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COMPLETE f –MOMENT CONVERGENCE FOR NEGATIVELY

SUPERADDITIVE DEPENDENT RANDOM VARIABLES
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(Communicated by Y.-H. Kim)

Abstract. In this paper, by utilizing the Kolmogorov exponential type inequality of negatively
superadditive dependent random arrays and truncated method, we study the complete f -moment
convergence for arrays of rowwise NSD random variables. Some sufficient conditions to prove
the complete f -moment convergence are obtained, which generalize and improve some known
ones.

1. Introduction

Firstly, let us recall some definitions of the negative dependence. The first one is
the concept of negatively associated (NA) random variables, which was introduced by
Alam and Saxena [1] and carefully studied by Joag-Dev and Proschan [2].

DEFINITION 1.1. A finite family of random variables {Xi,1 � i � n} is said to
be NA if for every pair of disjoint subsets A,B ⊂ {1,2, . . . ,n}

Cov(g(Xi, i ∈ A) ,q(Xj, j ∈ B)) � 0,

whenever g and q are coordinatewise nondecreasing such that this covariance exists.
An infinite family of random variables is NA if every finite subfamily is NA. An ar-
ray {Xni, i � 1,n � 1} of random variables is said to be rowwise NA if for all n � 1,
{Xni, i � 1} is NA.

Let us recall the concepts of superadditive function and negatively superadditive
dependence. The concept of superadditive function is introduced by Kemperman [3] as
follows.

DEFINITION 1.2. A function  : R
n → R is called superadditive if (x∨ y) +

(x∧ y) � (x)+(y) for all x,y ∈ R , where ∨ is for componentwise maximum and
∧ is for componentwise minimum.

The next dependence notion is negatively superadditive dependence, which is
weaker than negative association. The concept of NSD random variables was intro-
duced by Hu [4] as follows.
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DEFINITION 1.3. A random vector X = (X1,X2, . . . ,Xn) is said to NSD if

E (X1,X2, . . . ,Xn) � E (X∗
1 ,X∗

2 , . . . ,X∗
n ) , (1.1)

where (X∗
1 ,X∗

2 , . . . ,X∗
n ) are independent such that X∗

i and Xi have the same distribution
for each i and  is a superadditive function such that the expectations in (1.1) exist.

A sequence {Xn,n � 1} of random variables is said to be NSD if for all n � 1,
(X1,X2, . . . ,Xn) is NSD.

An array {Xni, i � 1,n � 1} of random variables is said to be rowwise NSD if for
all n � 1,{Xni, i � 1} is NSD.

Hu [4] gave an example illustrating that NSD does not imply NA, and he posed an
open problem whether NA implies NSD. In addition, Hu [4] provided some basic prop-
erties and three structural theorems of NSD. Christofides and Vaggelatou [5] solved
this open problem and showed that NA implies NSD. NSD structure is an extension
of negatively associated structure and sometimes more useful than it and can be used
to get many important probability inequalities. Eghbal et al. [6] derived two maximal
inequalities and strong law of large numbers of quadratic forms of NSD random vari-
ables under the assumption that {Xi, i � 1} is a sequence of nonnegative NSD random
variables with EXi <  for some r > 1 and all i � 1. Shen et al. [7] obtained the
almost sure convergence for NSD sequences and the strong stability for weighted sums
of NSD random variables, which extend the corresponding results for independent se-
quences and NA sequences without necessarily adding any extra condition. Shen et
al. [8] investigated the complete convergence and complete moment convergence for
arrays of rowwise NSD random variables and presented some sufficient conditions to
prove the complete convergence and the complete moment convergence. Wang [9]
presented the Rosenthal-type maximal inequalities and Kolmogorov-type exponential
inequality for NSD random variables, studied the complete convergence for arrays of
rowwise NSD random variables and weighted sums of arrays of rowwise NSD random
variables. Wang [9] obtained the Baum-Katz-type result for arrays of rowwise NSD
random variables the complete consistency for the estimator of nonparametric regres-
sion model based on NSD errors. Wang et al. [10] obtained the complete convergence
for weighted sums of NSD random variables and its application in the EV regression
model. Zhen [11] investigated the complete moment convergence for maximal partial
sum of NSD random variables under some more general conditions.

