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ON SINGULAR INTEGRALS AND MAXIMAL OPERATORS

ALONG SURFACES OF REVOLUTION ON PRODUCT DOMAINS

HUSSAIN AL-QASSEM, LESLIE CHENG AND YIBIAO PAN

(Communicated by L. Liu)

Abstract. We study the mapping properties of singular integral operators along surfaces of revo-
lutions on product domains. For several classes of surfaces, we prove sharp Lp bounds (1 < p <
) for these singular integral operators as well as their corresponding maximal operators. By
using these Lp bounds and an extrapolation argument we obtain the Lp boundedness of these
operators under optimal conditions on the singular kernels. Our results extend and improve
several results previously obtained by many authors.

1. Introduction

Let Rd (d = n or d = m) , d � 2 be the d -dimensional Euclidean space and
Sd−1 be the unit sphere in Rd equipped with the normalized Lebesgue measure d .
Also, we let  ′ denote / | | for  ∈ Rn \ {0} and p′ denote the exponent conjugate
to p, that is 1/p+1/p′ = 1.

Let h(·, ·) be a measurable function on R+×R+ and let

K,h(x,y) =
(x′,y′)
|x|n |y|m h(|x| , |y|) (1.1)

where  is a homogeneous function of degree zero on Rn×Rm and satisfies∫
Sn−1

(u, ·)d (u) =
∫

Sm−1
(·,v)d (v) = 0. (1.2)

For a measurable real-valued function h on R+×R+, we say that h ∈  (R+×R+) ,
 > 1, if

‖h‖ = sup
R1,R2>0

{R−1
2 R−1

1

∫ 2R2

R2

∫ 2R1

R1

|h(t,s)| dtds}
1


< .

Let (s, t) be a real-valued function on R+×R+. For (x,y)∈ Rn ×Rm and z∈R,
let T,h be the singular integral operator along the surface (x,y) = (x,y,(|x| , |y|))

T,h f (x,y,z) = p.v.
∫

Rn×Rm
f (x−u,y− v,z−(|u| , |v|))K,h (u,v)dudv. (1.3)
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Also, let M,h be the related maximal operator defined initially defined for f ∈ C
0 (Rn×

Rm ×R) by

Mh f (x,y,z) (1.4)

= sup
r1,r2>0

1
rn
1r

m
2

∫
|v|�r2

∫
|u|�r1

| f (x−u,y− v,z−(|u| , |v|))| ∣∣(u′,v′)∣∣ |h(|u| , |v|)|dudv.

If ≡ 0, we shall let Th = T0,h and Mh = M0,h.
The study of the Lp (1 < p <) boundedness of Th and Mh and their extensions

under various conditions on  and h has attracted the attention of many authors (see
for example, [6], [9], [17], [18], [20], [21], [22]). In the one parameter case, the study
of the Lp boundedness of such kind of operators T,h and M,h was initiated in [25]
and continued by many authors. For relevant results one may consult [7], [10], [24],
among others.

In [25], the authors proved that the Lp boundedness of singular integrals along
certain surfaces of revolution still holds even if the surfaces make an infinite order of
contact with their tangent planes at (0,0) (i.e. flat). The result can be described as
follows:

THEOREM A. Let  be a C2 ([0,)) , convex and increasing function satisfying
(0) = 0. Let  ∈C(Sn−1) and S f be given by

S f (x,xn+1) = p.v.
∫
Rn

f (x− y,xn+1−(|y|))(y′)
|y|n dy.

Then for 1 < p < , there exists a positive constant Cp such that∥∥S f
∥∥

Lp(Rn+1) � Cp ‖ f‖Lp(Rn+1)

for all f ∈ Lp(Rn+1).

This result was improved in several papers (see [7] and [10], among others). An
analogue of Theorem A in the product space setting was obtained in [1], which can be
described as follows.

THEOREM B. Let  , be C2 ([0,)) , convex and increasing functions satisfying

(0) =(0) = 0. Let ∈ B(0,1)
q (Sn−1×Sm−1) for some q > 1 , and h∈  (R+×R+)

for some  > 1 and S , f be given by

S , f (x , y) = p.v.
∫

Rm

∫
Rn

f (x − ̃(u), y − ̃(v))K,h(u,v)dudv

where ̃(x) = (x,(|x|)),̃(y) = (y,(|y|)), x = (x,xn+1)∈Rn×R and y = (y,ym+1)
∈ Rm ×R . Then for 1 < p < , there exists a positive constant Cp such that∥∥S , f

∥∥
Lp(Rn+1×Rm+1) � Cp ‖ f‖Lp(Rn+1×Rm+1)
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for all f ∈ Lp(Rn+1×Rm+1).

The study of the double Hilbert transforms along surfaces has attracted the atten-
tion of many authors. See for example [11], [12], [13], [14], [15], [17], [26], [27]. In
this paper, we are very much motivated by the work of authors in [11], [15], among
others who studied double Hilbert transforms along surfaces of the form (t,s,(t,s)) .

Our main focus in this paper is to investigate the Lp boundedness of T,h and
M,h for several classes of functions (s,t) and under very weak conditions on 
and h. We notice that our surfaces are natural extensions of the surfaces of revolutions
considered by many authors in the one parameter setting.

Our principal results in this paper are the following:

THEOREM 1.1. Let  ∈C1 ([0,)× [0,)) . Suppose that  ∈ Lq(Sn−1 ×Sm−1)
for some 1 < q � 2 and h ∈  (R

+×R+) for some 1 <  � .Then∥∥T,h ( f )
∥∥

L2(Rn×Rm×R) � Cp(q−1)−2‖‖Lq(Sn−1×Sm−1) ‖ f‖L2(Rn×Rm×R) (1.5)

for every f ∈ L2 (Rn×Rm×R) .

THEOREM 1.2. Suppose that  ∈ Lq(Sn−1 ×Sm−1) for some 1 < q � 2and h ∈
 (R

+ ×R+) for some 1 <  � . Assume that  ∈C1 ([0,)× [0,))such that for
every fixed t and s, 1

t (·) = (t, ·),2
s (·) = (·,s) ∈ C2[0,) are convex increasing

functions with 1
t (0) = 2

s (0) = 0. Then
(i) for |1/p−1/2|< min{1/2,1/ ′}, there exists a positive constant Cp such that∥∥T,h f

∥∥
Lp(Rn×Rm×R) � Cp(q−1)−2‖‖Lq(Sn−1×Sm−1) ‖ f‖Lp(Rn×Rm×R) , (1.6)

(ii) for every  ′ < p � , there exists a positive constant Cp such that∥∥M,h ( f )
∥∥

Lp(Rn×Rm×R) � Cp(q−1)−2‖‖Lq(Sn−1×Sm−1) ‖ f‖Lp(Rn×Rm×R) (1.7)

for all f ∈ Lp (Rn×Rm×R) . The constant Cp may depend on n,m, but is independent
of the  and q.

