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DIMENSION–FREE ESTIMATES FOR HARDY–LITTLEWOOD

MAXIMAL FUNCTIONS WITH MIXED HOMOGENEITIES

PANWANG WANG AND XUDONG NIE ∗

(Communicated by J. Pečarić)

Abstract. We mainly study the dimension-free Lp -inequality of the Hardy-Littlewood maximal
functions with mixed homogeneities

MG
∗ f (x,y) = sup

t>0

1
|G|
∣∣∣∣∫

G
f (x− tu,y− t2v)dudv

∣∣∣∣ ,
where G is a bounded, closed and symmetric convex subset of Rd+1 . When G is in the

isotropic position, we prove that there is a constant Cp independent of d such that∥∥∥MG
∗ f
∥∥∥

Lp(Rd+1)
� Cp(L(G))‖ f‖Lp(Rd+1),

for 3
2 < p �  , where L(G) is a constant associated with G .

1. Introduction

The purpose of this paper is to develop a new dimension-free estimate of Hardy-
Littlewood maximal functions with mixed homogeneities. We write Rd+1 = Rd ×R

with (x,y) ∈ Rd+1 , where x ∈ Rd and y ∈ R . Let G be a convex centrally symmetric
body in Rd+1 , which is also a bounded closed and centrally symmetric convex subset
of Rd+1 with non-empty interior. For every t > 0 and for every (x,y) ∈ Rd+1 , we call

MG
t f (x,y) =

1
|G|
∫

G
f (x− tu,y− tv)dudv (1.1)

the Hardy-Littlewood averaging function associated with isotropic homogeneity where
(x,y) ∈ R

d+1 and (u,v) ∈ R
d+1 . For p ∈ (1,] , let Cp(d,G) > 0 be the best constant

such that the following maximal inequalities∥∥∥∥sup
t>0

∣∣MG
t f
∣∣∥∥∥∥

Lp(Rd+1)
� Cp(d,G)‖ f‖Lp(Rd+1) , (1.2)

hold for every f ∈ Lp(Rd+1) . It is easy to see that (1.2) holds with p =  . Using a
covering argument for p = 1 and a simple interpolation with p = , we can obtain that
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Cp(d,G) <  for every p ∈ (1,] and for every convex symmetric body G ⊂ Rd+1 .
However, the constant Cp(d,G) obtained by this method is bounded by an upper bound
which depends on the dimension d .

The first dimension-free result for the Hardy-Littlewood maximal operator was
obtained by Stein. In [1], he showed that if G is the Euclidean ball B2 , then C(d,B2)
is bounded independently of the dimension for every p ∈ (1,] , see also [2] for more
details. This inspired a lot of generalizations for Hardy-Littlewood maximal opera-
tors related to other convex bodies. Bourgain [3] showed that Cp(d,G) is bounded by
an absolute constant, which is independent of the underling convex symmetric body
G ⊂ Rd+1 for p = 2. Later, Bourgain [4] extended this result for p ∈ ( 3

2 ,] . At the
same time, Carbery [9] obtained the same result independently. Thus, mathematicians
guess if Cp(d,G) can be bounded by a dimension-free constant for all p ∈ (1,] . This
result was proved by Müller [12] for the q -balls Bq , q ∈ [1,) and for cubes B

by Bourgain [5]. In recent years, some interesting results were obtained by Bourgain,
Mirek, Stein and Wróbel [6, 8, 7], where the authors proved the dimension-free estimate
of discrete Hardy-Littlewood maximal operator defined over ball and cube. More about
dimension-free estimates for the Hardy-Littlewood maximal functions can be found in
[10, 11, 13].

Let P be a polynomial from Rd+1 to Rd+1 and fix a family of (possible non-
isotropic) dilations

(x,y) �→ t · (x,y) = (t1x1, . . . ,t
d xd ,t

d+1xd+1),

with 1 , . . . , d+1 > 0. Then the maximal operator MP on R
d+1 can be defined as

MP f (x,y) = sup
t>0

1
|B2|

∣∣∣∣∫
B2

f ((x,y)−P(t · (u,v)))dudv

∣∣∣∣ .
In [14], Stein pointed that MP is bounded on Lp(Rd+1) . Thus we want to study the
dimension-free estimate of MP . In this paper, we mainly pay our attention to the special
case 1 = · · ·d = 1, d+1 = 2 and P(x,y) = (x,y) .