The concept of complete convergence was introduced by Hsu and Robbins [12] as
fallow: a sequence {Xn,n � 1} of random variables is said to converge completely to
the constant  if for any  > 0,




n=1

P(|Xn− |> ) < .

By the Borel-Cantelli lemma, this implies that Xn →  almost surely, and so com-
plete convergence is a stronger concept than almost sure convergence. Hsu and Robbins
[12] proved that the sequence of arithmetic means of i.i.d. random variables converge
completely to the expected value if the variance of the summands is finite. Chen et al.
[13] established the following complete convergence result for arrays of rowwise NA
random variables.
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THEOREM 1.1. Let {Xni,1 � i � kn,n � 1} be an array of rowwise NA random
variables and {cn,n � 1} be a sequence of positive constants. Suppose that the follow-
ing conditions are satisfied:

(i)



n=1
cnkn

i=1 P(|Xni| > ) <  for every  > 0 ;

(ii) for some  > 0 , there exists j � 1 sunch that




n=1

cn

(
kn


i=1

Var(XniI (|Xni| �  ))

) j

< .

Then for any  > 0 ,




n=1

cnP

(
max

1�m�kn

∣∣∣∣∣
m


i=1

(Xni−EXniI (|Xni| �  ))

∣∣∣∣∣> 

)
< .

The concept of complete moment convergence was introduced by Chow [14] as
follow: let {Xn,n � 1} be a sequence of randomvariables, and {an,n � 1} , {bn,n � 1} ,
q > 0. If for any  > 0,




n=1

anE
{
b−1

n |Xn|− 
}q

+ < ,

where a+ = max{0,a} , then {Xn,n � 1} is said to be complete q -th moment conver-
gent.

Shen et al. [8] obtained the following complete moment convergence result for
NSD random variables.

THEOREM 1.2. Let q � 1 , {Xni,1 � i � kn,n � 1} be an array of rowwise NSD
random variables and {cn,n � 1} be a sequence of positive constants. Suppose that
the following conditions are satisfied:

(i)



n=1
cn

kn


k=1

E |Xnk|q I (|Xnk| > ) <  for every  > 0 ;

(ii) for some  > 0 , there exists  > q such that




n=1

cn

(
kn


k=1

EX2
nkI (|Xnk| �  )

)

< ;

(iii)
kn


k=1

E |Xnk|q I
(
|Xnk| > 

128

)
→ 0 , as n →  .

Then for all  > 0 ,




n=1

cnE

{
max

1�m�kn

∣∣∣∣∣
m


k=1

(Xnk −EXnkI (|Xnk| �  ))

∣∣∣∣∣− 

}q

+

< .

Recently, Wu et al. [15] introduced the concept of complete f -moment conver-
gence which is stronger than complete moment convergence, as follows.
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DEFINITION 1.4. Let {Sn,n � 1} be a sequence of random variable, {cn,n � 1}
be a sequence of positive constants and f : R

+ →R
+ be a nondecreasing function with

f (0) = 0. {Sn,n � 1} is said to converges f -moment completely, if for any  > 0,




n=1

cnE f
({|Sn|− }+

)
< ,

where a+ = max{0,a}.
Wu et al. [15] established some results on complete f -moment convergence for

sums of arrays of rowwise END random variables.

THEOREM 1.3. Let {Xnk,1 � k � kn,n � 1} be an array of rowwise END ran-
dom variables, and {cn,n � 1} be a sequence of positive constants, f : R

+ → R
+ be

an increasing function with f (0) = 0 and q � 1 be a constant. suppose that the fol-
lowing conditions are satisfied:

(i)



n=1
cn

kn


k=1

E f (8 |Xnk| I (|Xnk| > )) <  for any  > 0 ;

(ii) for some  > 0 , there exists constants 0 < p � 2 such that




n=1

cn

(
kn


k=1

E |XnkI (|Xnk| �  )−EXnkI (|Xnk| �  )|p
)

< ;

(iii)
kn


k=1

E |Xnk| I
(
|Xnk| > 

16

)
→ 0 , as n → ;

(iv) Let g : R
+ → R

+ be the inverse function for f (t) , that is, g( f (t)) = t , t � 0
and s(t) = max�x�g(t)

x
f (x) . Assume that the constants  , and the function f : R

+ →
R

+ satisfy the condition ∫ 

f ( )
g−(t)s(t)dt < .

