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ON SINGULAR INTEGRALS AND MAXIMAL OPERATORS
ALONG SURFACES OF REVOLUTION ON PRODUCT DOMAINS

HUSSAIN AL-QASSEM, LESLIE CHENG AND YIBIAO PAN

(Communicated by L. Liu)

Abstract. We study the mapping properties of singular integral operators along surfaces of revo-
lutions on product domains. For several classes of surfaces, we prove sharp L” bounds (1 < p <
o) for these singular integral operators as well as their corresponding maximal operators. By
using these L” bounds and an extrapolation argument we obtain the L” boundedness of these
operators under optimal conditions on the singular kernels. Our results extend and improve
several results previously obtained by many authors.

1. Introduction

Let RY (d =nord =m), d>2 be the d-dimensional Euclidean space and
S?~1 be the unit sphere in R? equipped with the normalized Lebesgue measure do .
Also, we let &’ denote &/ |&| for & € R"\ {0} and p’ denote the exponent conjugate
to p, thatis 1/p+1/p' =1.

Let h(-,-) be a measurable function on R x R™ and let

Kaa(x) = .y e ) b, o)) (L.1)

where Q is a homogeneous function of degree zero on R” x R” and satisfies

Q(u,-)do (u) = Q(-,v)do(v)=0. (1.2)

S§n—1 §m—1

For a measurable real-valued function 7z on R* x R*, we say that 1 € A, (R* xR"),
y> 1, if

2R,
Inlls, = sup {Ry'Ry / / ht,s) dtds} < oo,
R|,Ry>0

Let @(s,7) be areal-valued functionon R™ x R™. For (x,y)€ R* x R™ and z € R,
let Ty, be the singular integral operator along the surface T, (x,y) = (x,y, ®(|x|,[y]))

T‘I),hf(x7y7z> :pV/R R f(X—uyy—VaZ—q)(|“|7|V|))KQ,h (u,v)dudv. (13)
n>< m
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Also, let .#g j, be the related maximal operator defined initially defined for f € Cg (R" x
R” x R) by

Monf(x,y,2) (L.4)

1
= sup o [y vz @l D) 1R () il )
>0 11 J vy Jul<ry

If ® =0, weshalllet Tj, = Ty, and A}, = Mo .

The study of the L? (1 < p < e) boundedness of T}, and ., and their extensions
under various conditions on Q and 4 has attracted the attention of many authors (see
for example, [6], [9], [17], [18], [20], [21], [22]). In the one parameter case, the study
of the L” boundedness of such kind of operators Tg j, and .#q , Was initiated in [25]
and continued by many authors. For relevant results one may consult [7], [10], [24],
among others.

In [25], the authors proved that the L” boundedness of singular integrals along
certain surfaces of revolution still holds even if the surfaces make an infinite order of
contact with their tangent planes at (0,0) (i.e. flat). The result can be described as
follows:

THEOREM A. Let ¢ be a C*([0,0)), convex and increasing function satisfying
$(0)=0. Let Q € C(S"1) and Sy f be given by

Q /
So f(x,%n+1) ZP.V./f(x—y,xn+1_¢(|y|)) )(]y,,)d
Rn

Then for 1 < p < o, there exists a positive constant C,, such that
Hs¢f||Lp(Rn+l) <G HfHLP(RnH)

forall feLP(R™).

This result was improved in several papers (see [7] and [10], among others). An
analogue of Theorem A in the product space setting was obtained in [1], which can be
described as follows.

THEOREM B. Let ¢,y be C*([0,0)), convex and increasing functions satisfying
¢(0)=w(0)=0. Ler Q € BEIO’U(S"_1 x 8"1) for some g > 1, and h € A, (RT x RT)
for some y>1 and Sy f be given by

Souf(E,7) =pov. / / F(E—B(u), 7 —F(v))Keup(u,v)dudv
Rm R)'l

where ®(x) = (x,0(|x])), ) = 0, w(y]), ¥ = (x,x,11) ER" xR and y = (y,ym+1)
€ R" x R. Then for 1 < p < o, there exists a positive constant C,, such that

S0, /1

LP(RA+1 xR+ < CP HfHL!’(R’HlXRerl)
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forall f e LP(R™1 x R™H).

The study of the double Hilbert transforms along surfaces has attracted the atten-
tion of many authors. See for example [11], [12], [13], [14], [15], [17], [26], [27]. In
this paper, we are very much motivated by the work of authors in [11], [15], among
others who studied double Hilbert transforms along surfaces of the form (z,s,¢(z,s)).

Our main focus in this paper is to investigate the L” boundedness of Tgj; and
Mo, for several classes of functions ®(s,#) and under very weak conditions on €
and h. We notice that our surfaces are natural extensions of the surfaces of revolutions
considered by many authors in the one parameter setting.

Our principal results in this paper are the following:

THEOREM 1.1. Let ® € C! ([0,0) x [0,0)). Suppose that Q € L4(S"~! x §™~1)
for some 1 < q<2 and hc A (R" xR") for some 1 <y < co.Then

||T<D,h (f)||L2(R"><R"’><R) < Cp(q - 1)_2 HQHUI(S”*IXS’”*I) Hf”LZ(R”meXR) (1.5)

forevery f € L*(R" x R" x R).