We notice that our theorem covers several types of natural surfaces. For exam-
ple, our theorem allows surfaces of the type  with (t,s) = s2t2(e−1/s + e−1/t) ,
(s,t > 0). This surface has a contact of infinite order at the origin which was stud-
ied by Duoandikoetxea in [17]. Also we notice that the interesting special case of 
with (t,s) = 1(t)2(s) , where each i ∈ C2[0,) is a convex increasing function
with i(0) = 0. This surface was considered in [15] in studying double Hilbert trans-
forms along surfaces of the form (t,s,(t)(s)) . A nice example of this surface is
(t,s,e−1/se−1/t).

THEOREM 1.3. Suppose that  ∈ Lq(Sn−1 × Sm−1) for some q ∈ (1,2] and

h ∈  (R+×R+) for some 1 <  � . Assume that (t,s) = P(t,s) =
d1


l=0

d2


i=0

ai,lti sl

with i,l > 0 is a generalized polynomial on R2 . Then
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(i) for |1/p−1/2|< min{1/2,1/ ′}, there exists a positive constant Cp such that∥∥T,h f
∥∥

Lp(Rn×Rm×R) � Cp(q−1)−2‖‖Lq(Sn−1×Sm−1) ‖ f‖Lp(Rn×Rm×R) , (1.8)

(ii) for every  ′ < p � , there exists a constant Cp such that∥∥M,h ( f )
∥∥

Lp(Rn×Rm×R) � Cp(q−1)−2‖‖Lq(Sn−1×Sm−1) ‖ f‖Lp(Rn×Rm×R) (1.9)

for all f ∈ Lp (Rn ×Rm×R) .
The constant Cp may depend on n,m, but is independent of the  and q and the

coefficients of P.

We remark that Theorem 1.3 allows very important special classes of surfaces. If
we take (t,s) = ts with , > 0, then the corresponding surface was considered
by many authors in their studying double Hilbert transforms and singular integrals on
product domains. See for example, [13], [14], [17], [18], [23]. Also, as a special case
of  is (t,s) = P(s,t) is a polynomial where the study of Double Hilbert transforms
along the surface (t,s,P(t,s)) has attracted the attention of many authors. See for
example [11], [27], among others.

THEOREM 1.4. Suppose that  ∈ Lq(Sn−1 ×Sm−1) for some q ∈ (1,2] and h ∈
 (R+×R+) for some 1 <  �. Assume that (t,s) = (t)P(s) , where  ∈C2[0,)
is a convex increasing function with (0) = 0 and P is generalized polynomial on R.
Then

(i) for |1/p−1/2|< min{1/2,1/ ′}, there exists a positive constant Cp such that∥∥T,h f
∥∥

Lp(Rn×Rm×R) � Cp(q−1)−2‖‖Lq(Sn−1×Sm−1) ‖ f‖Lp(Rn×Rm×R) , (1.10)

(ii) for every  ′ < p � , there exists a constant Cp such that∥∥M,h ( f )
∥∥

Lp(Rn×Rm×R) � Cp(q−1)−2‖‖Lq(Sn−1×Sm−1) ‖ f‖Lp(Rn×Rm×R) (1.11)

for all f ∈ Lp (Rn×Rm×R) . The constant Cp may depend on n,m, but is independent
of the , and q and the coefficients of P.

THEOREM 1.5. Suppose that  ∈ Lq(Sn−1 ×Sm−1) for some q ∈ (1,2] and h ∈
 (R+ ×R+) for some 1 <  � . Assume that (t,s) = 1(t)+ 2(s) , where each
l (l = 1,2) is either a generalized polynomial or is in C2[0,), a convex increasing
function with l(0) = 0. Then

(i) for |1/p−1/2|< min{1/2,1/ ′}, there exists a positive constant Cp such that∥∥T,h f
∥∥

Lp(Rn×Rm×R) � Cp(q−1)−2‖‖Lq(Sn−1×Sm−1) ‖ f‖Lp(Rn×Rm×R) , (1.12)

(ii) for every  ′ < p � , there exists a constant Cp such that∥∥M,h ( f )
∥∥

Lp(Rn×Rm×R) � Cp(q−1)−2‖‖Lq(Sn−1×Sm−1) ‖ f‖Lp(Rn×Rm×R) (1.13)

for all f ∈ Lp (Rn×Rm×R) . The constant Cp may depend on n,m, but is independent
of the  and q.

By the conclusions in Theorems 1.2, 1.3, 1.4 and 1.5 and applying an extrapolation
method as in [8], we get the following results:
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THEOREM 1.6. Let  and h be given as in any of Theorem 1.2, 1.3, 1.4 or 1.5.

Assume that ∈ L(logL)2
(
Sn−1×Sm−1

)
or ∈B(0,1)

q
(
Sn−1×Sm−1

)
for some q > 1 ,

then
(i) for |1/p−1/2|< min{1/2,1/ ′}, there exists a constant Cp > 0 such that∥∥T,h f

∥∥
Lp(Rn×Rm×R) � Cp ‖ f‖Lp(Rn×Rm×R) , (1.14)

(ii) for every  ′ < p � , there exists a constant Cp such that∥∥M,h ( f )
∥∥

Lp(Rn×Rm×R) � Cp ‖ f‖Lp(Rn×Rm×R) (1.15)

for all f ∈ Lp (Rn ×Rm×R) .

We shall also establish the Lp boundedness of the maximal truncated singular
integral operator T ∗

,h given by

(T ∗
,h f )(x,y,z) = sup

1,2>0

∣∣∣∣∫|v|�2

∫
|u|�1

f (x−u,y− v,z−(|u| , |v|))K,h (u,v)dudv

∣∣∣∣ ,
(1.16)

where  is given as before.
By Theorem 1.6 and following a similar argument as in [6] we have the following

result for T ∗
,h.

THEOREM 1.7. Suppose that  ∈ L(logL)2
(
Sn−1×Sm−1

)
or  ∈ B0,1

q (Sn−1 ×
Sm−1) for some q > 1 .