DEFINITION 1.1. Let G be central symmetric convex set and f a locally inte-
grable function defined on Rd+1 . Then

MG
t f (x,y) =

1
|G|
∫

G
f (x− tu,y− t2v)dudv (1.3)

is called the Hardy-Littlewood averaging function with mixed homogeneities. Corre-
spondingly, we called

MG
∗ f (x,y) = sup

t>0

∣∣MG
t f (x,y)

∣∣ .
the Hardy-Littlewood maximal function associated with mixed homogeneities.

Obviously, MG∗ is bounded on Lp(Rd+1) for p > 1. A convex symmetric body
G ⊂ R

d+1 is called in the isotropic position, if it has Lebesgue measure |G| = 1, and
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there is a constant L = L(G) > 0 which depends on G such that∫
G
〈x, 〉2dx = L(G)2| |2

for any  ∈ Rd+1 . The constant L(G) is called the isotropic constant of G . Our
dimension-free estimate about MG∗ is as following.

THEOREM 1.2. Suppose G is in the isotropic position. For 1 < p �  , there is a
constant Cp(L(G)) such that∥∥∥∥sup

n∈Z

|MG
2n f |
∥∥∥∥

Lp(Rd+1)
� Cp(L(G))‖ f‖Lp(Rd+1) . (1.4)

THEOREM 1.3. Suppose G is in the isotropic position. For 3
2 < p � , there is a

constant Cp(L(G)) such that∥∥MG
∗ f
∥∥

Lp(Rd+1) � Cp(G)‖ f‖Lp(Rd+1).

Since, when G is the q -ball, Cp(L(G)) is not dependent on d , we have the fol-
lowing two corollaries.

COROLLARY 1.4. For 1 < p �  and 1 � q �  , there is a constant Cp inde-
pendent on dimension d such that∥∥∥∥sup

n∈Z

|MBq

2n f |
∥∥∥∥

Lp(Rd+1)
� Cp ‖ f‖Lp(Rd+1) . (1.5)

COROLLARY 1.5. For 3
2 < p �  and 1 � q �  , there is a constant Cp inde-

pendent on dimension d such that∥∥∥MBq

∗ f
∥∥∥

Lp(Rd+1)
� Cp‖ f‖Lp(Rd+1).

We finish this section by fixing some further notations and terminologies.

• Throughout the whole paper Cp > 0 denotes a constant, which does not depend
on the dimension, but it may vary from occurrence to occurrence.

• We write that A � B to say that there is an absolute constant C > 0 such that
A � CB .

• The Euclidean space Rd+1 is endowed with the standard inner product

〈(x,y),( ,)〉 =
d


k=1

xkk + y

for every (x,y) = (x1, . . . ,xd ,y) and ( ,) = (1, . . . ,d ,) .
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• Let (X ,B(X),) be a  -finite measure space. Let p ∈ [1,] and suppose that
(Tt : t ∈ Z) is a family of linear operators such that Tt maps Lp(X) to itself for
every t ∈ Z ⊂ (0,) . Then the corresponding maximal function will be denoted
by

T∗,Z f := sup
t∈Z

|Tt f |

for every f ∈ Lp(X) .

• N0 = N∪{0} , N is the set of positive integers.

2. Preliminaries and lemmas

In this section we give some important useful lemmas.

2.1. Fourier transform estimate

The method of dimension-free estimates in this paper is mainly based on the
properties of the Fourier transform. From [6], we know that there is a linear positive
transformation U of Rd+1 such that G = U(G) is in the isotropic position. However,

MG
t f = MU(G)

t ( f ◦U−1)◦U is not true. It implies that one can not get∥∥MG
∗
∥∥

Lp→Lp =
∥∥∥MG

∗
∥∥∥

Lp→Lp
.

By [3] we know that 1 � L = L(G) . Let m( ,) denote the Fourier transform of
1
|G|G = G . It follows that

M̂t f ( ,) = m(t ,t2) f̂ ( ,). (2.1)

The following estimate can be found in [3].

LEMMA 2.1. Let G be a symmetric convex body G⊂Rd+1 which is in the isotropic
position. Let L = L(G) be the isotropic constant of G. Then for every  ∈ Rd+1 \ {0}
we have

|m( ,)| � (Lmax{| |, | |})−1 (2.2)

|m( ,)−1|� Lmax{| |, | |} (2.3)

and
| 〈m( ,),( ,)〉 |�C. (2.4)

Using Lemma 2.1, we obtain the following important estimates which will be used
in the almost orthogonality principle.