THEOREM 1.2. Suppose that Q € L1(S"~! x §"~1) for some 1 < g <2and h €
A, (RT X R") for some 1 <y < oo. Assume that ® € C' ([0,0) x [0,0)) such that for
every fixed t and s, T} (-) = ®(t,-),T2(-) = ®(-,5) € C?[0,0) are convex increasing
functions with T} (0) =T2(0) = 0. Then

(i) for |1/p—1/2| <min{1/2,1/Y'}, there exists a positive constant C,, such that

| Tonf|

-2
LP(R"xR™xR) < Cp(q_ 1) HQHLII(S”’IXS’”*I) Hf||U’(R"mexR)7 (1.6)
(ii) for every Y’ < p < oo, there exists a positive constant Cy, such that

||%®,h (f)HLP(R"XR’”XR) < Cp(q - 1)72 ||Q||Lq(S”’l><Sm71) ”f”L/’(R"XRmXR) (17)

forall f € LP (R" x R™ x R). The constant C,, may depend on n,m, but is independent
of the Q and q.

We notice that our theorem covers several types of natural surfaces. For exam-
ple, our theorem allows surfaces of the type 'y with ®(z,s) = s22(e~'/* +e~'/"),
(s,t > 0). This surface has a contact of infinite order at the origin which was stud-
ied by Duoandikoetxea in [17]. Also we notice that the interesting special case of '
with ®(¢,5) = ¢1(¢t)¢2(s), where each ¢; € C?[0,) is a convex increasing function
with ¢;(0) = 0. This surface was considered in [15] in studying double Hilbert trans-

forms along surfaces of the form (z,s,¢(¢)y(s)). A nice example of this surface is
(t,s,eV/se= 1),

THEOREM 1.3. Suppose that Q € LI(S"~! x S"~1) for some q € (1,2] and
d d
he A, (Ry xRT) for some 1 <y <eo. Assume that ®(t,s) =P(t,s) = ¥ ¥ a; t%sP

1=0i=0
with o, 8 > 0 is a generalized polynomial on R?. Then
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(i) for |1/p—1/2| <min{1/2,1/Y'}, there exists a positive constant C,, such that
-2

HTthHU(Ranme) < Cplg—1) 7|1l Lasr1xsm1) 1f o (R xr7 xR 5 (1.8)

(ii) for every ¥’ < p < oo, there exists a constant C,, such that

|- 2w (f)HLp(Ranme) <Cplqg—1)7° 12| za(sn-1 xsm—1) 1f | o (mrxrmxry — (1.9)

forall f€LP(R"xR"xR).
The constant Cp,may depend on n,m, but is independent of the Q and q and the
coefficients of P.

We remark that Theorem 1.3 allows very important special classes of surfaces. If
we take ®(z,s5) = 1*sP with «, B > 0, then the corresponding surface was considered
by many authors in their studying double Hilbert transforms and singular integrals on
product domains. See for example, [13], [14], [17], [18], [23]. Also, as a special case
of @ is ®(¢,s) = P(s,t) is a polynomial where the study of Double Hilbert transforms
along the surface (z,s,P(r,s)) has attracted the attention of many authors. See for
example [11], [27], among others.

THEOREM 1.4. Suppose that Q € L4(S"~! x S"~1) for some q € (1,2] and h €
A, (R xRy) for some 1 <y < oo. Assume that ®(t,s) = ¢(t)P(s), where ¢ € C?[0,)
is a convex increasing function with ¢(0) =0 and P is generalized polynomial on R.
Then

(i) for |1/p—1/2| <min{1/2,1/Y'}, there exists a positive constant C,, such that

||T<I),hf’|Lp(Rn><RmXR) <Cplg—1)72 1] za(sn-1xsm1) 1 fll o xrmxry s (1.10)
(ii) for every Y < p < oo, there exists a constant C,, such that
- ()] ey < Co@ =1 7219 oty 1 o ooy (11D)

forall f € LP (R" x R" x R). The constant C;, may depend on n,m, but is independent
of the Q,y and q and the coefficients of P.

THEOREM 1.5. Suppose that Q € L4(S"~! x S"1) for some q € (1,2] and h €
A,(Ry xRy) for some 1 <y < oo. Assume that ®(t,s) = ¢1(t) + ¢2(s), where each

&, (1 =1,2) is either a generalized polynomial or is in C*[0,%0), a convex increasing
Sfunction with ¢;(0) = 0. Then
(i) for |1/p—1/2| <min{1/2,1/y'}, there exists a positive constant C,, such that

-2
HT(D7thLI’(R"><Rm><R) < Cp(q_ 1) HQ”Lq(S"*lXSm*l) ||fHLP(R”><R’”><R)7 (112)
(ii) for every Y < p < oo, there exists a constant C,, such that
-2
H///‘l’vh (f)HLI’(R"mexR) <Cplg—1) HQHLq(snflxsm*l) Hf||Lp(Ranme) (1.13)

forall f € LP (R" x R™ x R). The constant C,, may depend on n,m, but is independent
of the Q and q.

