satsifies (1.5) for all x,y,z ∈ C with  =  := 0. We also see
that

(x,−x,−x) = (−x,x,x) = 4
√
|x| for all x ∈ C.

Proposition 3.1(1) asserts that

| f (x)+ f (−x)| = 2
√
|x| = 1

2
min{(x,−x,−x),(−x,x,x)} for all x ∈ C.

(ii) Let f : R → R be defined by f (u) := 3
√

u for all u ∈ R . Let u,v,w ∈ R be given.
We see that

| f (u+ v+w)+ f (u+ v−w)−2 f (u)−2 f (v)− f (w)− f (−w)|
=
∣∣∣ 3
√

u+ v+w+ 3
√

u+ v−w−2 3
√

u−2 3
√

v
∣∣∣=: (u,v,w),

where  : R3 → [0,) . This shows that f satisfies (1.5) for all u,v,w ∈ R with
 =  := 0. It can be seen that

(u,0,v) =
∣∣∣ 3
√

u+ v+ 3
√

u− v−2 3
√

u
∣∣∣ and (v,−v,−v) = 0

Hence, we have

| f (u+ v)+ f (u− v)−2 f (u)|=
∣∣∣ 3
√

u+ v+ 3
√

u− v−2 3
√

u
∣∣∣

= (u,0,v)+
1
2
(v,−v,−v).

Now, we define g : C → R and ̃ : C3 → [0,) by

g(x) := the real part of x for all x ∈ C;

̃(x,y,z) := (g(x),g(y),g(z)) for all x,y,z ∈ C.

So, we obtain the desired example by defining f̃ := f ◦ g .

The following result is a direct consequence of Proposition 3.1 by letting  ≡ 0.

COROLLARY 3.4. Suppose that X is a vector space, Y is a complex normed
space, and , ∈ C satisfy 4||+ | | < 4 . Then a mapping f : X → Y satisfies
the functional inequality (1.5) for all x,y,z ∈ X if and only if f is additive.

Proof. If f is additive, then (1.5) holds for all x,y,z ∈ X .
Conversely, suppose that f satisfies (1.5) for all x,y,z ∈ X . Proposition 3.1(2)

shows that
f (x+ y)+ f (x− y) = 2 f (x) for all x,y ∈ X .

To show that f is additive, let x,y ∈ X be given. We can easily see that

2 f (x+y)= f ((x+y)+(x−y))+ f ((x+y)−(x−y)) = f (2x)+ f (2y) = 2( f (x)+ f (y)).

Hence, f is additive. �
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REMARK 3.5. According to Corollary 3.4, we have the following observations.

(1) Our assumption 4||+ | |< 4 is more general than their original assumption ||+
| | < 1. Moreover, this is a strict generalization. In fact, let  := 1

4 and  := 2.
Then 4||+ | |= 3 < 4 but ||+ | |= 9

4 > 1.

(2) The assumption 4||+ | |< 4 is best possible in the sense that: If 4||+ | |= 4,
then there exists f : C→ C such that f satisfies (1.5) for all x,y,z ∈ C but f is not
additive. Let , be such that 4||+ | |= 4. We define f : C → C by f (x) := 1
for all x ∈ C . Then f satisfies (1.5) for all x,y,z ∈ C and f is not additive.

To discuss Theorem SJPL2, we recall the stability result proposed by Forti [6]
which will be used later in the following two subsections.

THEOREM F. [6] Let X be a vector space and (Y,‖ · ‖) be a complex Banach
space. Suppose that f : X → Y,g : Y → Y,h : X → X , : X → [0,) , and  : [0,) →
[0,) satisfy the following two inequalities

‖(g ◦ f ◦ h)(x)− f (x)‖ �  (x) for all x,y ∈ X ;

‖g(u)−g(v)‖� (‖u− v‖) for all u,v ∈ Y.