LEMMA 2.2. When | |2 > | | , for j ∈ Z we have∣∣∣m(2n ,22n
)− e−4nL2(| |2+||)

∣∣∣ ∣∣∣e−4 j+n+1L2(| |2+||)− e−4 j+nL2(| |2+||)
∣∣∣

� 2−
| j|
2 min

{
(2nL| |)− 1

2 ,(2nL| |) 1
2

}
.
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Proof. It follows from inequality (2.2) that∣∣∣m(2n ,22n
)− e−4nL2(| |2+||)

∣∣∣ �
(
Lmax{2n| |,22n| |})−1

+ e−4n(L| |)2

� 1
L2n| | .

Note that | |2 > | | . It can be deduced that max{2n| |,22n| |}� max{2n| |,(2n| |)2} .
Recalling that 1 � L , we have∣∣∣m(2n ,22n

)− e−4nL2(| |2+||)
∣∣∣

�
∣∣m(2n ,22n

)−1
∣∣+ ∣∣∣e−4nL2(| |2+||)−1

∣∣∣
� Lmax{2n| |,22n| |}+(2nL| |)2

� max{2nL| |,(2nL| |)2}.
Using these two estimates above, one has∣∣∣m(2n ,4n)− e−4nL2(| |2+||)

∣∣∣ � min

{
1

2nL| | ,max
{
2nL| |,(2nL| |)2}}

� min

{
1

2nL| | ,2
nL| |

}
.

Thus, it enough to estimate

min
{

(2nL| |)−1 ,2nL| |
}∣∣∣e−4 j+n+1L2(| |2+||)− e−4 j+nL2(| |2+||)

∣∣∣
� 2−

| j|
2 min{(2nL| |)− 1

2 ,(2nL| |) 1
2 }.

If j � 0, we have

min
{

(2nL| |)−1 ,2nL| |
}∣∣∣e−4 j+n+1L2(| |2+||)− e−4 j+nL2(| |2+||)

∣∣∣
� min

{
(2nL| |)− 1

2 ,(2nL| |) 1
2

}
×(2nL| |) 1

2

∣∣∣e−4 j+n+1L2(| |2+||)− e−4 j+nL2(| |2+||)
∣∣∣

� min
{

(2nL| |)− 1
2 ,(2nL| |) 1

2

}
(2nL| |) 1

2 e−4 j+nL2(| |2+||)

� 2−
j
2 min

{
(2nL| |)− 1

2 ,(2nL| |) 1
2

}
.

If j < 0, we have

min
{
(2nL| |)−1 ,2nL| |

}∣∣∣e−4 j+n+1L2(| |2+||)− e−4 j+nL2(| |2+||)
∣∣∣

� min
{
(2nL| |)− 1

2 ,(2nL| |) 1
2

}
×(2nL| |)− 1

2 e−4 j+nL2(| |2+||)
∣∣∣e−3·4 j+nL2(| |2+||)−1

∣∣∣
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� min
{
(2nL| |)− 1

2 ,(2nL| |) 1
2

}
(2nL| |)− 1

2 e−4 j+n(L| |)24 j+nL2 (| |2 + | |)
� min

{
(2nL| |)− 1

2 ,(2nL| |) 1
2

}
(2nL| |)− 1

2 e−4 j+n(L| |)24 j+n(L| |)2

� 2
j
2 min

{
(2nL| |)− 1

2 ,(2nL| |) 1
2

}
.

The proof is completed. �
Note that 2n � 2n +2n−ls � 2 ·2n holds for 0 � l � n and 0 � s � 2l . Using the

same method as in the proof of Lemma 2.2, for every 0 <  < 1 and | | � | |2 , we
have the following estimate.

LEMMA 2.3. Suppose | |2 � | | , 0 � l � n and 0 � s � 2l −1 . Then we have∣∣∣∣m((2n +2n−l(s+1)
)
 ,
(
2n +2n−l(s+1)

)2

)

− m

((
2n +2n−ls

)
 ,
(
2n +2n−ls

)2

)∣∣∣∣ ∣∣∣e−4 j+n+1(| |2+||) − e4 j+n(| |2+||)

∣∣∣
� 2−

| j|
2 min

{
(2nL| |)− 1

2  ,(2nL| |) 1
2 
}

.