By the conclusions in Theorems 1.2, 1.3, 1.4 and 1.5 and applying an extrapolation
method as in [8], we get the following results:
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THEOREM 1.6. Let ® and h be given as in any of Theorem 1.2, 1.3, 1.4 or 1.5.
Assume that Q € L(logL)* ("' x S"~1) or Q € B,SO"I) ("1 x §"71) for some g > 1,
then

(i) for |1/p—1/2| <min{1/2,1/y'}, there exists a constant C, > 0 such that

7o/

LP(R"xR™ xR) <G ||f||LI’(R"><Rm><R) ) (1.14)
(ii) for every ¥’ < p < oo, there exists a constant C,, such that
Hj/d)vh (f)HLP(R”XR’”xR) < CP HfHLP(RnXRmXR) (1.15)

forall f € LP (R"xR" x R).

We shall also establish the L” boundedness of the maximal truncated singular
integral operator Ty, , given by

(Tdt,hf)(x7y7z)

/ / fx—u,y—v,z—D(|ul,|v])) Ko (u,v)dudv|,
=& Jlul>e
(1.16)

= sup
£1,6>0

where @ is given as before.
By Theorem 1.6 and following a similar argument as in [6] we have the following
result for T .

THEOREM 1.7. Suppose that Q € L(logL)* (S"~! xS™1) or Q € Bg’l(S”_l X
S"=1) for some q > 1.
(i) If ® € C' ([0,00) x [0,00)) and h € A, (R" x RY) for some y > 1,

||T(I>§7h (f)||L2(R"><R’"><R) < C||fHL2(R”><Rm><R) (117)
forevery f € L>(R" x R" xR), and

(ii) if h(t,s) = hy (t)hy (s) with hy, hy € L™ (RT) and ® is given as in any of
Theorem 1.2, 1.3, 1.4 or 1.5, then

|75 () HU(Ranme) S Cp 1l o (rescrm xRy (1.18)

holds forall 1 < p < e and f € L? (R" xR" xR).

2. Some definitions and lemmas
We will begin by recalling some definitions. The class L(logL)“(S"~! x 8§ 1)

(for o > 0) denotes the class of all measurable functions Q on S"~! x §"~! which
satisfy

120 2rog ) (st xesm1) = /SS [Q(x,y)|log” (2 + |Q(x,y))do (x)do (y) < .
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Now we define the class of B(O v (g1 x §m=1). A g-block on 8"~ x§" ! isan L9

/
(1 < g <o) function b(x,y) that satisfies b C I and ||b||;4 < \I|71/’1 ,where |-| denotes
the product measure on 8"~ ! x8"~! and I is an interval on 8"~ 'x8"" ! ie.,

I={xeS" ' |¥—xp| <a}x{y eS|y —w|<B}

for some o, >0, x, € S"! and y} € S"~!. The block space B} = B"")(S"~1 x
S”~1) is defined by

u=

where each A, is a complex number, each b, is a g-block supported on an interval I,
on S ! x8" ! v>—1, and

v) ({Aﬂ}) = il }/IH} {1 +10g(v+1)(}lu}_l)}-

0, . 0, . w
Let €00 g, 1,501y = Vo (Q) = inf(M" ({4,}): @ =71 4,b, and
each b, is a g-block function supported on a cap I, on $"~' x §™~'}.

REMARK. For any ¢ > 1 and 0 < v < 1, the following inclusions hold and are
proper:

LIS 1 x 8™ 1) ¢ L(logL)*(S" ' x 8™ 1) c LY(8" ! x 8™ 1) for a > 0,

UL’(S"_1 x 8" ¢ 351070)(8"_1 x 8™ 1) forany — 1< vandg> 1,
r>1

LogL)’ (8" ' x 8™ ')  L(logL)“ (8" ' x §" ') if 0 < & < B.

The questlon with regard to the relationship between B(0 vl (gn=1 x §m-1) and
L(log™L)" (8" x §™1) (for v > 0) remains open.
We shall need the following two lemmas from [6] which are extensions of the
corresponding results of Duoandikoetxea in [17].

LEMMA 2.1. Let {,u;w-} be a sequence of Borel measures on R" x R™. Suppose
that for some g > 1 and B > 0,

[ (f)HLq(R"me) <B Hf“L‘I(R”xR’”)
holds for every f in L1 (R" x R™). Then the following vector-valued inequality

(= wk,.,»*gk,jlz)m

kjez LP0 (R" xR™)

1/2 1/2
< (B sup ||.Uk;||> ( 2 ’gkd’ )
k,jEL k,jJEZ LPo

(R"xR™)
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holds for [1/po—1/2| =1/(2q) and for arbitrary functions {gi ;} on R" x R™.

LEMMA 2.2. Let L:R" — RJ! and Q : R" — R be linear transformations.
Let {Ukh,': k, je Z} be a sequence of Borel measures on R" x R™. Suppose that for
some a>2,b>2, a, B, C>0, B>1 and p, € (2,) the following hold for k,
JEZ, (£,m) € R"XR™ and arbitrary functions {gkﬁj} on R" xR":

(i) [Ocs (E,0)] <CB (¢ |L(8)])* P (bjB‘Q(n”)i%
12 s
(ii) ( )y }Um*gk,,-}z) <CBz ( 3 |gk7j|2>
“ z

k,j€ k.je
LPO (Rn X Rm)

Then for py < p < po there exists a positive constant C,, such that

LPO(R" xR™)

Y Uij*f <G B2||f||LP(R”xR’”)
k,jEZ Lp(Rn XR"’)
and
12
2
( Y |Gk f| ) <G, B /11 2p (R screm)
kjeZ

LP(R"xR™)

hold for all f in LP (R" xR™). The constant C, is independent of B and the linear
transformations L and Q.