(i) If  ∈C1 ([0,)× [0,)) and h ∈  (R+ ×R+) for some  > 1,∥∥T ∗
,h ( f )

∥∥
L2(Rn×Rm×R) � C‖ f‖L2(Rn×Rm×R) (1.17)

for every f ∈ L2 (Rn×Rm×R) , and
(ii) if h(t,s) = h1 (t)h2 (s) with h1 , h2 ∈ L (R+) and  is given as in any of

Theorem 1.2, 1.3, 1.4 or 1.5, then∥∥T ∗
,h ( f )

∥∥
Lp(Rn×Rm×R) � Cp ‖ f‖Lp(Rn×Rm×R) (1.18)

holds for all 1 < p <  and f ∈ Lp (Rn×Rm×R) .

2. Some definitions and lemmas

We will begin by recalling some definitions. The class L(logL)

(Sn−1 × Sm−1)

(for  > 0) denotes the class of all measurable functions  on Sn−1 × Sm−1 which
satisfy

‖‖L(logL) (Sn−1×Sm−1) =
∫

Sn−1×Sm−1
|(x,y)| log


(2+ |(x,y)|)d(x)d(y) < .



744 H. AL-QASSEM, L. CHENG AND Y. PAN

Now we define the class of B(0,−1)
q (Sn−1×Sm−1). A q -block on Sn−1×Sm−1 is an Lq

(1 < q �) function b(x,y) that satisfies b⊂ I and ‖b‖Lq � |I|−1/q′ ,where |·| denotes
the product measure on Sn−1×Sm−1 and I is an interval on Sn−1×Sm−1, i.e.,

I =
{
x′ ∈ Sn−1 :

∣∣x′ − x′0
∣∣< 

}×{y′ ∈ Sm−1 :
∣∣y′ − y′0

∣∣< 
}

for some ,  > 0, x′0 ∈ Sn−1 and y′0 ∈ Sm−1. The block space B(0,)
q = B(0,)

q (Sn−1×
Sm−1) is defined by

B(0,)
q =

{
 ∈ L1(Sn−1 ×Sm−1) : =




=1

b , M(0,)
q

({}
)

< 

}
where each  is a complex number, each b is a q -block supported on an interval I
on Sn−1×Sm−1 ,  > −1, and

M(0,)
q

({}
)

=



=1

∣∣

∣∣{1+ log(+1)(
∣∣I ∣∣−1)

}
.

Let ‖‖
B(0,)

q (Sn−1×Sm−1)
= N(0,)

q () = inf{M(0,)
q

({}
)
:  = 

=1b and

each b is a q -block function supported on a cap I on Sn−1×Sm−1} .

REMARK. For any q > 1 and 0 <  � 1, the following inclusions hold and are
proper:

Lq(Sn−1×Sm−1) ⊂ L(logL) (Sn−1×Sm−1) ⊂ L1(Sn−1×Sm−1) for  > 0,⋃
r>1

Lr(Sn−1×Sm−1) ⊂ B(0,)
q (Sn−1×Sm−1) for any −1 <  and q > 1,

L(logL)

(Sn−1×Sm−1) ⊂ L(logL)


(Sn−1 ×Sm−1) if 0 <  <  .

The question with regard to the relationship between B(0,−1)
q (Sn−1 × Sm−1) and

L(log+ L)

(Sn−1 ×Sm−1) (for  > 0) remains open.

We shall need the following two lemmas from [6] which are extensions of the
corresponding results of Duoandikoetxea in [17].

LEMMA 2.1. Let
{
k, j
}

be a sequence of Borel measures on Rn×Rm . Suppose
that for some q > 1 and B > 0 ,

‖∗ ( f )‖Lq(Rn×Rm) � B‖ f‖Lq(Rn×Rm)

holds for every f in Lq (Rn×Rm) . Then the following vector-valued inequality∥∥∥∥∥∥
(


k, j∈Z

∣∣k, j ∗ gk, j

∣∣2)1/2
∥∥∥∥∥∥

Lp0 (Rn×Rm)

�
(

B sup
k, j∈Z

∥∥k, j

∥∥)1/2
∥∥∥∥∥∥
(


k, j∈Z

∣∣gk, j

∣∣2)1/2
∥∥∥∥∥∥

Lp0 (Rn×Rm)
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holds for |1/p0−1/2|= 1/(2q) and for arbitrary functions
{
gk, j
}

on Rn ×Rm .

LEMMA 2.2. Let L : Rn −→ R j1 and Q : Rm −→ R j2 be linear transformations.
Let

{
�k, j : k, j ∈ Z

}
be a sequence of Borel measures on Rn ×Rm . Suppose that for

some a � 2 , b � 2 ,  ,  , C > 0 , B > 1 and po ∈ (2,) the following hold for k ,
j ∈ Z , ( ,) ∈ Rn×Rm and arbitrary functions

{
gk, j
}

on Rn×Rm :

(i)
∣∣�̂k, j ( ,)

∣∣� CB2
(
akB |L( )|)± 

B
(
b jB |Q()|)± 

B ,

(ii)

∥∥∥∥∥∥
(


k, j∈Z

∣∣�k, j ∗ gk, j

∣∣2)1/2
∥∥∥∥∥∥

Lp0 (Rn×Rm)

�CB2

∥∥∥∥∥∥
(


k, j∈Z

∣∣gk, j

∣∣2)1/2
∥∥∥∥∥∥

Lp0 (Rn×Rm)

.

Then for p′0 < p < p0 there exists a positive constant Cp such that∥∥∥∥∥ k, j∈Z
�k, j ∗ f

∥∥∥∥∥
Lp(Rn×Rm)

� Cp B2 ‖ f‖Lp(Rn×Rm)

and ∥∥∥∥∥∥
(


k, j∈Z

∣∣�k, j ∗ f
∣∣2)1/2

∥∥∥∥∥∥
Lp(Rn×Rm)

� Cp B2 ‖ f‖Lp(Rn×Rm)

hold for all f in Lp (Rn×Rm) . The constant Cp is independent of B and the linear
transformations L and Q.

Let  � 2. For a suitable function (·, ·) on Sn−1×Sm−1 we define the measures
{k, j, , : k, j ∈ Z} and the corresponding maximal operator  ∗

, on Rn×Rm×R by∫
Rn×Rm×R

f dk, j, , =
∫

Dk, j,
f (u,v,(|u| , |v|))K,h(u,v)dudv, (2.1)

and
 ∗
, f (x,y) = sup

k, j∈Z

∣∣∣∣k, j, ,
∣∣∗ f (x,y)

∣∣ (2.2)

where Dk, j, =
{
(u,v) ∈ Rn ×Rm :  k � |u| <  k+1, j � |v| <  j+1

}
and (t,s) is

an arbitrary function on R×R. Let t± = inf
(
t

, t−

)
.