If  is non-decreasing subadditive, g is continuous, and (x) :=
n=0n( (hn(x))) <

 for all x ∈ X , then the mapping F : X → Y , determined by

F(x) := lim
n→

(gn ◦ f ◦ hn)(x) for all x ∈ X ,

is well-defined and it is the unique mapping such that g◦F ◦ h = F and

‖F(x)− f (x)‖ � (x) for all x ∈ X .

3.1. Some remarks on Theorem SPJL2(a)

Theorem SJPL2(a) with  =  := 0 is not true as shown in the following example.

EXAMPLE 3.6. Let f : C → C and  : C3 → C be defined as in Example 2.1.
Obviously that f and  satisfy (1.5) for all x,y,z ∈ C . Moreover, it is not hard to see
that  satisfies Theorem SJPL2(a) since

̃(x,y,z) :=



n=0

(2nx,2ny,2nz)
4n �




n=0

(2nx,2ny,2nz)
2n < 

for all x,y,z ∈ C . Moreover, we note here that

(x,0,x) =
∣∣∣(√2−4)

√
|x|+4

∣∣∣= (−x,0,x) for all x ∈ C. (3.2)

Now, we suppose that there exists a Drygas mapping D : C → C satisfying

|D(x)− f (x)− f (−x)| � ̃(x,0,x)+ ̃(−x,0,x)
4

=
̃(x,0,x)

2
for all x ∈ C. (3.3)
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We show that ∣∣∣2√|x|−2
∣∣∣= | f (x)+ f (−x)| � ̃(x,0,x)

2
for all x ∈ C. (3.4)

To prove this, we show that D ≡ 0 . Since D is Drygas, there exist a quadratic mapping
Q : C → C and an additive mapping A : C → C such that D(x) = Q(x)+A (x) for
all x ∈ C (see [3, Corollary 3]). Now, let x ∈ C be given. For each k ∈ N , we see from
(3.3) that∣∣∣∣∣D(2kx)

4k − f (2kx)
4k − f (−2kx)

4k

∣∣∣∣∣� ̃(2kx,0,2kx)
2 ·4k =

1
2




n=k

(2nx,0,2nx)
4n . (3.5)

We easily see that

lim
k→

f (2kx)
4k = lim

k→

2k/2
√|x|−1
4k = 0 and lim

k→

f (−2kx)
4k = 0;

lim
k→




n=k

(2nx,0,2nx)
4n = 0.

Hence, limk→
D(2kx)

4k = 0. It follows that

0 = lim
k→

D(2kx)
4k = lim

k→

(
Q(2kx)

4k +
A (2kx)

4k

)
= lim

k→

(
Q(x)+

A (x)
2k

)
= Q(x).

Hence, D(x) = A (x) . It follows from (3.3) and the evenness of f that

|A (x)−2 f (x)| � ̃(x,0,x)
2

. (3.6)

Next, we show that A (x) = 0. It follows from the direct computation that

lim
k→

f (2kx)
2k = lim

k→

2k/2
√|x|−1
2k = 0;

lim
k→

̃(2kx,0,2kx)
2k = lim

k→




n=0

(2n+kx,0,2n+kx)
2k ·4n � lim

k→




n=k

(2nx,0,2nx)
2n = 0.

It follows from (3.6) that

|A (x)| = lim
k→

∣∣∣A (2kx)
2k

− f (2kx)
2k

∣∣∣� lim
k→

̃(2kx,0,2kx)
2 ·2k

= 0.

So, we have that A (x) = 0. Hence, we prove (3.4).
By letting x0 := (

√
2+4)2 , we see from (3.2) that

(2nx0,0,2nx0) =
∣∣∣2n/2(

√
2−4)(

√
2+4)+4

∣∣∣= 14 ·2n/2−4 for all n ∈ N0.
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It follows that

̃(x0,0,x0) :=



n=0

(2nx0,0,2nx0)
4n =




n=0

14

23n/2
−




n=0

4
4n =

32+12
√

2
3

.