Let 6 > 2. For a suitable function Q(-,-) on §"~! x §”~! we define the measures
{Ak.j.0.0 : k,j € Z} and the corresponding maximal operator Ag, 4 on R" x R™ x R by

/ fdAjoo= / f (v, @(|ul,|v|)) Kan(u, v)dudy, (2.1)
R*xR"™"xR th/)g

and
Ao of (x,y) = sup || A j0.0| % f(x,y)] (2.2)
k.jeZ

where Dy ;o = {(u,v) €R" x R™: 0F < |u| < 6F1,07 < |v| < 6771} and ®(z,s) is

an arbitrary function on R x R. Let t*% = inf (ta, t*‘"> .

LEMMA 2.3. Assume that ® € C" ([0,%0) x C'[0,0)) andlet h€ A, (RT xR") for
some v, 1 <y <2. Let Q€ LI(S" ! x S"1) for some 1 < q <2 and satisfy (1.2).
Then there exist a positive constant C, 0 < a < 1/q’ such that forall k,j€Z, (£,1n,1)
€ R" X R" x R we have

A i% . ig/
Jujool&m )| < Cllog0)2 @1, 6" | 7 |6/ n[*7 . (23)

The constant C is independent of k, j, 6 and @ (-,-).
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Proof. By using Holder’s inequality we get

A ,j,@,@(ﬁ,n,ﬂ)‘

/9’“/6”' | deds v
0/ ok

9]+1 9k+1
L f

9/+1

—i(tEx+ud(r, s))
/S e Q(x.y)do (x)

ts

Since

/ /9"“ ht.s ydtds
0/ Jox o

(log@)/(log2) (logH)
<

I+1

k
(10g2)/9f2 0k2 A ,dt ds
6/2° 6k2

~

= I
( 20)’ Hh“A :

0

and y’ > 2, we obtain

5 (1=
e joa(@n.w)| < Clog0) ™10 | Q01 gn,

gk+1

“(

2
/ 167i(t§'x+#®(t"y))g(u,V)dO’ (u)
Sn

We notice that
2 —— k().
iy ) = [ Q) Bane® % do (x)do ()

and

[¢]
/ eiﬂkté'(x—u) ﬂ
1 t

< Cmin{log@,

o'z -] '}
< Cllog) |oe| (g (v—u)| %,
where &' =£/|&], and 0 < o < 1. By choosing o with o’ < 1 we get
‘/Alhj,e,@(i»?’hﬂ)‘

-7 (1-2
Clog0)? [l |0*| 7 [ 126013

([ g, @) T (0] “da ) )

<=

1 J
’”dtds> /yda()
— V).

(2.4)
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1
—aq 77
(g b =l doao @)™ <

by Holder’s inequality we get

Since

‘/Alhj,e,@(i»?’hﬂ)‘
< Cllog0)* s, [0°2| 7 [ 1RCxI S IR0 DI 1 o)

which easily implies

eké’—a/i/

p ,'97(13(&7‘”7.“')’ < C(10g6)2 HQHL‘i(S"*l)

By combining the last estimate with the trivial estimate

2ajo.0(&m.1)| < C1og ) @ pagsn 151
we get
[has0.0(E.m.1)| < Cllog 02 @ oqsn 151

Similarly, we have

) ,'9@(5#7»#)’ < C(log6)? (|| a(sn-1wgnr) |80 | 47"

Now, by (1.2) we get that

)/Alk,j,e;b(i»?’hﬂ)‘

L

% ’h(ekt7 ejs)’ ’e—i{ekt§~x+u<b(6kt79-fs)} _ o ik®(0%1,67s)

Qxy)e o)
Sm

ﬂé) do(x).

t s

By the last inequality and Holder’s inequality we get

'%;,9,@(5 ) TI,M)‘

el () [ oo 42) "
0 0
|

/ l/y’
Y
M) iol) 28

1 Q(x7y)e_i9jm'yd0'(y)
N

t s
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and hence by (2.4) we obtain

‘/Alhj,e,@(i»?’hﬂ)‘ < C(1og0)” (|| ragsr1 xsm-1) ’eki‘ : (2.9)
By (2.5) and (2.9) we get
hajo0(&m. )| < Cl10g0)? @yt snry 05677 (2.10)
Similarly we have
) 7,»e,¢(§,n,u)| < C(10g0) L ya(sn-1n1) [6/0 |7 (2.11)

By combining (2.5)—(2.7) and (2.10)—(2.11) we get

57 _a
ke n[f@7 . @12

! ,'9@(’5777»#)’ < C(log0)? 1Rl a(sn—1 xsm1)