Then the for all  > 0




n=1

cnE f

({∣∣∣∣∣
kn


k=1

(Xnk −EXnkI (|Xnk| �  ))

∣∣∣∣∣− 

}
+

)
< .

Afterwards, many authors were devoted to studying the probability limit theo-
ries for complete f -moment convergence and obtained many interesting results. For
example, Lu et al. [16] obtained the complete f -moment convergence for sums of ar-
rays of rowwise END random variables under sub-linear expectation space. Lu et al.
[17] studied complete f -moment convergence for WOD random variables and gave
its application in nonparametric models. Wang [18] obtained a result on complete f -
moment convergence for Sung’s type weighted sums of END random variables under
some general conditions, and gave some corollaries and an application in errors-in-
variables regression models. So far, the corresponding research results on the complete
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f -moments convergence for arrays of rowwise NSD random variables have not been
obtained.

In this paper, we discuss the complete f-moment convergence for arrays of row-
wise NSD random variables under the weaker condition than previous results. The
result obtained in the paper extends and improves the corresponding Theorem 1.2 ob-
tained by Shen et al. [8] and Theorem 1.3 obtained by Wang et al. [15] for q = 1.

This paper is organized as follows: some preliminary lemmas and inequalities for
NSD random variables are provided in Sect. 2. The main result and its proof are stated
in Sect. 3. Some corollaries of the main result are presented in Sect. 4.

Throughout the paper, we will denote by C a positive generic constant, which may
be different in various places.

2. Preliminary lemmas

In this section, we give some important lemmas which will be used to prove our
main results. The following one was presented by Hu [4].

LEMMA 2.1. Let (X1,X2, . . . ,Xn) be NSD, then we have following.
(i) (−X1,−X2, . . . ,−Xn) is also NSD.
(ii) if g1,g2, . . . ,gn are all nondecreasing functions, then (g1(X1),g2(X2), . . . ,

gn(Xn)) is NSD.

The next one is the Kolmogorov exponential type inequality for NSD random vari-
ables, which was established by Wang et al. [9].

LEMMA 2.2. Let {Xn,n � 1} be a sequence of NSD random variables with zero

mean and finite second moments. Denote Sn =
n

i=1

Xi and Bn =
n

i=1

EX2
i for each n � 1 .

Then for all x > 0 , y > 0 and n � 1

P

(
max

1�k�n
|Sk| � x

)
� 2P

(
max

1�k�n
|Xk| � y

)
+8

(
2Bn

3xy

)x/12y

.

With Lemma 2.2 accounted for, we can get the following complete convergence
for arrays of rowwise NSD random variables, which is a generalization of Theorem 1.1.
The proof is similar to that of Theorem 1.1 or Lemma 3.1 of Shen [19]. So we omit
the details.

LEMMA 2.3. Let {Xni,1 � i � kn,n � 1} be an array of rowwise NSD random
variables and {cn,n � 1} be a sequence of positive constants. Suppose that the follow-
ing conditions are satisfied:

(i)



n=1
cn

kn


i=1

P(|Xni| > ) < for every  > 0 ;

(ii) for some  > 0 , there exists j � 1 such that




n=1

cn

(
kn


i=1

Var(XniI (|Xni| �  ))

) j

< .
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Then for any  > 0 ,




n=1

cnP

(
max

1�m�kn

∣∣∣∣∣
m


i=1

(Xni−EXniI (|Xni| �  ))

∣∣∣∣∣> 

)
< .

3. The main result and proof

Our main result is as follows.

THEOREM 3.1. Let {Xnk,1 � k � kn,n � 1} be an array of rowwise NSD random
variables, and {cn,n � 1} be a sequence of positive constants, f : R

+ → R
+ be an

increasing function with f (0) = 0 and q � 1 be a constant. Suppose that the following
conditions are satisfied:

(a)



n=1
cn

kn


k=1

E f (192 |Xnk|q I (|Xnk| > )) <  for every  > 0 ;

(b) for some  > 0 , there exists  > q such that




n=1

cn

(
kn


k=1

EX2
nkI (|Xnk| �  )

)

< ;

(c)
kn


k=1

E |Xnk|q I
(
|Xnk| > 

128

)
→ 0 , as n → ;

(d) Let g : R
+ → R

+ be the inverse function for f (t) , that is, g( f (t)) = t , t �
0 and S(t) = max�x�g1/q(t)

x
f (X) . Assume that the constants  > q � 1 ,  and the

function f : R
+ → R

+ satisfy the condition∫ 

f ( q)
g−/q(t)s(t)dt < .