LEMMA 2.3. Assume that ∈C1
(
[0,)×C1[0,)

)
and let h∈

(
R+×R+) for

some  , 1 <  � 2. Let  ∈ Lq(Sn−1 ×Sm−1) for some 1 < q � 2 and satisfy (1.2).
Then there exist a positive constant C , 0 < < 1/q′ such that for all k, j ∈Z , ( , ,)
∈ Rn×Rm×R we have∣∣∣̂k, j, ,( , ,)

∣∣∣� C(log )2 ‖‖q

∣∣∣ k 
∣∣∣± 

q′ ∣∣ j 
∣∣± 

q′ . (2.3)

The constant C is independent of k, j ,  and (·, ·) .
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Proof. By using Hölder’s inequality we get∣∣∣̂k, j, ,( , ,)
∣∣∣

�
(∫  j+1

 j

∫  k+1

 k
|h(t,s)| dtds

ts

)1/

×
∫

Sm−1

(∫  j+1

 j

∫  k+1

 k

∣∣∣∣∫
Sn−1

e−i(t ·x+(t,s))(x,y)d (x)
∣∣∣∣ ′ dtds

ts

)1/ ′

d(v).

Since ∫  j+1

 j

∫  k+1

 k
|h(t,s)| dtds

ts

�
(log)/(log2)


s=0

(log)/(log2)


l=0

∫  j2
s+1

 j2s

∫  k2
l+1

 k2l
|h(t,s)| dt

t
ds
s

� C(log )2 ‖h‖ , (2.4)

and  ′ � 2, we obtain∣∣∣̂k, j, ,( , ,)
∣∣∣ � C log )(1+1/)

∫
Sm−1

‖(·,v)‖(1− 2
′ )

L1(Sn−1)

×
(∫  k+1

 k

∣∣∣∣∫
Sn−1

e−i(t ·x+(t,s))(u,v)d (u)
∣∣∣∣2 dt

t

) 1
′

d(v).

We notice that∣∣Hk, j,y (t,s)
∣∣2 =

∫
Sn−1×Sn−1

(x,y) (u,y)ei kt(x−u)· d (x)d (u)

and ∣∣∣∣∣
∫ 

1
ei kt ·(x−u) dt

t

∣∣∣∣∣ � Cmin

{
log ,

∣∣∣ k · (x−u)
∣∣∣−1
}

� C (log )
∣∣∣ k

∣∣∣− ∣∣ ′ · (x−u)
∣∣− ,

where  ′ = / | | , and 0 <  < 1. By choosing  with q′ < 1 we get∣∣∣̂k, j, ,( , ,)
∣∣∣

� C(log )2 ‖h‖
∣∣∣ k

∣∣∣− 
′
∫

Sm−1
‖(·,y)‖(1−2/ ′)

L1(Sn−1)

×
(∫

Sn−1×Sn−1
(x,y) (u,y)

∣∣ ′ · (x−u)
∣∣− d (x)d (u)

) 1
′

.
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Since (∫
Sn−1×Sn−1

|x1−u1|−q′ d (x)d (u)
) 1

′q′
< ,

by Hölder’s inequality we get∣∣∣̂k, j, ,( , ,)
∣∣∣

� C(log )2 ‖h‖
∣∣∣ k

∣∣∣− 
′
∫

Sm−1
‖(·,y)‖(1−2/ ′)

L1(Sn−1) ‖(·,y)‖2/ ′
Lq(Sn−1) d(y),

which easily implies∣∣∣̂k, j, ,( , ,)
∣∣∣� C(log )2 ‖‖Lq(Sn−1)

∣∣∣ k
∣∣∣−/ ′

.

By combining the last estimate with the trivial estimate∣∣∣̂k, j, ,( , ,)
∣∣∣� C(log )2 ‖‖Lq(Sn−1×Sm−1) , (2.5)

we get ∣∣∣̂k, j, ,( , ,)
∣∣∣� C(log )2 ‖‖Lq(Sn−1×Sm−1)

∣∣∣ k
∣∣∣− 

q′′
. (2.6)

Similarly, we have∣∣∣̂k, j, ,( , ,)
∣∣∣� C(log )2 ‖‖Lq(Sn−1×Sm−1)

∣∣ j
∣∣− 

q′′ . . (2.7)

Now, by (1.2) we get that∣∣∣̂k, j, ,( , ,)
∣∣∣

�
∫

Sn−1

(∫ 

1

∫ 

1

∣∣∣∣∫
Sm−1

(x,y)e−i js·yd(y)
∣∣∣∣

×
∣∣∣h( kt, js)

∣∣∣ ∣∣∣e−i{ kt ·x+( kt, j s)} − e−i( kt, j s)
∣∣∣ dt

t
ds
s

)
d(x).

By the last inequality and Hölder’s inequality we get∣∣∣̂k, j, ,( , ,)
∣∣∣

� C
∣∣∣ k

∣∣∣(∫ 

1

∫ 

1

∣∣∣h( kt, js)
∣∣∣′ dt

t
ds
s

)1/ ′

×
∫

Sn−1

(∫ 

1

∫ 

1

∣∣∣∣∫
Sm−1

(x,y)e−i j s·yd(y)
∣∣∣∣ ′ dt

t
ds
s

)1/ ′

d(x) (2.8)
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and hence by (2.4) we obtain∣∣∣̂k, j, ,( , ,)
∣∣∣� C(log )2 ‖‖Lq(Sn−1×Sm−1)

∣∣∣ k
∣∣∣ . (2.9)

By (2.5) and (2.9) we get∣∣∣̂k, j, ,( , ,)
∣∣∣� C(log )2 ‖‖Lq(Sn−1×Sm−1)

∣∣∣ k
∣∣∣ 

2q′′
. (2.10)

Similarly we have∣∣∣̂k, j, ,( , ,)
∣∣∣� C(log )2 ‖‖Lq(Sn−1×Sm−1)

∣∣ j
∣∣ 

2q′′ . (2.11)

By combining (2.5)–(2.7) and (2.10)–(2.11) we get∣∣∣̂k, j, ,( , ,)
∣∣∣� C(log )2 ‖‖Lq(Sn−1×Sm−1)

∣∣∣ k
∣∣∣± 

2q′′ ∣∣ j
∣∣± 

2q′′ . (2.12)

The lemma is proved. �

LEMMA 2.4. Let h ∈ 

(
R+×R+) for some 1 <  � ,  ∈ Lq(Sn−1 ×Sm−1)

for some 1 < q � 2 and  = 2q′ . Assume that  ∈ C1 ([0,)× [0,)) such that for
every fixed t and s, 1

t (·) = (t, ·) , 2
s (·) = (·,s) ∈ C2[0,) are convex increasing

functions with 1
t (0) = 2

s (0) = 0 . Then for  ′ < p �  and f ∈ Lp (Rn ×Rm×R)
there exists a positive constant Cp which is independent of  and h such that∥∥ ∗