The lemma is proved. [J

LEMMA 2.4. Let h € A (R+><R+) for some 1 <y < oo, Qe LI(S"! x 81
for some 1 < q <2 and 6 =29. Assume that ® € C" ([0,00) x [0,00)) such that for
every fixed t and s, T}(-) = ®(t,-), T2(-) = ®(-,s5) € C*[0,0) are convex increasing
functions with T} (0) = T2(0) = 0. Then for ¥ < p <o and f € LP (R" x R" x R)
there exists a positive constant C,, which is independent of & and h such that

260 (], < Cola—1) 2111, If1],- (2.13)

Proof. Without loss of generality, we may assume that Q > 0. We shall first prove
the lemma for the special case ®(z,s) = ¢(¢)y(s), where ¢,y € C?([0,)), and ¢
and y are convex increasing functions with ¢(0) = y(0) = 0. By Holder’s inequality
and (2.4), there exists a positive constant C such that

X0 (f) < Clog ) (a5 o (1F17 )Y (2.14)
where
/ fdoy oo —/ S u,v, @(Jul,|v])) Qw, w)dudv
R*xR"™" xR A,g | ‘ | |
and
0p.0(f) = sup ||okj0.0]*f]- (2.15)
k,jeZ

To prove (2.13), by (2.14) it suffices to prove that

06,6 (N, < Cpllog0)* (|, [If], for 1 <p<ee. (2.16)
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By the arguments in the proof of Lemma 2.3 we obtain the following:

|61.0.0(E,m,1)] < Cllog0)* ], |6* & T Jgi | 5 (2.17)
|61.5.0.0(&,M, 1) — 6k j.0.0(0,m, 1))

< Cllog0 )], |0* |7 |07 n| 57 @18)
|6.j,0.0(E: 1, 1) — G j0.0(E,0, 1))

< Cllog0 ], |0* &[ 7 |0/ n|57 2.19)
|61..0.0(En1) — 6 j.0.0(0,0,1) — 6 j0.0(E,0,u) + 6k j.0.0(0,0,1)]
Cliog0)? |, |o0* &[T |07 n |37, (220,

where £ € R”, n € R” and u € R.

Let ¥ €. (R") and ¥? € 7 (R") be two Schwartz functions such that Wi (&) =
1 for [§] < 4 and (W) (&) =0 for |&) = 1,0 = 1,2. Let ‘Pl(g) 'z (6%¢) and
‘I’f(n) 2 (6/n) . Define the sequence of measures { vy ;} by

/\

0 () = 61j0.0(E.1,1) —FL(E) 61 j.0.0(0,m. 1) —F2 (1) 61 j.0.0(E,0, )
+BL(E) W2 (1) 610.0 (0,0,10). (221)

By a standard argument we get

o 2 e AP BE
[9j(Eom.)| < Cllog0)? 2, [0 €|~ 7 |0/ n[*57 . @22)

Set

g(f)(X,y,Z) = (2 ’Vk7j*f(x7y7z)’2> 7V*(f):ksupz”vk,j’*f’a
S

kjEZ
(1) 9k+1 dl
oppftens) = swp [ ([ -z 0w () ) Tav
' k,jezJ0I<|v|<6/+! ok t
(2) 0/+! ds
ouaf ) = sup [, e 0w @) T
9k+1 j+l dlds
oS (0,2) = 1€, sup [ [ 1o owisn 22,
JEL

where

Qi (1) = /Sl 1Q (i, v)|do (v) and Qs (v) = /SH 1Q (u,v)| do (u).
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Itis clear that Q; € L9(S" ') and Q, € LI(S"~!). Now, by (2.21) we have
V() (60.2) < g () (10.2) +C (Mo ® i i) 0 03y ) (1) (.3:2)
‘c (idRm ® Myn @ idg1 ) 0 agg) (f)(x,7,2)
‘c (///Rn ® Myn @ idgs) 0 aéfé) (F)(x.0,2), (2.23)

where .#Rs denotes the Hardy-Littlewood maximal function on R*.
We need now to study the L” boundedness of the maximal operators O'(g)e (),

I =1,2. First, by definition of 6l )(f) we have

O b (/)(x,.2)

o+ (v dt
< ([0 ([t eomve=ow) Plar) ¢
kjez. \ J ok i<V <0/+1 vl t
9k+1 dl
< sup My),0,f (%) (3,2)—, (2.24)
kez J ok t
where
Mg =swp| [ gz ey () 22y
" jez.|Joi<|v|<oi+! [v|

By employing the same argument as in the proof of Proposition 14 in [7] we get for
1 < p < oo, there exists, positive constant C,, independent of ¢ such that

H%Ohﬁz (g)HUz(RmH) < Cp (loge) HQHq ||g||Lp(Rm+l), (2.25)
By (2.24)—(2.25), for every 1 < p < oo we have

|ows(£) < Cyl10g 0 [, I lmocrncr,  (226)

LP(R" xR xR)

Similarly, for every 1 < p < o we have

|osa(

2
ey < 10RO 190, W sy 22)

Also, by a change of variable we have

9/+1 9k+1 dd
/9/6 Fenz= 0w T

ts
9/+1

9A+l du
/ A T TRl

{%W(-V)lef(x7y7 )(Z)ds> y

9]+1

C(logh) ( .
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where .Z, g1 is the directional Hardy-Littlewood maximal function on R in the di-
rection of . Since .Z g1 is bounded on L” with bound independent of s, for every
1 < p <o we easily get