Then for all  > 0




n=1

cnE f

({
max

1�m�kn

∣∣∣∣∣
m


k=1

(Xnk −EXnkI (|Xnk| �  ))

∣∣∣∣∣− 

}q

+

)
< .

Proof. Note that function f is increasing and  > q � 1, for every  > 0, we
have

(a′)



n=1

cn

kn


k=1

E f (|Xnk|q I (|Xnk| > )) < .

Now we state that the conditions (i) and (ii) of Lemma 2.3 hold. For all  > 0, it
follows from condition (a′) and Markov’s inequality that




n=1

cn

kn


i=1

P(|Xni| > ) < C



n=1

cn

kn


k=1

E f (|Xnk|q I (|Xnk| > )) < ,
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which implies that condition (i) of Lemma 2.3 holds. Obviously according to (b) the
condition (ii) of Lemma 2.3 holds. Thus, all the conditions of Lemma 2.3 are satisfied.

Denote Sm =
m


k=1
(Xnk −EXnkI (|Xnk| �  )) , n � 1. we may assume that 0 <  <

 , it is easily seen that:




n=1

cnE f

({
max

1�m�kn
|Sm|− 

}q

+

)

=



n=1

cn

∫ 

0
P

[
f

({
max

1�m�kn
|Sm|− 

}q

+

)
> t

]
dt

=



n=1

cn

∫ 

0
P

[{
max

1�m�kn
|Sm|− 

}q

+
> g(t)

]
dt

=



n=1

cn

∫ f ( q)

0
P

(
max

1�m�kn
|Sm| >  +g1/q(t)

)
dt

+



n=1

cn

∫ 

f ( q)
P

(
max

1�m�kn
|Sm| >  +g1/q(t)

)
dt

� f ( q)



n=1

cnP

(
max

1�m�kn
|Sm| > 

)

+



n=1

cn

∫ 

f ( q)
P

(
max

1�m�kn
|Sm| > g1/q(t)

)
dt

� I1 + I2.

In order to prove Theorem 3.1. we only need to show that I1 < and I2 < . By
Lemma 2.3, I1 <  . In the following, we will show that I2 <  .

I2 =



n=1

cn

∫ 

f ( q)
P

(
max

1�m�kn
|Sm| > g1/q(t),

kn⋃
k=1

{
|Xnk| > g1/q(t)

})
dt

+



n=1

cn

∫ 

f ( q)
P

(
max

1�m�kn
|Sm| > g1/q(t),

kn⋂
k=1

{
|Xnk| � g1/q(t)

})
dt

�



n=1

cn

∫ 

f ( q)
P

(
kn⋃

k=1

{
|Xnk| > g1/q(t)

})
dt

+



n=1

cn

∫ 

f ( q)
P

(
max

1�m�kn

∣∣∣∣∣
kn


k=1

(
XnkI

(
|Xnk| � g1/q(t)

)
−EXnkI (|Xnk| �  )

)∣∣∣∣∣
> g1/q(t)

)
dt

�I3 + I4.
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It follows from condition (a′) and Markov’s inequality that

I3 �



n=1

cn

kn


k=1

∫ 

f ( q)
P( f (|Xnk|q) > t)dt

� C



n=1

cn

kn


k=1

E f (|Xnk|q I (|Xnk| >  )) < .

In order to estimate I4 <  , for fixed n � 1, 1 � k � kn , and t � f ( q) . Let

Ynk =−g1/q(t)I
(
Xnk < −g1/q(t)

)
+XnkI

(
|Xnk| � g1/q(t)

)
+g1/q(t)I

(
Xnk > g1/q(t)

)
,

Znk = −g1/q(t)I
(
Xnk < −g1/q(t)

)
+g1/q(t)I

(
Xnk > g1/q(t)

)
.