LEMMA 2.4. When | |2 < | | , we have∣∣∣m(2n ,22n
)− e−4nL2(| |2+||)

∣∣∣
×
∣∣∣e−4 j+n+1L2(| |2+||)− e−4 j+nL2(| |2+||)

∣∣∣
� Lmin{2 j,2−

j
2 }min

{(
2nL| | 1

2

)−1
,
(
2nL| | 1

2

) 1
2
}

.

Proof. Since | |2 � | | , we have∣∣∣m(2n ,22n
)− e−4nL2(| |2+||)

∣∣∣
�
∣∣m(2n ,22n

)−1
∣∣+ ∣∣∣e−4nL2(| |2+||)−1

∣∣∣
� max

{
2nL| | 1

2 ,22nL2| |
}

.

On the other hand, we have∣∣∣m(2n ,22n)− e−4nL2(| |2+||)
∣∣∣ � ∣∣m(2n ,22n)

∣∣+ e−4nL2(| |2+||)

� max
{
2nL| |,22nL| |}−1

+
(
22nL2| |)−1

�
(
22nL| |)−1

+
(
22nL2| |)−1

� L · (22nL2| |2)−1
.
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Thus, we have∣∣∣m(2n ,22n)− e−4nL2(| |2+||)
∣∣∣� Lmin

{(
2nL| | 1

2

)−2
,
(
2nL| | 1

2

)}
.

So, it is enough to estimate

min

{(
2nL| | 1

2

)−2
,2nL| | 1

2

}
×
∣∣∣e−4 j+n+1L2(| |2+||)− e−4 j+nL2(| |2+||)

∣∣∣
� min{2 j,2−

j
2 }min

{(
2nL| | 1

2

)−1
,
(
2nL| | 1

2

) 1
2
}

.

If j � 0, we have

min

{(
2nL| | 1

2

)−2
,2nL| | 1

2

}
×
∣∣∣e−4 j+n+1L2(| |2+||)− e−4 j+nL2(| |2+||)

∣∣∣
� min

{(
2nL| | 1

2

)−1
,
(
2nL| | 1

2

) 1
2
}

×
(
2nL| | 1

2

) 1
2
∣∣∣e−4 j+n+1L2(| |2+||)− e−4 j+nL2(| |2+||)

∣∣∣
� min

{(
2nL| | 1

2

)−1
,
(
2nL| | 1

2

) 1
2
}(

2nL| | 1
2

) 1
2
e−4 j+nL2||

� 2−
j
2 min

{(
2nL| | 1

2

)−1
,
(
2nL| | 1

2

) 1
2
}

.

If j < 0, we have

min

{(
2nL| | 1

2

)−2
,2nL| | 1

2

}
×
∣∣∣e−4 j+n+1((L| |)2+L2||)− e−4 j+nL2(| |2+||)

∣∣∣
� min

{(
2nL| | 1

2

)−1
,
(
2nL| | 1

2

) 1
2
}(

2nL| | 1
2

)−1
e−4 j+nL2(| |2+||)

×
∣∣∣e−3·4 j+nL2(| |2+||)−1

∣∣∣
� min

{(
2nL| | 1

2

)−1
,
(
2nL| | 1

2

) 1
2
}

×
(
2nL| | 1

2

)−1
e−4 j+nL2(| |2+||)4 j+nL2 (| |2 + | |)

� 2 j min

{(
2nL| | 1

2

)− 1
2
,
(
2nL| | 1

2

)}
.



806 P. WANG AND X. NIE

The proof is completed. �

Using the same method as above, we obtain the following estimate.

LEMMA 2.5. For every 0 <  < 1 , | |2 < | | 0 � l � n and 0 � s � 2l −1 , we
have ∣∣∣∣m((2n +2n−l(s+1)

)
 ,
(
2n +2n−l(s+1)

)2

)

− m

((
2n +2n−ls

)
 ,
(
2n +2n−ls

)2

)∣∣∣∣ ∣∣∣e−4 j+n+1(| |2+||) − e4 j+n(| |2+||)

∣∣∣
� Lmin{2 j,2−

j
2 }min

{(
2nL| | 1

2

)−
,
(
2nL| | 1

2

) 1
2 
}

.