One can see that∣∣∣2(
√

2+4)−2
∣∣∣= 6+2

√
2 =

18+6
√

2
3

>
16+6

√
2

3
=

̃(x0,0,x0)
2

,

which contradicts to (3.6). Hence, the conclusion of Theorem SJPL2(a) does not hold.

The following example illustrates that the uniqueness part of Theorem SJPL2(a)
is not true although we assume additionally that (0,0,0) = 0.

EXAMPLE 3.7. Let f : C → C and  : C3 → [0,) be defined by

f (x) := x for all x ∈ C;

(x,y,z) := |x|+ |y|+ |z| for all x,y,z ∈ C.

For any x,y,z ∈ C , we can easily see that

| f (x+ y+ z)+ f (x+ y− z)−2 f (x)−2 f (y)− f (z)− f (−z)|
� 1

2
| f (x+ y− z)+ f (x− y+ z)−2 f (x)− f (y)− f (−y)− f (z)− f (−z)|

+
1
4
| f (x+ y+ z)− f (x+ z)− f (y)|+(x,y,z).

It follows that f and  satisfy (1.5) for all x,y,z ∈ C with  := 1
2 and  := 1

4 . We
also see that

̃(x,y,z) :=



k=0

1
4k(2kx,2ky,2kz) = 2(x,y,z).

Hence,  satisfies the assumption (a) of Theorem SJPL2. Obviously that the Drygas
mappings D1,D2 : C → C , defined by D1(x) := x and D2(x) := 2x for all x ∈ C ,
satisfy

|Di(x)− f (x)− f (−x)| � 4|x| = (4|x|)+ (4|x|)
4(1− 1

2 )
=

̃(x,0,x)+ ̃(−x,0,x)
4(1−||)

for all x ∈ C .

According to Theorem SJPL2(a) and Examples 3.6, 3.7, we present the following
result.

PROPOSITION 3.8. Suppose that X is a vector space, Y is a complex Banach
space, and , ∈C satisfy 4||+ | |< 4 . Suppose that f : X →Y and  : X3 → [0,)
satisfy (1.5) for all x,y,z ∈ X . If  satisfies (0,0,0) = 0 and the assumption (a) of
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Theorem SJPL2, then the zero mapping 0 : X → Y (that is, 0(x) := 0 for all x ∈ X ) is
the unique quadratic mapping such that

‖ f (x)+ f (−x)‖ = ‖0(x)− f (x)− f (−x)‖ � ̃(x,0,x)+ ̃(−x,0,x)
4(1−||)

for all x ∈ X .

Proof. For each x ∈ X , we first define a sequence (Qn(x))n=0 by

Qn(x) :=
1
4n ( f (2nx)+ f (−2nx)) for all n ∈ N0.

Sun et al. in [21] proved that such a sequence converges and hence we can define
Q : X → Y by

Q(x) := lim
n→

Qn(x) = lim
n→

1
4n ( f (2nx)+ f (−2nx)).

Moreover, they also proved that Q is a Drygas mapping that satisfies

‖Q(x)− f (x)− f (−x)‖ � ̃(x,0,x)+ ̃(−x,0,x)
4(1−||) .

Next, we show that Q ≡ 0 . To prove this, let x,y ∈ X and n ∈ N be given. It follows
from Proposition 3.1(2) that there exists a real number K which fulfills the following:

‖Qn(x+ y)+Qn(x− y)−2Qn(x)‖
� 1

4n ‖ f (2nx+2ny)+ f (2nx−2ny)−2 f (2nx)‖

+
1
4n ‖ f (−2nx−2ny)+ f (−2nx+2ny)−2 f (−2nx)‖

� K
4n ((2nx,0,2ny)+(2ny,−2ny,−2ny)+(−2nx,0,−2ny)+(−2ny,2ny,2ny)) .