It is easily seen that

P

(
max

1�m�kn

∣∣∣∣∣
kn


k=1

(
XnkI

(
|Xnk| � g1/q(t)

)
−EXnkI (|Xnk| �  )

)∣∣∣∣∣> g1/q(t)

)

= P

(
max

1�m�kn

∣∣∣∣∣
m


k=1

(
Ynk −EYnk−Znk +EZnk +EXnkI

(
 < |Xnk| � g1/q(t)

))∣∣∣∣∣
> g1/q(t)

)

� P

(
max

1�m�kn

∣∣∣∣∣
m


k=1

(Ynk −EYnk−Znk +EZnk)

∣∣∣∣∣
+ max

1�m�kn

m


k=1

E |Xnk| I
(
 < |Xnk| � g1/q(t)

)
> g1/q(t)

)
.

(3.1)
Next, by assumption (c), we obtain that

max
t� f ( q)

1

g1/q(t)
max

1�m�kn

∣∣∣∣∣
m


k=1

E |Xnk| I
(
 < |Xnk| � g1/q(t)

)∣∣∣∣∣
� max

t� f ( q)

kn


k=1

E
|Xnk|


I
(
 < |Xnk| � g1/q(t)

)

� −q
kn


k=1

E |Xnk|q I (|Xnk| >  ) → 0, as n → .

Hence, for all n large enough,

max
1�m�kn

m


k=1

E
∣∣∣XnkI

(
 < |Xnk| � g1/q(t)

)∣∣∣< g1/q(t)
2

, t > f ( q) ,
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combining with (3.1), it follows that

P

(
max

1�m�kn

∣∣∣∣∣
m


k=1

(
XnkI

(
|Xnk| � g1/q(t)

)
−EXnkI (|Xnk| �  )

)∣∣∣∣∣> g1/q(t)

)

� P

(
max

1�m�kn

∣∣∣∣∣
m


k=1

(Ynk −EYnk−Znk +EZnk)

∣∣∣∣∣> g1/q(t)
2

)

� P

(
max

1�m�kn

∣∣∣∣∣
m


k=1

(Ynk −EYnk)

∣∣∣∣∣> g1/q(t)
4

)

+P

(
max

1�m�kn

∣∣∣∣∣
m


k=1

(Znk −EZnk)

∣∣∣∣∣> g1/q(t)
4

)
.

Therefore,

I4 �C



n=1

cn

∫ 

f ( q)
P

(
max

1�m�kn

∣∣∣∣∣
m


k=1

(Znk −EZnk)

∣∣∣∣∣> g1/q(t)
4

)
dt

+C



n=1

cn

∫ 

f ( q)
P

(
max

1�m�kn

∣∣∣∣∣
m


k=1

(Ynk −EYnk)

∣∣∣∣∣> g1/q(t)
4

)
dt

� I5 + I6.

Noting that |Znk| = g1/q(t)I
(|Xnk| > g1/q(t)

)
, we obtain by Markov’s inequality

and the condition (a′) that

I5 � C



n=1

cn

kn


k=1

∫ 

f ( q)

1

g1/q(t)
E |Znk|dt

� C



n=1

cn

kn


k=1

∫ 

f ( q)
P
(
|Xnk| > g1/q(t)

)
dt

� C



n=1

cn

kn


k=1

E f (|Xnk|q I (|Xnk| >  )) < .

Next, we will prove I6 <  . Denote Bn =
kn


k=1

E (Ynk −EYnk)
2 . Now we use

the fact that n � 1, {Ynk −EYnk,1 � k � kn} is a sequence of NSD random variables
applying to it the Kolmogorov inequality (Lemma 2.2) with x = g1/q(t)/4 and y =
g1/q(t)/(48) , where  satisfies the assumption (d). We obtain

I6 � C



n=1

cn

∫ 

f ( q)
P

(
max

1�k�kn
|Ynk−EYnk| > g1/q(t)

48

)
dt+C




n=1

cn

∫ 

f ( q)
8

(
128Bn

g2/q(t)

)
dt

� C



n=1

cn

∫ 

f ( q)
P

(
max

1�k�kn
|Ynk−EYnk| > g1/q(t)

48

)
dt+C




n=1

cn

∫ 

f ( q)

(
Bn

g2/q(t)

)
dt

� I7 + I8.
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In order to estimate I7 , it follows that from assumption (c) and Markov’s inequal-

ity,
kn


k=1

P
(
|Xnk| > 

128

)
→ 0 as n →  . Hence, for all n large enough, we can get

kn


k=1

P
(
|Xnk| > 

128

)
� 1

256 , and we have

max
t� f ( q)

max
1�k�kn

1

g1/q(t)
|EYnk|

� max
t� f ( q)

max
1�k�kn

1

g1/q(t)
E |Ynk|

� max
t� f ( q)

max
1�k�kn

[
1

g1/q(t)
E |Xnk| I

(
|Xnk| � 

128

)