By inequality (2.4), it follows that

LEMMA 2.6. For 0 � l � n and 0 � s � 2l −1 , we have∣∣∣m((2n +2n−l(s+1)) ,(2n +2n−l(s+1))2
)

−m
(
(2n +2n−ls) ,(2n +2n−ls)2

)∣∣∣� 2−l

1+2−ls
. (2.5)

Proof. Observe that∣∣∣m((2n +2n−l(s+1)) ,(2n +2n−l(s+1))2
)

−m
(
(2n +2n−ls) ,(2n +2n−ls)2

)∣∣∣
=

∣∣∣∣∣
∫ 2n+2n−l(s+1)

2n+2n−l s

d
dt

m(t ,t2)dt

∣∣∣∣∣
�
∫ 2n+2n−l(s+1)

2n+2n−l s

∣∣∣∣ ddt
m(t ,t2)

∣∣∣∣dt

=
∫ 2n+2n−l(s+1)

2n+2n−l s

∣∣〈m(t ,t2),(t ,2t2)〉∣∣ dt
t

. (2.6)

By inequality (2.4), it can be deduced that

| 〈m( ,),( ,2)〉 | � | 〈m( ,),( ,)〉 |+
∣∣∣∣ 


m( ,)

∣∣∣∣� C (2.7)

Combining inequalities (2.6) and (2.7), we obtain the estimate (2.5). �
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2.2. An almost orthogonality principle

In this subsection, we show an almost orthogonality principle from [9] which will
be used to prove Theorem 1.2 and Theorem 1.3. We omit the proof here, since we can
find the proof of its discrete version in [7].

PROPOSITION 2.7. Let (Tt : t ∈ U) be a family of linear operators defined on
∪1�p�Lp(Rd+1) for some index set U ⊂ (0,) . Suppose that Tt = Mt −Ht for each
t ∈U , where Mt , Ht are positive linear operators. Assume that the following conditions
are satisfied.

(i) For every p ∈ (1,2] we have

sup
n∈Z

‖H∗,Un‖Lp(Rd+1)→Lp(Rd+1) < ,

where Un = [an,an+1]∩U and (an : n ∈ Z) ⊂ (0,) is a lacunary sequence obeying

1 < a � an

an−1
� a2,

for some a > 1 .
(ii) There is p0 ∈ (1,2) with the property that for every p ∈ (p0,2] we have

sup
n∈Z

‖T∗,Un‖Lp(Rd+1)→Lp(Rd+1) < 

(iii) There exists a sequence (b j : j ∈ Z) of positive numbers so that  j∈Z bj =
B <  for every  > 0 . Moreover, for every j ∈ Z we have

sup
‖ f‖

L2(Rd+1)�1

∥∥∥∥∥∥
(

n∈Z

sup
t∈Un

∣∣TtSn+ j f
∣∣2) 1

2

∥∥∥∥∥∥
L2(Rd+1)

� b j,

where (Sn : n ∈ Z) is the resolution of identity satisfying

f = 
n∈Z

Sn f

and ∥∥∥∥∥∥
(

j

|S j f |2
) 1

2

∥∥∥∥∥∥
Lp(Rd+1)

� Cpa‖ f‖Lp(Rd+1)

for all p ∈ (1,) . Then for every p ∈ (p0,2] , there exists a constant Cp such that

sup
‖ f‖Lp(Rd+1)�1

∥∥∥∥∥∥
(

n∈Z

sup
t∈Un

|Tn f |2
) 1

2

∥∥∥∥∥∥
Lp(Rd+1)

� Cp‖ f‖Lp(Rd+1).
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The key ingredient of the proof of main theorem will be the following inequality
which can be found in [6].

LEMMA 2.8. For every n ∈ N0 , r > 1 and every function a : [2n,2n+1] → C , we
have

sup
2n�t<2n+1

|a(t)−a(2n)|

� 21− 1
r 

0�l�n

(
2l−1


k=0

∣∣∣a(2n +2n−l(k+1)
)
−a
(
2n +2n−lk

)∣∣∣r)
1
r

.

2.3. A diffusion semigroup and corresponding Littlewood-Paley theory

In [15], there is shown a Littewood-Paley inequality which has an dimension-free
estimate.

LEMMA 2.9. Let (X ,B(X),) be a  -finite measure space, and (Tt)t�0 be a
strongly continuous semigroup on L2(X) , which maps L1(X)+L(X) to itself for every
t � 0 . We say that (Tt)t�0 is a symmetric diffusion semigroup, if it satisfies for all t � 0
the following conditions:

(i) Contraction property: for all p ∈ [1,] and f ∈ Lp(X) we have ‖Tt f‖Lp(X) �
‖ f‖Lp(X) .