It follows from the condition (a) of Theorem SJPL2 that

lim
n→

(±2nx,0,±2ny)
4n = 0 = lim

n→

(±2ny,∓2ny,∓2ny)
4n .

One gets that Q(x+ y)+Q(x− y) = 2Q(x) . This means that Q is additive (see the
proof of Corollary 3.4). Since Q is even and additive, we can conclude that Q ≡ 0 .

Finally, we prove the uniqueness part. Suppose that there exists a quadratic map-
ping Q′ : X → Y such that

‖Q′(x)− f (x)− f (−x)‖ � ̃(x,0,x)+ ̃(−x,0,x)
4(1−||) for all x ∈ X . (3.7)
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Let x ∈ X be given. By using (3.7), we see that

‖Q′(x)−0(x)‖ = lim
k→

∥∥∥Q′(x)−Qk(x)‖

= lim
k→

∥∥∥Q′(2kx)
4k − f (2kx)

4k − f (−2kx)
4k

∥∥∥
� 1

4(1−||) lim
k→

̃(2kx,0,2kx)+ ̃(−2kx,0,2kx)
4k

=
1

4(1−||) lim
k→

(



n=k

(2nx,0,2nx)
4n +




n=k

(−2nx,0,2nx)
4n

)
= 0.

Hence, Q′(x) = 0(x) = 0 and the proof is complete. �

REMARK 3.9. Proposition 3.1(1) tells us that the even part of f is also approxi-
mately zero as Proposition 3.8. In fact, the mapping f satisfies

‖ f (x)+ f (−x)‖ � 1
2(1−||) min{(x,−x,−x),(−x,x,x)} for all x ∈ X .

The inequality above provides another stability of the even part of functions satisfy-
ing (1.5). Comparing the result of Proposition 3.8 to Proposition 3.1, we see that the
completeness of Y and the assumption (a) of Theorem SJPL2 are not necessary.

By using Proposition 3.1(2) and Theorem F, we improve Theorem SJPL2(a) as
follows.

THEOREM 3.10. Suppose that X is a vector space, Y is a complex Banach space,
and , ∈ C satisfy 4||+ | | < 4 . Suppose that f : X → Y and  : X3 → [0,)
satisfy (1.5) for all x,y,z ∈ X . If (0,0,0) = 0 and the following two conditions are
satisfied:

(1) 1(x) := 
n=0

1
2n(2nx,0,2nx) <  and 2(x) := 

n=0
1
2k(2nx,−2nx,−2nx) <

 for all x ∈ X ;

(2) limn→
1
2n(2nx,2ny,2nz) = 0 for all x,y,z ∈ X ,

then there exists a unique additive mapping A : X → Y such that

‖A (x)− f (x)‖ � 1(x)
2(1−||) +

1+ ||
4(1−||)22(x) for all x ∈ X . (3.8)

Proof. Proposition 3.1(2) shows that f satisfies

‖ f (x+ y)+ f (x− y)−2 f (x)‖� (x,0,y)
1−|| +

1+ ||
2(1−||)2(y,−y,−y) (3.9)
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for all x,y ∈ X . We define  : X → [0,) by

 (x) :=
(x,0,x)
1−|| +

1+ ||
2(1−||)2(x,−x,−x) for all x ∈ X .

By letting x = y in (3.9), we have that

‖ f (2x)−2 f (x)‖ �  (x) for all x ∈ X , (3.10)

or equivalently, ∥∥∥1
2

f (2x)− f (x)
∥∥∥� 1

2
 (x) for all x ∈ X .

We define g :Y → Y , h : X → X , and  : [0,) → [0,) by g(u) := u/2 for all u ∈Y ,
h(x) := 2x for all x ∈ X , and (t) := t/2 for all t ∈ [0,) , respectively. It follows that

‖(g ◦ f ◦ h)(x)− f (x)‖ =
∥∥∥1

2
f (2x)− f (x)

∥∥∥� 1
2
 (x) for all x ∈ X ;

‖g(u)−g(v)‖=
1
2
‖u− v‖= (‖u− v‖) for all u,v ∈Y.