+
1

g1/q(t)
E |Xnk| I

(


128
< |Xnk| � g1/q(t)

)
+P

(
|Xnk| > g1/q(t)

)]

� max
t� f ( q)

max
1�k�kn

[
1

g1/q(t)
· 
128

+P

(
|Xnk| > 

128

)
+P

(
|Xnk| > g1/q(t)

)]

� 1
128

+
kn


k=1

P

(
|Xnk| > 

128

)
+

kn


k=1

P(|Xnk| >  )

� 1
128

+2
kn


k=1

P

(
|Xnk| > 

128

)

� 1
64

.

Hence, for all n large enough it follows that,

max
1�k�kn

|EYnk| < g1/q(t)
64

, g(t) >  q, (3.2)

noting that |Ynk| � |Xnk| , we have by (3.2) and assumption (a) that

I7 � C



n=1

cn

∫ 

f ( q)
P

(
max

1�k�kn
|Ynk| � g1/q(t)

192

)
dt

� C



n=1

cn

∫ 

f ( q)
P

(
max

1�k�kn
|Xnk| � g1/q(t)

192

)
dt

� C



n=1

cn

kn


k=1

∫ 

f ( q)
P

(
|Xnk| � g1/q(t)

192

)
dt

� C



n=1

cn

kn


k=1

∫ 

f ( q)
E f ((192)q |Xnk|q I (|Xnk| >  )) < .
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Since  > q � 1, it follows by the Cr -inequality that

I8 �C



n=1

cn

∫ 

f ( q)
g−2/q(t)

(
kn


k=1

E (Ynk −EYnk)
2

)

dt

�C



n=1

cn

∫ 

f ( q)
g−2/q(t)

(
kn


k=1

E (Ynk)
2

)

dt

=C



n=1

cn

∫ 

f ( q)
g−2/q(t)

(
kn


k=1

EX2
nkI
(
|Xnk| � g1/q(t)

)
+

kn


k=1

P
(
|Xnk| > g1/q(t)

))

dt

�C



n=1

cn

∫ 

f ( q)
g−2/q(t)

(
kn


k=1

EX2
nkI (|Xnk| �  )

)

dt

+C



n=1

cn

∫ 

f ( q)
g−2/q(t)

(
kn


k=1

EX2
nkI
(
 < |Xnk| � g1/q(t)

))

dt

+C



n=1

cn

∫ 

f ( q)

(
kn


k=1

P
(
|Xnk| > g1/q(t)

))

dt

�I9 + I10 + I11.

Note that function s(t) is nondecreasing, for  > q � 1, g−2/q(t) � g−/q(t)s(t) .
Combining the assumption (b) and (d), we have

I9 = C



n=1

cn

(
kn


k=1

EX2
nkI (|Xnk| �  )

)

×
∫ 

f ( q)
g−2/q(t)dt < ,

for I10 , we can get that

I10 � C



n=1

cn

∫ 

f ( q)
g−2/q(t)

(
g1/q(t)

kn


k=1

E |Xnk| I
(
 < |Xnk| � g1/q(t)

))

dt.

By condition (c), it follows that

kn


k=1

E |Xnk| I
(
 < |Xnk| � g1/q(t)

)
�

kn


k=1

E |Xnk| I (|Xnk| >  )

�  1−q
kn


k=1

E |Xnk|q I (|Xnk| >  )

�  1−q
kn


k=1

E |Xnk|q I

(
|Xnk| > 

128

)
→ 0.

Hence, for all n large enough,

kn


k=1

E |Xnk| I
(
 < |Xnk| � g1/q(t)

)
< 1,
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for  > q � 1 we can yield that(
kn


k=1

E |Xnk| I
(
 < |Xnk| � g1/q(t)

))

�
kn


k=1

E |Xnk| I
(
 < |Xnk| � g1/q(t)

)
.