, ( f )
∥∥

p
� Cp(q−1)−2‖‖q ‖ f‖p . (2.13)

Proof. Without loss of generality, we may assume that � 0. We shall first prove
the lemma for the special case (t,s) = (t)(s) , where  , ∈ C2 ([0,)) , and 
and  are convex increasing functions with (0) = (0) = 0. By Hölder’s inequality
and (2.4), there exists a positive constant C such that

 ∗
, ( f ) � C(log )2/(∗

 ,(| f | ′))1/ ′ (2.14)

where ∫
Rn×Rm×R

f dk, j, , =
∫

Dk, j,
f (u,v,(|u| , |v|))(u′,v′)

|u|n |v|m dudv

and
∗
, ( f ) = sup

k, j∈Z

∣∣∣∣k, j, ,
∣∣∗ f

∣∣ . (2.15)

To prove (2.13), by (2.14) it suffices to prove that∥∥∗
, ( f )

∥∥
p
� Cp(log )2 ‖‖q ‖ f‖p for 1 < p � . (2.16)
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By the arguments in the proof of Lemma 2.3 we obtain the following:

∣∣̂k, j, ,( , ,)
∣∣� C(log )2 ‖‖q

∣∣∣ k 
∣∣∣− 

2q′′ ∣∣ j 
∣∣− 

2q′′ ; (2.17)∣∣̂k, j, ,( , ,)− ̂k, j, ,(0, ,)
∣∣

� C(log )2 ‖‖q

∣∣∣ k 
∣∣∣ 

2q′′ ∣∣ j 
∣∣− 

2q′′ ; (2.18)∣∣̂k, j, ,( , ,)− ̂k, j, ,( ,0,)
∣∣

� C(log )2 ‖‖q

∣∣∣ k 
∣∣∣− 

2q′′ ∣∣ j 
∣∣ 

2q′′ ; (2.19)∣∣̂k, j, ,( , ,)− ̂k, j, ,(0, ,)− ̂k, j, ,( ,0,)+ ̂k, j, ,(0,0,)
∣∣

� C(log )2 ‖‖q

∣∣∣ k 
∣∣∣ 

2q′′ ∣∣ j 
∣∣ 

2q′′ , (2.20)

where  ∈ Rn ,  ∈ Rm and  ∈ R.

Let 1 ∈S (Rn) and 2 ∈S (Rm) be two Schwartz functions such that ̂l (l) =
1 for |l | � 1

2 and (̂l)(l) = 0 for |l| � 1, l = 1,2. Let ̂1
k( ) = ̂1

(
 k

)
and

̂2
j() = ̂2

(
 j

)
. Define the sequence of measures

{
k, j
}

by

̂k, j( , ,) = ̂k, j, ,( , ,)− ̂1
k ( ) ̂k, j, ,(0, ,)− ̂2

j () ̂k, j, ,( ,0,)

+̂1
k ( )̂2

j () ̂k, j, , (0,0,) . (2.21)

By a standard argument we get

∣∣̂k, j( , ,)
∣∣� C(log )2 ‖‖q

∣∣∣ k 
∣∣∣± 

4q′′ ∣∣ j 
∣∣± 

4q′′ . (2.22)

Set

g( f )(x,y,z) =

(


k, j∈Z

∣∣k, j ∗ f (x,y,z)
∣∣2) 1

2

,∗ ( f ) = sup
k, j∈Z

∣∣∣∣k, j
∣∣∗ f

∣∣ ,
 (1)
, f (x,y,z) = sup

k, j∈Z

∫
 j�|v|< j+1

(∫  k+1

 k
| f (x,y− v,z−(t)(|v|)|2 (v)

)
dt
t

dv,

 (2)
, f (x,y,z) = sup

k, j∈Z

∫
 k�|u|< k+1

∫  j+1

 j
| f (x−u,y,z−(|u|)(s))|1 (u)

ds
s

du,

 (3)
, f (x,y,z) = ‖‖q sup

k, j∈Z

∫  k+1

 k

∫  j+1

 j
| f (x,y,z−(t)(s))| dtds

ts
,

where

1 (u) =
∫

Sm−1
|(u,v)|d (v) and 2 (v) =

∫
Sn−1

|(u,v)|d (u) .
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It is clear that 1 ∈ Lq(Sn−1) and 2 ∈ Lq(Sm−1). Now, by (2.21) we have

∗ ( f ) (x,y,z) � g( f ) (x,y,z)+C
(
(MRn ⊗ idRm ⊗ idR1)◦ (1)

,

)
( f )(x,y,z)

+C
(
idRm ⊗MRm ⊗ idR1)◦ (2)

,

)
( f )(x,y,z)

+C
(
MRn ⊗MRm ⊗ idR1)◦ (3)

,

)
( f )(x,y,z), (2.23)

where MRs denotes the Hardy-Littlewood maximal function on Rs.

We need now to study the Lp boundedness of the maximal operators  (l)
, ( f ),

l = 1,2. First, by definition of  (1)
, ( f ) we have

 (1)
, ( f )(x,y,z)

� sup
k, j∈Z

(∫  k+1

 k

(∫
 j�|v|< j+1

f (x,y− v,z−(t)(|v|)) 2 (v)
|v|m dv

)
dt
t

)

� sup
k∈Z

∫  k+1

 k
M(t),2

f (x, ·, ·)(y,z)dt
t

, (2.24)

where

M ,2g(y,z) = sup
j∈Z

∣∣∣∣∫ j�|v|< j+1
g(y− v,z−(|v|))2 (v)

|v|m dv

∣∣∣∣ .
By employing the same argument as in the proof of Proposition 14 in [7] we get for
1 < p � , there exists, positive constant Cp independent of  such that∥∥M ,2(g)

∥∥
Lp(Rm+1) � Cp (log )‖‖q ‖g‖Lp(Rm+1). (2.25)

By (2.24)–(2.25), for every 1 < p �  we have∥∥∥ (1)
, ( f )

∥∥∥
Lp(Rn×Rm×R)

� Cp(log )2 ‖‖q ‖ f‖Lp(Rn×Rm×R). (2.26)

Similarly, for every 1 < p �  we have∥∥∥ (2)
, ( f )

∥∥∥
Lp(Rn×Rm×R)

� Cp(log )2 ‖‖q ‖ f‖Lp(Rn×Rm×R) . (2.27)