(ii) Symmetry property: each Tt is a self-adjoint operator on L2(X) .
(iii) Positivity property: Tt f � 0 , if f � 0 .
(iv) Conservation property: Tt1 = 1 .

Then for 1 < p �  , we have∥∥∥∥sup
t>0

|Tt f |
∥∥∥∥

Lp(d)
� Cp‖ f‖Lp(d).

Therefore, define Ĝt f ( ,) = e−tL2(| |2+||) f̂ ( ,) . It follows from Lemma 2.9
that ∥∥∥∥sup

t>0
|Gt f |

∥∥∥∥
Lp(Rd+1)

� Cp‖ f‖Lp(Rd+1). (2.8)

Moreover, if we let

Ŝ j f ( ,) =
(
e−4 j+1L2(| |2+||) − e−4 jL2(| |2+||)

)
f̂ ( ,).

Due to Lemma 2.9, it can be deduced that we can find a constant Cp independent of d
such that ∥∥∥∥∥∥

(

j∈Z

∣∣S j f
∣∣2) 1

2

∥∥∥∥∥∥
Lp(Rd+1)

� Cp ‖ f‖Lp(Rd+1) , (2.9)

for 1 < p <  .
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3. The proof of Theorem 1.2

By interpolation, we need only to prove Theorem 1.2 for 1 < p � 2. Let an = 2n

and U = {2n : n ∈ Z} . Then Un = [an,an+1)∩U = {2n} . Set Tt f = Mt f −Gt f . It is
enough to prove ∥∥∥∥sup

n∈Z

|T2n f |
∥∥∥∥

Lp(Rd+1)
� Cp‖ f‖Lp(Rd+1), (3.1)

for 1 < p �  .
It is easy to know the operators Gt satisfy condition (i). For 1 < p � , condition

(ii) follows since∥∥∥∥sup
t∈Un

|Tt f |
∥∥∥∥

Lp(Rd+1)
= ‖T2n f‖Lp(Rd+1) � 2‖ f‖Lp(Rd+1).

It remains to prove condition (iii) for us.
By Plancherel’s theorem, we obtain∥∥∥∥∥∥

(

n∈Z

|T2nS j+n f |2
) 1

2

∥∥∥∥∥∥
2

L2(Rd+1)

=
∫

Rd+1

n∈Z

∣∣T2nS j+n f (x,y)
∣∣2 dxdy

=
∫

Rd+1

n∈Z

(
m(2n ,22n)− e−4nL2(| |2+||)

)2

×
(
e−4( j+n+1)L2(| |2+||)− e−4( j+n)L2(| |2+||)

)2 | f̂ ( ,)|2dd .

By Lemma 2.2 and Lemma 2.4, we have∥∥∥∥∥∥
(

n∈Z

|T2nS j+n f |2
) 1

2

∥∥∥∥∥∥
2

L2(Rd+1)

� L2
∫

Rd+1
| f (x,y)|2 dxdy.

Therefore, By the Proposition 2.7, we have∥∥∥∥∥∥
(

n∈Z

|T2n f |2
) 1

2

∥∥∥∥∥∥
Lp(Rd+1)

� Cp(L(G))‖ f‖Lp(Rd+1).

It implies that ∥∥∥∥sup
n∈Z

|T2n f |
∥∥∥∥

Lp(Rd+1)
� Cp(L(G))‖ f‖Lp(Rd+1).

The proof of Theorem 1.2 is completed.
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4. The proof of Theorem 1.3

By interpolation, we need only to prove Theorem 1.3 for 3
2 < p � 2. Observe that

MG
∗ f (x,y) � lim

k→
sup
m∈Z

|M2−km f (x,y)| .

Thus, it is enough to prove∥∥∥∥sup
m∈Z

|M2−km f |
∥∥∥∥

Lp(Rd+1)
� Cp(L(G))‖ f‖Lp(Rd+1) (4.1)

for 3
2 < p � 2.
Set Ht f = M2n f for 2n � t < 2n+1 and take Tt = Mt −Ht . It follows from Theorem

1.2 that we have∥∥∥∥sup
t>0

Ht f

∥∥∥∥
Lp(Rd+1)

=
∥∥∥∥sup

n∈Z

M2n f

∥∥∥∥
Lp(Rd+1)

� Cp(L(G))‖ f‖Lp(Rd+1),

for 1 < p �  . Thus inequality (4.1) follows from∥∥∥∥sup
m∈Z

|T2−km f |
∥∥∥∥

Lp(Rd+1)
� Cp(L(G))‖ f‖Lp(Rd+1) (4.2)

for 3
2 < p � 2.
We will use Proposition 2.7 to prove inequality (4.2). Let U = [2−km : m∈ Z) and

an = 2n . Then we have

Un = [an,an+1)∩U =
{

2n +2−km : 0 � m < 2n+k
}

.