] < Cyl10g 0P 12, I/ oo rnery - (228)

LP(R"xR" xR)
Now, by (2.22) and Plancherel’s theorem we have

g (f)ll2 < Clog0)* L], 11/ 2 (2.29)
and hence by (2.23), (2.26)—(2.28) we get
V()2 < Cllog6)* |12, [1.£1] 2 (2.30)

for some positive constant C independent of 0. By applying Lemma 2.1 (with g = 2)
along with the trivial estimate ||vi ;|| < C||Q]| g (log0)? we get

2,1 1
(3 [vesrgri2|| < Cpyllogd1Q1,||( X [or,])? (231)
k,jeZ 0 k,jeZ 0
if 1/4=1/po—1/2|. Now, by (2.22), (2.31) and Lemma 2.2 we obtain
lg (M)l < Cpllog 8)* 121l 1f1] (2.32)

for all p satisfying 4/3 < p < 4 which, when combined with (2.23), (2.26)—(2.28) and
the L? boundedness of the Hardy-Littlewood maximal function, implies

IV ()l < C(log 0)% QI [1£1]0 (2.33)

for all p satisfying 4/3 < p < 4. Now by (2.23), (2.33) and applying Lemma 2.1 and
Lemma 2.2 we get

lg (Ml < Cplog 8)* 121l [1f1l 10 (2.34)

for every p satisfying 8/7 < p < 8. By successive applications of Lemma 2.1 and
Lemma 2.2 along with (2.23) and (2.26)—(2.28) we get

lg (M)l < Cplog 8)* 121l 1f1] (2.35)

and hence
IV (F)llr < Cp(log0)* L, [1f1lL» (2.36)

forall p € (1,e0). By (2.21) and (2.23) we have
G0 (F) (1.3,2) <V (f) (%,9.2) + 2C[ (Mo @ icdgen @ il ) © Oy ] () (x,7,2)
+2C](idgr @ M @ idy1) 0 O ) () (3,,2)
F2C(Mr © Mg @ idg1) © Ty ) () (x,7,2) (2.37)
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which when combined with (2.26)—(2.28), (2.36) and the L” boundedness of the Hardy-
Littlewood maximal function we get

o6 ()]

Since the inequality

1 < Cpllog0)? (|9, [I£]l,» for p € (1,%0). (2.38)

16,0 (F)]] - < Cllog0)* Q| || f]

holds trivially, the proof of (2.13) is complete for the case ®(¢,s) = ¢ (1) y(s), where
¢,y €C?([0,)), and ¢ and y are convex increasing functions.
Now we need to prove the lemma for the general case of @ as stated above. To
this end, we first need to prove the following: For f > 0, let
gk+1 dl gk+1 dt
M@ =sup [ |- T=sup [ [fe-T20)] 7.

keZJ O t keZ /O t

Our purpose now is to prove that for every 1 < p < oo, there exists a positive constant
Cp independent of @ such that

120 (F) o ry < Cp(log 0) (£l o v - (2.39)

By a change of variable we have

F%(ekJrl)
. ‘ du
raNE@=sp| [ femm
2\ i () ) (r2) () ()
Since the function (FZ)’I( 1 ( ) is non-negative, decreasing and its integral

over [[2(0%), T2(6%1)] is equal to log (6) we have

Ao (f)(2) < Clog () .y f(2),

where .#g1 f(z) is the Hardy-Littlewood maximal function on R!. By the L” bound-
edness of .#y1f(z) and the last inequality we get (2.39).

Now we notice that the proof of the lemma for the general case ®(z,s) will be the
same as its proof in the special case ®(z,s) = ¢(¢)w(s) until we reach (2.24). Now we
verify (2.24).

First, by definition of Ggé (f) we have

6k+l
(1) < / / o 1l Q2 (V) ﬂ
G(I)ﬂ(f)(xvyvz) = I:}lepZ ( ok ( 9j§|v\<9-f+l f (x,y V2 Ft (‘V‘)) ‘V‘m dV t

9k+l d[
Sup %sz( X )( 7Z)7a

kel
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where

QQ v
My.2,8(Y,2) = sup / gy—wz—T}(v)) (m)d%
jez |/ 0i<|v[<0it] [v|

By (2.39) and employing the same argument as in the proof of Proposition 14 in [7] we
get for 1 < p < oo, there exists a positive constant C,, independent of I'! such that

H*//lhﬁz (g)HUz(RmH) < Cp (loge) HQHq ||g||Lp(Rm+l)

which in turn implies

o)

2
LP (R"xR™ xR) < Cp(loge) HQ”q ||f||L1’(R’1><RW><R)_

Similarly we can prove (2.27).
Now, it is left to prove (2.28). We notice that

okt drds
Ak |f(x7y7z_q)(tvs))|7

gJi+!