Also, by a change of variable we have∫  j+1

 j

∫  k+1

 k
| f (x,y,z−(t)(s))| dtds

ts

=
∫  j+1

 j

∫ ( k+1)

( k)
| f (x,y,z−u(s))| du

−1(u) ′(−1(u))
ds

� C(log )

(∫  j+1

 j
M(s),R1 f (x,y, ·)(z)ds

)
,
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where M ,R1 is the directional Hardy-Littlewood maximal function on R in the di-
rection of . Since Ms,R1 is bounded on Lp with bound independent of s , for every
1 < p �  we easily get∥∥∥ (3)

, ( f )
∥∥∥

Lp(Rn×Rm×R)
� Cp(log )2 ‖‖q ‖ f‖Lp(Rn×Rm×R) . (2.28)

Now, by (2.22) and Plancherel’s theorem we have

‖g( f )‖L2 � C(log )2 ‖‖q ‖ f‖L2 (2.29)

and hence by (2.23), (2.26)–(2.28) we get

‖∗( f )‖L2 � C(log )2 ‖‖q ‖ f‖L2 (2.30)

for some positive constant C independent of  . By applying Lemma 2.1 (with q = 2)
along with the trivial estimate

∥∥k, j

∥∥� C‖‖q (log )2 we get∥∥∥∥∥( k, j∈Z

∣∣k, j ∗ gk, j
∣∣2) 1

2

∥∥∥∥∥
p0

� Cp0(log )2 ‖‖q

∥∥∥∥∥( k, j∈Z

∣∣gk, j
∣∣2) 1

2

∥∥∥∥∥
p0

(2.31)

if 1/4 = |1/p0−1/2|. Now, by (2.22), (2.31) and Lemma 2.2 we obtain

‖g( f )‖Lp � Cp(log )2 ‖‖q ‖ f‖Lp (2.32)

for all p satisfying 4/3 < p < 4 which, when combined with (2.23), (2.26)–(2.28) and
the Lp boundedness of the Hardy-Littlewood maximal function, implies

‖∗( f )‖Lp � C(log )2 ‖‖q ‖ f‖Lp (2.33)

for all p satisfying 4/3 < p < 4. Now by (2.23), (2.33) and applying Lemma 2.1 and
Lemma 2.2 we get

‖g( f )‖Lp � Cp(log )2 ‖‖q ‖ f‖Lp (2.34)

for every p satisfying 8/7 < p < 8. By successive applications of Lemma 2.1 and
Lemma 2.2 along with (2.23) and (2.26)–(2.28) we get

‖g( f )‖Lp � Cp(log )2 ‖‖q ‖ f‖Lp (2.35)

and hence
‖∗( f )‖Lp � Cp(log )2 ‖‖q ‖ f‖Lp (2.36)

for all p ∈ (1,) . By (2.21) and (2.23) we have

∗
, ( f ) (x,y,z) � ∗ ( f ) (x,y,z)+2C[(MRn ⊗ idRm ⊗ idR1)◦ (1)

, ]( f )(x,y,z)

+2C[(idRm ⊗MRm ⊗ idR1)◦ (2)
, ]( f )(x,y,z)

+2C[(MRn ⊗MRm ⊗ idR1)◦ (3)
, ]( f )(x,y,z) (2.37)
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which when combined with (2.26)–(2.28), (2.36) and the Lp boundedness of the Hardy-
Littlewood maximal function we get∥∥∗

, ( f )
∥∥

Lp � Cp(log )2 ‖‖q ‖ f‖Lp for p ∈ (1,) . (2.38)

Since the inequality ∥∥∗
, ( f )

∥∥
L

� C(log )2 ‖‖q ‖ f‖L

holds trivially, the proof of (2.13) is complete for the case (t,s) = (t)(s) , where
 , ∈C2 ([0,)) , and  and  are convex increasing functions.

Now we need to prove the lemma for the general case of  as stated above. To
this end, we first need to prove the following: For f � 0, let

 ∗
( f )(z) = sup

k∈Z

∫  k+1

 k
| f (z−(t,s))| dt

t
= sup

k∈Z

∫  k+1

 k

∣∣ f (z−2
s (t))

∣∣ dt
t

.

Our purpose now is to prove that for every 1 < p < , there exists a positive constant
Cp independent of  such that

‖ ∗
( f )‖Lp(R) � Cp(log )‖ f‖Lp(R) . (2.39)

By a change of variable we have

 ∗
( f )(z) = sup

k∈Z

⎛⎜⎝ 2
s ( k+1)∫

2
s ( k)

f (z−u)
du

(2
s )

−1 (u)(2
s )

′((2
s )

−1 (u)
)
⎞⎟⎠ .

Since the function 1

(2
s)

−1
(u)(2

s)
′((2

s)
−1

(u)
) is non-negative, decreasing and its integral

over [2
s ( k), 2

s ( k+1)] is equal to log( ) we have

 ∗
( f )(z) � C log( )MR1 f (z),

where MR1 f (z) is the Hardy-Littlewood maximal function on R1 . By the Lp bound-
edness of MR1 f (z) and the last inequality we get (2.39).

Now we notice that the proof of the lemma for the general case (t,s) will be the
same as its proof in the special case (t,s) = (t)(s) until we reach (2.24). Now we
verify (2.24).

First, by definition of  (1)
, ( f ) we have

 (1)
, ( f )(x,y,z) � sup

k, j∈Z

(∫  k+1

 k

(∫
 j�|v|< j+1

f
(
x,y− v,z−1

t (|v|
)
)
2 (v)
|v|m dv

)
dt
t

)

� sup
k∈Z

∫  k+1

 k
Mt,2 f (x, ·, ·)(y,z)dt

t
,



ON SINGULAR INTEGRALS AND MAXIMAL OPERATORS 753

where

Mt,2g(y,z) = sup
j∈Z

∣∣∣∣∫ j�|v|< j+1
g(y− v,z−1

t (|v|)
2 (v)
|v|m dv

∣∣∣∣ .
By (2.39) and employing the same argument as in the proof of Proposition 14 in [7] we
get for 1 < p � , there exists a positive constant Cp independent of 1

t such that∥∥Mt,2(g)
∥∥

Lp(Rm+1) � Cp (log )‖‖q ‖g‖Lp(Rm+1)

which in turn implies∥∥∥ (1)
, ( f )

∥∥∥
Lp(Rn×Rm×R)

� Cp(log )2 ‖‖q ‖ f‖Lp(Rn×Rm×R).

Similarly we can prove (2.27).
Now, it is left to prove (2.28). We notice that

∫  j+1

 j

∫  k+1

 k
| f (x,y,z−(t,s))| dtds

ts

�
∫  j+1

 j

(
sup
k∈Z

∫  k+1

 k

∣∣ f (z−2
s (t))

∣∣ dt
t

)
ds
s

.