Therefore by conditions (a) and (d)

I10 � C



n=1

cn

∫ 

f ( q)
g−/q(t)

(
kn


k=1

E |Xnk| I
(
 < |Xnk| � g1/q(t)

)
f
(|Xnk| I

(
 < |Xnk| � g1/q(t)

))
)

× f
(
|Xnk| I

(
 < |Xnk| � g1/q(t)

))
dt

� C



n=1

cn

∫ 

f ( q)
g−/q(t)s(t)

(
kn


k=1

f
(
|Xnk| I

(
 < |Xnk| � g1/q(t)

)))
dt

� C



n=1

cn

(
kn


k=1

f
(
|Xnk| I

(
 < |Xnk| � g1/q(t)

)))
×
∫ 

f ( q)
g−n/q(t)s(t)dt

< .

For t � f ( q) , it follows from Markov’s inequality and condition (c) that for all
n large enough,

kn


k=1

P
(
|Xnk| > g1/q(t)

)
�

kn


k=1

P(|Xnk| >  ) �
kn


k=1

E |Xnk| I (|Xnk| >  )

�  1−q
kn


k=1

E |Xnk|q I

(
|Xnk| > 

128

)
→ 0,

which implies that for all n large enough (we recall that  > q � 1)

kn


k=1

P
(
|Xnk| > g1/q(t)

)
< 1,

and hence (
kn


k=1

P
(
|Xnk| > g1/q(t)

))

�
kn


k=1

P
(
|Xnk| > g1/q(t)

)
.

Thus, we have by condition (a′) and that

I11 � C



n=1

cn

∫ 

f ( q)

kn


k=1

P
(
|Xnk| > g1/q(t)

)
dt

� C



n=1

cn

kn


k=1

E f (|Xnk|q I (|Xnk| >  ))

< .

The proof of the theorem is completed. �
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4. Corollaries

According to Theorem 3.1, we can get the following important corollaries.

COROLLARY 4.1. Let {Xnk,1 � k � kn,n � 1} be an array of rowwise NSD ran-
dom variables, and {cn,n � 1} be a sequence of positive constants. Under the condi-
tions of Theorem 3.1, for any  > 0 ,we have




n=1

cnP

(
max

1�m�k

∣∣∣∣∣
m


k=1

(Xnk −EXnkI (|Xnk| �  ))

∣∣∣∣∣> 

)
< .

Proof.




n=1

cnE f

({
max

1�m�k

∣∣∣∣∣
m


k=1

(Xnk −EXnkI (|Xnk| �  ))− 

∣∣∣∣∣
}q

+

)

=



n=1

cn

∫ 

0
P

([
f

({
max

1�m�k

∣∣∣∣∣
m


k=1

(Xnk −EXnkI (|Xnk| �  ))− 

∣∣∣∣∣
}q

+

)
> t

]
dt

=



n=1

cn

∫ 

0
P

({
max

1�m�k

∣∣∣∣∣
m


k=1

(Xnk −EXnkI (|Xnk| �  ))− 

∣∣∣∣∣
}q

+

> g(t)

)
dt

=



n=1

cn

∫ 

0
P

[
max

1�m�k

∣∣∣∣∣
m


k=1

(Xnk −EXnkI (|Xnk| �  ))

∣∣∣∣∣> g1/q(t)+ 

]
dt

�



n=1

cn

∫ f (q)

0
P

[
max

1�m�k

∣∣∣∣∣
m


k=1

(Xnk −EXnkI (|Xnk| �  ))

∣∣∣∣∣>  + 

]
dt

� f (q)



n=1

cnP

(
max

1�m�k

∣∣∣∣∣
m


k=1

(Xnk −EXnkI (|Xnk| �  ))

∣∣∣∣∣> 2

)
.

Thus,




n=1

cnP

(
max

1�m�k

∣∣∣∣∣
m


k=1

(Xnk −EXnkI (|Xnk| �  ))

∣∣∣∣∣> 

)
<. �

COROLLARY 4.2. Let {Xnk,1 � k � kn,n � 1} be an array of rowwise NSD ran-
dom variables, and {cn,n � 1} be a sequence of positive constants. Suppose that the
following conditions satisfied:

(a)



n=1
cn

kn


k=1

E (192 |Xnk|q I (|Xnk| > )) <  , for every  > 0 ;

(b) there exists  > q,0 < p � 2 , and  > 0 such that




n=1

cn

(
kn


k=1

E |Xnk|p I (|Xnk| �  )

)

< ;
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(c)
kn


k=1

E |Xnk|q I
(
|Xnk| > 

128

)
→ 0 , as n → ;

Then the fall  > 0




n=1

cnE

{
max

1�m�kn

∣∣∣∣∣
m


k=1

(Xnk −EXnkI (|Xnk| �  ))

∣∣∣∣∣− 

}q

+

< .