0J
gi+1 gh+1 dir\ ds
< / (sup/ |f(z—Ff(t))|—> —.
07 keZ J ok 1 s

By the last inequality and (2.39) we get (2.28). Now the rest of the proof will
be exactly the same as in the special case ®(z,s) = ¢(¢)w(s). These details will be
omitted. The proof of the lemma is complete. [

LEMMA 2.5. Let h€ A, (RTxR") for some 1 <y <eo, Qe LI(S" ! xS 1)
for some 1 < q<?2and 0 = 29 Assume

dy dy

D(1,5) = P(t,s) = 2 Zahqta’sﬁ‘i

q=01=0

with o4,By > 0 is a generalized polynomial on R>. Then for Y < p <o and f €
L? (R" x R" x R) there exists a positive constant C,, which is independent of Q, h
and the coefficients of P such that

loze (], < Cpla— 1)1, 11, (2.40)

Proof. The proof follows exactly the same lines of the proof of Lemma 2.4 ex-
cept that we need to prove (2.26)—(2.28) when ®(z,s) = P(z,s) is a generalized poly-

d;
nomial on R?. Now P can be written as P(t,s) = Qs(t) = 3 b(s)t% and P(t,s) =
1=0
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dy d;
Ri(s) = Y c,4(t)sPs, where b;(s) = Z a1 45P1 and ¢, (t) = Y a; 4% . We start by prov-

q=0 q=0 =0
ing (2.26). To this end, by definition of Gé 6) (f) we have

9k+1
(1) / / Q;(v) )dt
c X, 9,7) < su X,y —v,z—R/(|v —=dv | —
00 wn2) M&( (g sl P )
9k+l dt
< sup , gRr,sz(xfa')(%Z)_v (241)
kez J 0% t
where 0 (v )
2
Fuanstn)=sup| [ gly=vz=R() T
jez |J0i<v|<0it! [v[™
Now,

Hg\Rt7QZ(g)||Lp(Rm+l)
git1 ar\’ 1/p
</ Q2 (v)] / sup/_ g(y—sv,z—Ri(s)) — | dydz
sm—1 R+ IGZ 0J t

[log 0]+1

1 p 1/p
072 dt
< /SW . ‘92 /m+1 jeg 5i-1 g(y_SV7Z_Rt(S)) 7 dydz .

Since R;(s) is a generalized polynomial in s with coefficients depending on 7, by a
result established in [28] we get

072 gt P 1/p
(/an (;grz)/ejz,lg(y—swz—Rt(S))T) dde> <Cpllgllr(rn)

where C), is a positive constant independent of 7. By the last two inequalities we easily
get that for every 1 < p < oo, there exists a positive constant C}, independent of ¢ such
that

[ 7.0 1) < Cp 1080) 121, gl @42)

It is clear that the proof of (2.27) will be the same. We omit the details. Finally we
prove (2.28). We notice that

gJ+1 9A+1 dids
[ [ 1t Pas) 52
0/ ok ts

[log 0]+

0/t 1072 dtds
= 2 / / fx,y.z2—Ri(s))| —
= Jeoi Jon

6/+1

dt
C(loge) M;anf(x7y7Z)77

9J
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where

N 1

MR,.,le(x) :Sug; |f (x—Ri(s))ds.
~ [s|<r

As above, by the last inequality and the L” boundedness of M;,.Rl f proved in [28]

we get (2.28). The lemma is proved. [

LEMMA 2.6. Let h € A, (RTxR™) for some 1 <y <eo, Qe LI(S" ! xS 1)
for some 1 < q <2 and 6 =27 . Assume ®(t,s) = ¢(t)P(s), where ¢ € C2([0,%0)),
and ¢ is a convex increasing function and P is a generalized polynomial given by

P(s)= Z ais® . Thenfor Yy < p <ooand f € LP (R" x R" x R) there exists a positive

constant C which is independent of Q and h such that
5.0 (N, < Cola—1) 211 171, - (2.43)

Proof. Again as in the proof of Lemma 2.5, we follow the same lines of the proof
of Lemma 2.4 and hence we only need to prove (2.26)—(2.28) for ®(t,s) = ¢(¢)P(s).
We prove first (2.26). We notice that

O b (/)(x,0.2)

gk+1

Qs (V) dt
S I:;lepl </9k </ef<|v|<ej+1 f ey =vz=0@P(M) [v[™ dv) T)

gk+1 d

<swp [ Faanfle 0T (.44)

where

2(v)
,Z) = Su —v,z—H,(|v =dv
Suongtr)=sup| [l ve D)

and H;(s) = ¢(¢)P(s). We notice that if g > 0 we have

2 (v)
—v,z—H, d
AKMdﬂﬂo 2 Hy ()

9/2 d
/Sm 122 (v |/ 180 -—Hz(S))TsdG(v). (2.45)

[log 0]+1

Since H;(s) is a generalized polynomial in s with coefficients depending on #, by (2.45)
and the same argument as in the proof (2.42) we get

| 7.0(2)]

Also, as above we have

(i) < Cp (1080 [ 18l oty forl <p<oe. (2.46)

@) o dr
G(I)_e(f)(x7y7z) < sup . LGs,Qlf('ayv ')(X,Z)_7 (247)
) jezJoi t
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where

Ql u)
Lg. ,Z) = su / x—u,z— G(|u ——=dv|,
G, 8(02) = sup Bkg‘vkemg( )=

and Gs(1) = ¢(t)P(s).
By following the same argument employed in the proof of (2.26) in Lemma 2.4
we obtain (2.27). Finally we prove (2.28). We notice that

gJi+! 6k+l d d
[ ] rera—ewpre)
0/ ok

ts

gi+1 9k+1 du ds
= /e / e I eI

Q.H’l dS
C(log6) o //P(s),le(x»y»Z)? ;

where .#p,) g1 is the directional Hardy-Littlewood maximal function on R in the
direction of s. Since .#p(, g1 is bounded on L? with bound independent of P(s) we
easily get