By definition, we have∥∥∥∥sup
t∈Un

Ht f

∥∥∥∥
Lp(Rd+1)

= ‖M2n f‖Lp(Rd+1) � ‖ f‖Lp(Rd+1),

for 1 < p �  . Thus, we obtain condition (i).
Next, we try to prove Tt is satisfies with condition (ii). That is∥∥∥∥sup

t∈Un

|Tt f |
∥∥∥∥

Lp(Rd+1)
� Cp(L(G))‖ f‖Lp(Rd+1)

for 3
2 < p �  . By Lemma 2.8, it follows that

sup
2n�t<2n+1

|Tt f | � 2
1
2

n+k


l=0

(
2l−1


s=0

∣∣∣M2n+2n−l(s+1) f −M2n+2n−l s f
∣∣∣2)

1
2

.
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Therefore, it enough to prove∥∥∥∥∥∥∥
n+k


l=0

(
2l−1


s=0

∣∣∣M2n+2n−l(s+1) f −M2n+2n−ls f
∣∣∣2)

1
2

∥∥∥∥∥∥∥
Lp(Rd+1)

� Cp ‖ f‖Lp(Rd+1) , (4.3)

for 3
2 < p �  .
We will try to estimate∥∥∥∥∥∥∥

(
2l−1


s=0

∣∣∣M2n+2n−l(s+1) f −M2n+2n−ls f
∣∣∣2)

1
2

∥∥∥∥∥∥∥
Lp(Rd+1)

.

When p = 1, using triangle inequality, we have∥∥∥∥∥∥∥
(

2l−1


s=0

∣∣∣M2n+2n−l(s+1) f −M2n+2n−l s f
∣∣∣2)

1
2

∥∥∥∥∥∥∥
L1(Rd+1)

�
∥∥∥∥∥2l−1


s=0

∣∣∣M2n+2n−l(s+1) f −M2n+2n−l s f
∣∣∣∥∥∥∥∥

L1(Rd+1)

� 2l+1‖ f‖L1(Rd+1) .

When p = 2, by inequality (2.5) and the Plancherel theorem, we obtain∥∥∥∥∥∥∥
(

2l−1


s=0

∣∣∣M2n+2n−l(s+1) f −M2n+2n−ls f
∣∣∣2)

1
2

∥∥∥∥∥∥∥
L2(Rd+1)

=

(∫
Rd+1

2l−1


s=0

(
m
(
(2n +2n−l(s+1)) ,(2n +2n−l(s+1))2

)

−m

(
(2n +2n−ls) ,

(
2n +2n−ls

)2

))2

| f̂ ( ,)|2dd

) 1
2

�
(∫

Rd+1

2l−1


s=0

∣∣∣∣ 2−l

1+2−ls

∣∣∣∣2 f̂ ( ,)|2dd

) 1
2

� 2−
l
2 ‖ f‖L2(Rd+1).

By interpolation, we have∥∥∥∥∥∥∥
(

2l−1


s=0

∣∣∣M2n+2n−l(s+1) f −M2n+2n−ls f
∣∣∣2)

1
2

∥∥∥∥∥∥∥
Lp(Rd+1)

� 2l2−
l(1− )

2 ‖ f‖Lp(Rd+1),
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where 0 �  � 1 and 1
p = 

1 + 1−
2 . Therefore when p > 3

2 , we have  = 1
2 − 3

2 > 0.
It follows that∥∥∥∥∥∥∥

(
2l−1


s=0

∣∣∣M2n+2n−l(s+1) f −M2n+2n−l s f
∣∣∣2)

1
2

∥∥∥∥∥∥∥
Lp(Rd+1)

� 2− l‖ f‖Lp(Rd+1).

Thus we obtain inequality (4.3) for 3
2 < p �  . Then, we have condition (ii).