Obviously,  is non-decreasing subadditive and g is continuous. Note that



n=0

n ( (hn(x))) =
1
2




n=0

1
2n  (2nx) =

1(x)
2(1−||) +

1+ ||
4(1−||)22(x) <

for all x ∈ X . Theorem F asserts that the mapping A := limn→ gn ◦ f ◦ hn exists and
is the unique mapping such that A (2x) = 2A (x) for all x ∈ X and (3.8) holds. Note
that A (x) = limn→

1
2n f (2nx) for all x ∈ X . Next, we prove that A is additive. To see

this, let x,y ∈ X be given. We see from (3.9) and Condition (2) that

‖A (x+ y)+A (x− y)−2A (x)‖
= lim

n→

1
2n ‖ f (2nx+2ny)+ f (2nx−2ny)−2 f (2nx)‖

� lim
n→

1
2n

(
(2nx,0,2ny)

1−|| +
1+ ||

2(1−||)2(2ny,−2ny,−2ny)
)

= 0.

Hence, A is additive as desired. Moreover, the uniqueness is obvious. �

3.2. Some remarks on Theorem SJPL2(b)

Following the same proof of Proposition 3.8, we obtain the following proposition.

PROPOSITION 3.11. Suppose that X is a vector space, Y is a complex Banach
space, and , ∈C satisfy 4||+ | |< 4 . Suppose that f : X →Y and  : X3 → [0,)
satisfy (1.5) for all x,y,z ∈ X . If  satisfies the assumption (b) of Theorem SJPL2, then
the zero mapping 0 : X → Y is the unique quadratic mapping such that

‖ f (x)+ f (−x)‖ = ‖0(x)− f (x)− f (−x)‖ � ̃(x,0,x)+ ̃(−x,0,x)
4(1−||)

for all x ∈ X .
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To improve Theorem SJPL2(b), we present the following stability result which is
a consequence of Theorem F. Since the proof follows similarly to that of Theorem 3.10,
we omit the proof.

THEOREM 3.12. Suppose that X is a vector space, Y is a complex Banach space,
and , ∈ C satisfy 4||+ | | < 4 . Suppose that f : X → Y and  : X3 → [0,)
satisfy (1.5) for all x,y,z ∈ X . If the following two conditions are satisfied:

(1) 1(x) := 
n=1 2k

(
x
2n ,0, x

2n

)
<  and 2(x) := 

n=1 2k
(

x
2n ,

−x
2n , −x

2n

)
<  for

all x ∈ X ;

(2) limn→ 2k
(

x
2n ,

y
2n ,

z
2n

)
= 0 for all x,y,z ∈ X ,

then there exists a unique additive mapping A : X → Y such that

‖A (x)− f (x)‖ � 1(x)
2(1−||) +

1+ ||
4(1−||)22(x) for all x ∈ X .

4. Final remark

According to Theorems 2.3, 3.10, and 3.12, the following two inequalities:

‖ f (x+ y+ z)+ f (x+ y− z)−2 f (x)−2 f (y)− f (z)− f (−z)‖
� ‖ ( f (x+ y+ z)− f (x)− f (y)− f (z))‖

+‖ ( f (x+ y− z)− f (x)− f (y)− f (−z))‖+(x,y,z)

and

‖ f (x+ y+ z)+ f (x+ y− z)−2 f (x)−2 f (y)− f (z)− f (−z)‖
� ‖ ( f (x+ y− z)+ f (x− y+ z)−2 f (x)− f (y)− f (−y)− f (z)− f (−z))‖

+‖ ( f (x+ y+ z)− f (x+ z)− f (y))‖+(x,y,z)

are stable with respect to additive mappings. In particular, the name “3-variable double
 -functional inequalities of Drygas” of the preceding two inequalities is not appropri-
ate.
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