3
o651 Cp10g0)? |9l I lrmosniry  (2:48)

<
LP (R"xR™xR)

for 1 < p < oo. The lemma is proved. [

LEMMA 2.7. Let h€ A, (RTxR™) for some 1 <y <eo, Qe LI(S" ! xS 1)

for some 1 < q <2 and 6 =29 Assume ®(t,s) = ¢\ (1) + ¢2(s), where each ¢ (I =
1,2) is either a generalized polynomial or is in C*[0,), a convex increasing function
with ¢;(0) =0. Thenfor Y < p < e and f € L’ (R" x R" x R) there exists a positive
constant Cp, which is independent of Q such that

2.0 (NIl < Cola— 1211, If1],- (2.49)

Proof. We shall consider ®(z,s) = ¢1(¢) + ¢2(s), where ¢; is in C?[0,0), a con-
vex increasing function with ¢;(0) =0 and ¢, is a generalized polynomial given by

o (s) = 2 a;s*. The other cases can be handled in a similar way. As in the previous

lemmas, the proof follows the same lines of the proof of Lemma 2.4 and hence we
only need to prove (2.26)—(2.28) for the case ®(z,s) = ¢1 (1) + ¢2(s). We start proving
(2.26). We notice that

O b (1)(,.2)

gk+1

Qr (V) dt
S ]:;lepz (/Bk (/9/<|v|<9./+1 f(x7y Wi (])1(t) - ¢2(M)) Mm dv) T)

9k+l d[
<sup [ T ep ) (n2) = (2.50)




ON SINGULAR INTEGRALS AND MAXIMAL OPERATORS 757

where
(v
Snagd=swpl [ elrwz H()
jez | Joi< <071 v

and H;(s) = ¢1(¢) + ¢2(s). By the argument as in (2.45), noticing that H;(s) is a gen-
eralized polynomial in s with a constant term depending on ¢ and using a result estab-
lished in [28], we get

H/HhQZ(g)HLP(Rm+1) < Cp(logh) ||Q||q HgHLP(RmH) for 1 < p < oo,

which in turn leads to (2.26). As for proving (2.27), by the argument in (2.47) we have

2) 0/*! dt
G@_e(f)(x7y7z) <sup [ LGs,Qlf('vy»')(x»Z)_7
’ jezJoi 4
where
Ql u)
Lg. ,Z) = su / x—u,z— G(|u ——=dv|,
G2, 8(:2) sup 9,{g‘vkekﬂg( s(luf) ”

and G (1) = ¢1(t) + 92(s) = 6 (1).

Now we notice ¢(z) is a C?(]0,)), convex and increasing function satisfying
¢(0) = 0. By following the same argument employed in the proof of (2.26) in Lemma
2.4, we obtain (2.27). Finally we prove (2.28). We notice that

gJj+1 gk+1 dtd

/9 Lo = a0 -0 52
g+l 1 ( 6A+l du ds
/(1)1 Bk 7y7Z_”_¢2(s))| ¢1—1(u>¢{(¢1—1(u)) ?

(loge) '%le(xvyv ')(Z)7

where .#g1 denotes the Hardy-Littlewood maximal function on R!. Since .#g: is
bounded on L?, we easily get

|os(

sy < CUOEO 12, 1 sy 25

for 1 < p < oo. The lemma is proved. [

3. Proofs of main theorems

Since AY(RJr x RT)CA,(RT"x R") when y >2, we may assume that 1 <y <2
and |1/p—1/2| < 1/y'. First, we notice that

Tfxy2) =Y, Ajoo*f(xyz2)

k.jez
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Now, by invoking Lemmas 2.4-2.6 and following arguments similar to the proof of
Theorem 7.5 (in the one-parameter setting) in ([19], p. 824) we have

(Y Ajoora D] <Cologdll, (Y lanil®)? (3.1)
k.jez » k.jeZ »

for p satisfying |1/p—1/2| < 1/y" and for arbitrary functions {gx ;} on R"x R" xR.
Now by Lemmas 2.4-2.6, (3.1), Lemma 2.3 and invoking Lemma 2.2 we get

ITAl,=| Y Mjoorf]| <Cpllogh)|Ql,IIf], (3.2)
k,jeZ »

for p satisfying |1/p—1/2| < 1/y/, which in turn ends the proof of each one of
the inequalities (1.5), (1.6), (1.8), (1.10) and (1.12). Now, by Lemmas 2.4-2.6 and
a standard argument we get (1.7), (1.9), (1.11) and (1.13). This completes the proofs
of Theorems 1.1-1.5. Now the proof of Theorem 1.6 can be obtained by the estimates
(1.5)—(1.13) and employing an extrapolation method similar to the one employed in [4].
We omit the details.

Finally we can prove Theorem 1.7 by the above estimates and following the same
arguments as in [6]. Again we omit the details. This completes the proofs of our
theorems. [J
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