By the last inequality and (2.39) we get (2.28). Now the rest of the proof will
be exactly the same as in the special case (t,s) = (t)(s) . These details will be
omitted. The proof of the lemma is complete. �

LEMMA 2.5. Let h ∈ 

(
R+×R+) for some 1 <  � ,  ∈ Lq(Sn−1 ×Sm−1)

for some 1 < q � 2 and  = 2q′ . Assume

(t,s) = P(t,s) =
d2


q=0

d1


l=0

al,qt
l sq

with l,q > 0 is a generalized polynomial on R2 . Then for  ′ < p �  and f ∈
Lp (Rn×Rm×R) there exists a positive constant Cp which is independent of , h
and the coefficients of P such that∥∥∗

P, ( f )
∥∥

p
� Cp(q−1)−2‖‖q ‖ f‖p . (2.40)

Proof. The proof follows exactly the same lines of the proof of Lemma 2.4 ex-
cept that we need to prove (2.26)–(2.28) when (t,s) = P(t,s) is a generalized poly-

nomial on R2 . Now P can be written as P(t,s) = Qs(t) =
d1


l=0

bl(s)tl and P(t,s) =
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Rt(s) =
d2


q=0

cq(t)sq , where bl(s) =
d2


q=0

al,qsq and cq(t) =
d1


l=0

al,qtl . We start by prov-

ing (2.26). To this end, by definition of  (1)
P, ( f ) we have

 (1)
P, ( f )(x,y,z) � sup

k, j∈Z

(∫  k+1

 k

(∫
 j�|v|< j+1

f (x,y− v,z−Rt(|v|)) 2 (v)
|v|m dv

)
dt
t

)

� sup
k∈Z

∫  k+1

 k
FRt ,2 f (x, ·, ·)(y,z)dt

t
, (2.41)

where

FRt ,2g(y,z) = sup
j∈Z

∣∣∣∣∫ j�|v|< j+1
g(y− v,z−Rt(|v|))2 (v)

|v|m dv

∣∣∣∣ .
Now, ∥∥FRt ,2(g)

∥∥
Lp(Rm+1)

�
∫

Sm−1
|2 (v)|

(∫
Rm+1

(
sup
j∈Z

∫  j+1

 j
g(y− sv,z−Rt(s))

dt
t

)p

dydz

)1/p

�
[log ]+1


l=1

∫
Sm−1

|2 (v)|
(∫

Rm+1

(
sup
j∈Z

∫  j2
l

 j2l−1
g(y− sv,z−Rt(s))

dt
t

)p

dydz

)1/p

.

Since Rt(s) is a generalized polynomial in s with coefficients depending on t , by a
result established in [28] we get(∫

Rm+1

(
sup
j∈Z

∫  j2
l

 j2l−1
g(y− sv,z−Rt(s))

dt
t

)p

dydz

)1/p

� Cp ‖g‖Lp(Rm+1)

where Cp is a positive constant independent of t. By the last two inequalities we easily
get that for every 1 < p � , there exists a positive constant Cp independent of t such
that ∥∥FRt ,2(g)

∥∥
Lp(Rm+1) � Cp (log )‖‖q ‖g‖Lp(Rm+1). (2.42)

It is clear that the proof of (2.27) will be the same. We omit the details. Finally we
prove (2.28). We notice that

∫  j+1

 j

∫  k+1

 k
| f (x,y,z−P(t,s))| dtds

ts

=
[log ]+1


l=1

∫  j+1

 j

∫  j2
l

 j2l−1
| f (x,y,z−Rt(s))| dtds

ts

� C(log )
∫  j+1

 j
M∗

Rt ,R1 f (x,y,z)
dt
t

,
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where

M∗
Rt ,R1 f (x) = sup

r>0

1
r

∫
|s|<r

| f (x−Rt(s))|ds.

As above, by the last inequality and the Lp boundedness of M∗
Rt ,R1 f proved in [28]

we get (2.28). The lemma is proved. �

LEMMA 2.6. Let h ∈ 

(
R+×R+) for some 1 <  � ,  ∈ Lq(Sn−1 ×Sm−1)

for some 1 < q � 2 and  = 2q′ . Assume (t,s) = (t)P(s), where  ∈ C2 ([0,)) ,
and  is a convex increasing function and P is a generalized polynomial given by

P(s) =
d

l=0

alsl . Then for  ′ < p � and f ∈ Lp (Rn×Rm×R) there exists a positive

constant Cp which is independent of  and h such that∥∥∗
, ( f )

∥∥
p
� Cp(q−1)−2‖‖q ‖ f‖p . (2.43)

Proof. Again as in the proof of Lemma 2.5, we follow the same lines of the proof
of Lemma 2.4 and hence we only need to prove (2.26)–(2.28) for (t,s) = (t)P(s) .
We prove first (2.26). We notice that

 (1)
, ( f )(x,y,z)

� sup
k, j∈Z

(∫  k+1

 k

(∫
 j�|v|< j+1

f (x,y− v,z−(t)P(|v|)) 2 (v)
|v|m dv

)
dt
t

)

� sup
k∈Z

∫  k+1

 k
JHt ,2 f (x, ·, ·)(y,z)dt

t
, (2.44)

where

JHt ,2g(y,z) = sup
j∈Z

∣∣∣∣∫ j�|v|< j+1
g(y− v,z−Ht(|v|))2 (v)

|v|m dv

∣∣∣∣
and Ht(s) = (t)P(s). We notice that if g � 0 we have∫

 j�|v|< j+1
g(y− v,z−Ht(|v|)) 2 (v)

|v|m dv

=
[log ]+1


l=1

∫
Sm−1

|2 (v)|
∫  j2

l

 j2l−1
g(y− sv,z−Ht(s))

ds
s

d (v) . (2.45)

Since Ht(s) is a generalized polynomial in s with coefficients depending on t, by (2.45)
and the same argument as in the proof (2.42) we get∥∥JHt ,2(g)

∥∥
Lp(Rm+1) � Cp (log )‖‖q ‖g‖Lp(Rm+1) for 1 < p � . (2.46)

Also, as above we have

 (2)
, ( f )(x,y,z) � sup

j∈Z

∫  j+1

 j
LGs,1 f (·,y, ·)(x,z)dt

t
, (2.47)
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where

LGs,1g(y,z) = sup
k∈Z

∣∣∣∣∫ k�|v|< k+1
g(x−u,z−Gs(|u|))1 (u)

|u|n dv

∣∣∣∣ ,
and Gs(t) = (t)P(s) .