Proof. Let f (t) = t , t � 0, and note that |Xnk| I (|Xnk| �  ) � 2 , by assumptions
(b), we have

C



n=1

cn

(
kn


k=1

EX2
nkI (|Xnk| �  )

)

� C(2 )(2−p)



n=1

cn

(
kn


k=1

E |Xnk|p I (|Xnk| �  )

)

< .

Then, combined with the proof of Theorem 3.1, this completes the proof of the
corollary. �

REMARK 4.1. We point out that Theorem 1.2 in [8] is a special case of Corollary
4.2 with p = 2. Actually, conditions (i) and (iii) of Theorem 1.2 are equivalent to
conditions (a) and (c) of Corollary 4.2.

COROLLARY 4.3. Let q � 1 , {Xnk,1 � k � kn,n � 1} be an array of rowwise
NSD random variables, EXnk = 0 , and {cn,n � 1} be a sequence of positive constants.
Suppose that the following conditions are satisfied:

(a)



n=1
cn

kn


k=1

E (192 |Xnk|q I (|Xnk| > )) <  for every  > 0 ;

(b) for some  > 0 , there exists  > q such that




n=1

cn

(
kn


k=1

EX2
nkI (|Xnk| �  )

)

< ;

(c)
kn


k=1

E |Xnk|q I
(
|Xnk| > 

128

)
→ 0 , as n →  .

Then for all  > 0 ,




n=1

cnE

{
max

1�m�kn

∣∣∣∣∣
m


k=1

Xnk

∣∣∣∣∣− 

}q

+

<,

and



n=1

cnP

(
max

1�m�kn

∣∣∣∣∣
m


k=1

Xnk

∣∣∣∣∣> 

)
< .
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REMARK 4.2. Corollary 4.3 is similar to Corollary 3.1 in Shen [8]. We omit the
proof.

Taking kn = n , cn = 1, n � 1, and replacing Xnk by Xnk/an in Corollary 4.3,
{an,n � 1} is a sequence of positive real numbers, we get the following corollary:

COROLLARY 4.4. Let q � 1 , {Xnk,1 � k � n,n � 1} be an array of rowwise
NSD random variables, EXnk = 0 . Suppose that the following conditions are satis-
fied:

(a)



n=1
a−q

n

n


k=1
E (192 |Xnk|q I (|Xnk| > an)) <  for every  > 0 ;

(b) for some  > 0 , there exists  > q such that




n=1

a−2
n

(
n


k=1

EX2
nkI (|Xnk| � an)

)

< ;

(c) a−q
n

n


k=1
E |Xnk|q I

(
|Xnk| > an

128

)
→ 0 , as n → .

Then for all  > 0 ,




n=1

a−q
n E

{
max

1�m�n

∣∣∣∣∣
m


k=1

Xnk

∣∣∣∣∣− an

}q

+

< ,

and



n=1

P

(
max

1�m�n

∣∣∣∣∣
m


k=1

Xnk

∣∣∣∣∣> an

)
+

< .

Taking kn = n , cn = nr−2 , n � 1, and replacing Xnk by Xnk/n in Corollary 4.3,
we get the following corollary.

COROLLARY 4.5. Let q � 1 ,  > 0 , r > 0 , {Xnk,1 � k � n,n � 1} be an array
of rowwise NSD random variables, EXnk = 0 . Suppose that the following conditions
are satisfied:

(a)



n=1
nr−2−q

n


k=1
E (192 |Xnk|q I (|Xnk| > n)) <  for every  > 0 ;

(b) for some  > 0 , there exists  > q such that




n=1

nr−2−2

(
n


k=1

EX2
nkI (|Xnk| � n)

)

< ;

(c) n−q
n


k=1
E |Xnk|q I

(
|Xnk| > n

128

)
→ 0 , as n → .
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Then for all  > 0




n=1

nr−2−qE

{
max

1�m�n

∣∣∣∣∣
m


k=1

Xnk

∣∣∣∣∣− n
}q

+

< ,

and



n=1

nr−2P

(
max

1�m�n

∣∣∣∣∣
m


k=1

Xnk

∣∣∣∣∣> n
)

+

< .
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