At last, we consider condition (iii). Using Lemma 2.8 again, we obtain

sup
t∈Un

∣∣TtS j+n f (x,y)
∣∣

�
n+k


l=0

(
2l−1


s=0

∣∣∣M2n+2n−l(s+1)S j+n f (x,y)−M2n+2n−l sS j+n f (x,y)
∣∣∣2)

1
2

It follows that∥∥∥∥∥∥
(

sup
t∈Un

∣∣TtS j+n f
∣∣2) 1

2

∥∥∥∥∥∥
L2(Rd+1)

�

∥∥∥∥∥∥∥∥∥
⎧⎪⎨⎪⎩n∈Z

⎡⎢⎣n+k


l=0

(
2l−1


s=0

∣∣∣M2n+2n−l(s+1)S j+n f −M2n+2n−l sS j+n f
∣∣∣2)

1
2

⎤⎥⎦
2⎫⎪⎬⎪⎭

1
2

∥∥∥∥∥∥∥∥∥
L2(Rd+1)

�

∥∥∥∥∥∥∥



l=0

(


n�l−k

2l−1


s=0

∣∣∣M2n+2n−l(s+1)S j+n f −M2n+2n−l sS j+n f
∣∣∣2)

1
2

∥∥∥∥∥∥∥
L2(Rd+1)

Using triangle inequality and the Plancherel theorem, we deduce that∥∥∥∥∥∥
(

sup
t∈Un

∣∣TtS j+n f
∣∣2) 1

2

∥∥∥∥∥∥
L2(Rd+1)

can be controlled by




l=0

(∫
Rd+1


n�l−k

2l−1


s=0

(
m

(
(2n +2n−l(s+1)) ,

(
2n +2n−l(s+1)

)2

)

− m

(
(2n +2n−ls) ,

(
2n +2n−ls

)2

))2(

e−4 j+n+1(| |2+||)− e−4 j+n(| |2+||)
)2

× f̂ ( ,)|2dd
) 1

2
.
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Note that when | | � | |2 , by Lemma 2.3 and Lemma 2.6, we have


n�l−k

2l−1


s=0

(
m

(
(2n +2n−l(s+1)) ,

(
2n +2n−l(s+1)

)2

)

− m

(
(2n +2n−ls) ,

(
2n +2n−ls

)2

))2(

e−4 j+n+1(| |2+||)− e−4 j+n(| |2+||)
)2

= 
n�l−k

2l−1


s=0

(
m

(
(2n +2n−l(s+1)) ,

(
2n +2n−l(s+1)

)2

)

− m

(
(2n +2n−ls) ,

(
2n +2n−ls

)2

))2−2

×
(

m

(
(2n +2n−l(s+1)) ,

(
2n +2n−l(s+1)

)2

)

− m

(
(2n +2n−ls) ,

(
2n +2n−ls

)2

))2 (

e−4 j+n+1(| |2+||) − e−4 j+n(| |2+||)
)2

� 
n�l−k

2l−1


s=0

(
2−l

1+2−ls

)2−2

2−| j|min
{
(2nL| |)− ,(2nL| |)}� 2−| j|.

When | |2 � | | , by Lemma 2.5 and Lemma 2.6, we have


n�l−k

2l−1


s=0

(
m

(
(2n +2n−l(s+1)) ,

(
2n +2n−l(s+1)

)2

)

− m

(
(2n +2n−ls) ,

(
2n +2n−ls

)2

))2(

e−4 j+n+1(| |2+||)− e−4 j+n(| |2+||)
)2

= 
n�l−k

2l−1


s=0

(
m

(
(2n +2n−l(s+1)) ,

(
2n +2n−l(s+1)

)2

)

− m

(
(2n +2n−ls) ,

(
2n +2n−ls

)2

))2−2

×
(

m

(
(2n +2n−l(s+1)) ,

(
2n +2n−l(s+1)

)2

)

− m

(
(2n +2n−ls) ,

(
2n +2n−ls

)2

))2 (

e−4 j+n+1(| |2+||) − e−4 j+n(| |2+||)
)2

� L2 
n�l−k

2l−1


s=0

(
2−l

1+2−ls

)2−2

min{22 j,2−}

×min

{(
2nL| | 1

2

)−
,
(
2nL| | 1

2 
) 1

2
}

� L2 min{22 j,2−}.
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Thus, we have∥∥∥∥∥∥
(

sup
t∈Un

∣∣TtS j+n f
∣∣2) 1

2

∥∥∥∥∥∥
L2(Rd+1)

� Lmax
{

2−| j|,min{2 j,2−
j
2 }
}
‖ f‖L2(Rd+1).

Thus we have proved Theorem 1.3.
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