By following the same argument employed in the proof of (2.26) in Lemma 2.4
we obtain (2.27). Finally we prove (2.28). We notice that∫  j+1

 j

∫  k+1

 k
| f (x,y,z−(t)P(s))| dtds

ts

=
∫  j+1

 j

∫ ( k+1)

( k)
| f (x,y,z−uP(s))| du

−1(u) ′(−1(u))
ds
s

� C(log )

(∫  j+1

 j
MP(s),R1 f (x,y,z)

ds
s

)
,

where MP(s),R1 is the directional Hardy-Littlewood maximal function on R in the
direction of s. Since MP(s),R1 is bounded on Lp with bound independent of P(s) we
easily get ∥∥∥ (3)

, ( f )
∥∥∥

Lp(Rn×Rm×R)
� Cp(log )2 ‖‖q ‖ f‖Lp(Rn×Rm×R) (2.48)

for 1 < p �  . The lemma is proved. �

LEMMA 2.7. Let h ∈ 

(
R+×R+) for some 1 <  � ,  ∈ Lq(Sn−1 ×Sm−1)

for some 1 < q � 2 and  = 2q′ . Assume (t,s) = 1(t)+2(s) , where each l (l =
1,2) is either a generalized polynomial or is in C2[0,), a convex increasing function
with l(0) = 0 . Then for  ′ < p � and f ∈ Lp (Rn×Rm×R) there exists a positive
constant Cp which is independent of  such that∥∥ ∗

, ( f )
∥∥

p
� Cp(q−1)−2‖‖q ‖ f‖p . (2.49)

Proof. We shall consider (t,s) = 1(t)+2(s) , where 1 is in C2[0,), a con-
vex increasing function with 1(0) = 0 and 2 is a generalized polynomial given by

2(s) =
d

l=0

alsl . The other cases can be handled in a similar way. As in the previous

lemmas, the proof follows the same lines of the proof of Lemma 2.4 and hence we
only need to prove (2.26)–(2.28) for the case (t,s) = 1(t)+2(s) . We start proving
(2.26). We notice that

 (1)
, ( f )(x,y,z)

� sup
k, j∈Z

(∫  k+1

 k

(∫
 j�|v|< j+1

f (x,y− v,z−1(t)−2(|v|)) 2 (v)
|v|m dv

)
dt
t

)

� sup
k∈Z

∫  k+1

 k
JHt ,2 f (x, ·, ·)(y,z)dt

t
, (2.50)
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where

JHt ,2g(y,z) = sup
j∈Z

∣∣∣∣∫ j�|v|< j+1
g(y− v,z−Ht(|v|))2 (v)

|v|m dv

∣∣∣∣
and Ht(s) = 1(t)+ 2(s). By the argument as in (2.45), noticing that Ht(s) is a gen-
eralized polynomial in s with a constant term depending on t and using a result estab-
lished in [28], we get∥∥JHt ,2(g)

∥∥
Lp(Rm+1) � Cp (log )‖‖q ‖g‖Lp(Rm+1) for 1 < p � ,

which in turn leads to (2.26). As for proving (2.27), by the argument in (2.47) we have

 (2)
, ( f )(x,y,z) � sup

j∈Z

∫  j+1

 j
LGs,1 f (·,y, ·)(x,z)dt

t
,

where

LGs,1g(y,z) = sup
k∈Z

∣∣∣∣∫ k�|v|< k+1
g(x−u,z−Gs(|u|))1 (u)

|u|n dv

∣∣∣∣ ,
and Gs(t) = 1(t)+2(s) = ̃ (t) .

Now we notice ̃ (t) is a C2 ([0,)) , convex and increasing function satisfying
̃(0) = 0. By following the same argument employed in the proof of (2.26) in Lemma
2.4, we obtain (2.27). Finally we prove (2.28). We notice that

∫  j+1

 j

∫  k+1

 k
| f (x,y,z−1(t)−2(s))| dtds

ts

=
∫  j+1

 j

∫ 1( k+1)

1( k)
| f (x,y,z−u−2(s))| du

−1
1 (u) ′

1(
−1
1 (u))

ds
s

� C(log )2MR1 f (x,y, .)(z),

where MR1 denotes the Hardy-Littlewood maximal function on R1. Since MR1 is
bounded on Lp, we easily get∥∥∥ (3)

, ( f )
∥∥∥

Lp(Rn×Rm×R)
� Cp(log )2 ‖‖q ‖ f‖Lp(Rn×Rm×R) (2.51)

for 1 < p �  . The lemma is proved. �

3. Proofs of main theorems

Since  (R
+× R+)⊆ 2(R

+× R+) when  � 2, we may assume that 1 <  � 2
and |1/p−1/2|< 1/ ′ . First, we notice that

T f (x,y,z) = 
k, j∈Z

k, j, , ∗ f (x,y,z).
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Now, by invoking Lemmas 2.4–2.6 and following arguments similar to the proof of
Theorem 7.5 (in the one-parameter setting) in ([19], p. 824) we have∥∥∥∥∥( k, j∈Z

∣∣k, j, , ∗ gk, j

∣∣2) 1
2

∥∥∥∥∥
p

� Cp(log )2 ‖‖q

∥∥∥∥∥( k, j∈Z

∣∣gk, j

∣∣2) 1
2

∥∥∥∥∥
p

(3.1)

for p satisfying |1/p−1/2|< 1/ ′ and for arbitrary functions {gk, j} on Rn× Rm×R.
Now by Lemmas 2.4–2.6, (3.1), Lemma 2.3 and invoking Lemma 2.2 we get

‖T f‖p =

∥∥∥∥∥ k, j∈Z
k, j, , ∗ f

∥∥∥∥∥
p

� Cp(log )2 ‖‖q ‖ f‖p (3.2)

for p satisfying |1/p−1/2| < 1/ ′, which in turn ends the proof of each one of
the inequalities (1.5), (1.6), (1.8), (1.10) and (1.12). Now, by Lemmas 2.4–2.6 and
a standard argument we get (1.7), (1.9), (1.11) and (1.13). This completes the proofs
of Theorems 1.1–1.5. Now the proof of Theorem 1.6 can be obtained by the estimates
(1.5)–(1.13) and employing an extrapolation method similar to the one employed in [4].
We omit the details.

Finally we can prove Theorem 1.7 by the above estimates and following the same
arguments as in [6]. Again we omit the details. This completes the proofs of our
theorems. �
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[13] H. CARLSSON, P. SJÖGREN, Estimates for maximal functions along hypersurfaces, Ark. Mat. 25
(1987) 1–14.
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