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QUASILINEAR SCHRÖDINGER EQUATIONS

YUNFENG WEI ∗ , CAISHENG CHEN, HONGWANG YU AND RUI HU

(Communicated by N. Elezović)

Abstract. This paper is concerned with a class of generalized quasilinear Schrödinger equations
which have appeared from plasma physics, as well as high-power ultrashort laser in matter. Com-
bining the variable replacement and the Schauder-Tychonoff fixed point theorem, we establish
the nonexistence and existence of positive radial ground state solutions for this problem.

1. Introduction and main results

In this paper, we consider the nonexistence and existence of positive radial ground
state solutions for the generalized quasilinear Schrödinger equations

−div(hp(u)|u|p−2u)+hp−1(u)h′(u)|u|p = f (x)|u|q−2u+g(x)|u|m−2u, x ∈ R
N ,

(1.1)
where N � 3, 1 < p < N, q > 1, m > 1, h∈C1(R,R+) is an even function, f (x),g(x)
are positive radial continuous functions in RN .

In the case p = 2, the study of (1.1) is related to standing wave solutions for
quasilinear Schrödinger equations

it = − +W(x) − h̃(| |2) −(k(| |2))k′(| |2) , x ∈ R
N , (1.2)

where  : R×RN → C, W : RN → R is a given potential,  > 0 is a constant, h̃
and k are real functions. Quasilinear equations such as (1.2) arise from more naturally
mathematical physics and have been accepted as models of several physical phenomena
corresponding to different types of k. The case k(s) = s , which was used, for instance,
for the superfluid film equation in plasma physics by Kurihara in [11]. For the case
k(s) = (1+ s)1/2, Ritchie [22] used (1.2) to model the self-channeling of a high-power
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ultrashort laser in matter. For more physical background and applications on (1.2), we
refer the reader to [21, 18, 5] and their references.

Putting (t,x) = exp(−iEt)u(x) in (1.2), where E ∈ R and u is a real function,
(1.2) can be reduced to the following elliptic form

−u+V(x)u−(k(u2))k′(u2)u = h̃(u2)u, x ∈ R
N . (1.3)

Particularly, take hp(u) = 1+ |(k(u2))′|p
p , then (1.1) turns into

−pu−p(k(u2))k′(u2)
2u
p

= l(x,u), x ∈ R
N . (1.4)

Clearly, when p = 2, equation (1.4) turns into (1.3) with V (x) ≡ 0,  = 1. We note
that equation (1.1) also arises in biological models and propagation of laser beams
when h(u) is a positive constant, see [10, 7]. If we set hp(u) = 1 + (2)p

p |u|p(2−1),

i.e., k(s) = s with  > 1/2, we get the superfluid film equation in plasma physics:

−pu−p(|u|2)
2|u|2−2u

p
= l(x,u), x ∈ R

N . (1.5)

If we let hp(u) = 1+  p

p (1+u2)(

2 −1)p|u|p, i.e., k(s) = (1+ s)


2 with  � 1, then we

conclude

−pu−
(
p(1+u2)/2) u

p(1+u2)(2−)/2
= l(x,u), x ∈ R

N , (1.6)

which models the self-channeling of a high-power ultrashort laser in matter.
Recently, the issues about existence and multiplicity of solutions for the above

equations have been extensively studied by different mathematical methods such as
constrained minimization argument, change of variables, Nehari method, perturbation
method, iterative techniques, see [20, 8, 16, 2, 19, 13, 34, 14] and references cited
therein. In particular, Liu et al. [17] firstly studied the soliton solutions for the form
(1.3) with k(s) = s by introducing a new method called dual approach. Deng and

Huang [4] studied equation (1.3) for the case k(s) = (1 + s)
1
2 with critical growth.

By utilizing dual approach and an abstract result developed by Jeanjean in [9], they
obtained the existence of positive ground state solutions. Li and Wang [12] investigated
(1.6) with p = 2 and l(x,u) =h(x)|u|q−1u+H(x)|u|m−1u . Relying on some special
arguments and fixed point theorem, nonexistence criteria, existence of positive ground
state solutions were established under suitable assumptions on q,m,h and H . Shen and
Wang [27] considered the following generalized quasilinear Schrödinger equation

−div(h2(u)u)+h(u)h′(u)|u|2 +V(x)u = a(u). (1.7)

By introducing a new variable replacement and using minimax methods, the existence
of positive solution for the equation (1.7) is established. Similar works can be found in
[3, 6, 25, 26, 24, 23, 15, 28, 33] and reference therein.
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On the other hand, with the help of a dual approach and some new iterative tech-
niques, Zhang et al. in [32] studied the existence and nonexistence of entire blow-up
solutions for the following quasilinear elliptic equation with non-square diffusion term⎧⎨⎩

pu+p(|u|2)|u|2−2u = f (x)a(u),

u > 0 in RN , lim
|x|→

u(x) = .
(1.8)

In [1], Chen studied the existence of multiple solutions to a class of quasilinear Schrö-
dinger equation

−pu−p(|u|2)|u|2−2u+V(x)|u|p−2u = a(u). (1.9)

By using symmetric mountain pass lemma, the result of infinitely many solutions to
equation (1.9) is established. For more related work on quasilinear Schrödinger equa-
tions with p -Laplacian operator, we refer the reader to [30, 29, 31] and their references.

However, it is worth stressing that there are relatively few results on nonexistence
and existence of positive solutions to quasilinear Schrödinger equations. The aim of
this paper is to extend such results to generalized quasilinear Schrödinger equations.
As far as we are aware, there are no results dealing with this subject except for the case
p = 2 or the special h(t) ([12, 27, 32]).

Motivated by the aforementioned works, we consider the nonexistence and exis-
tence of positive radial ground state solutions for (1.1).

A function u : RN → R is called a ground state solution of (1.1) if u ∈ C1(RN)
that satisfies u → 0 as |x| →  and for all  ∈C1

0(R
N) it holds∫

RN

[
hp−1(u)h′(u)|u|p +hp(u)|u|p−2u

]
dx

=
∫

RN

(
f (x)|u|q−2u+g(x)|u|m−2u

)
dx.

(1.10)

Notice that we cannot apply directly variational methods since it is hard to construct a
suitable space such that the energy functional or integral operator is well defined and
belongs to C1 -class. To solve this obstacle, inspired by [17, 2], we introduce another
change of variables due to [27] as

v = H(u) =
∫ u

0
h(t)dt. (1.11)

Making the change of variables v = H(u) or u = H−1(v), (1.1) can be transformed into

−pv =
f (x)|H−1(v)|q−2H−1(v)+g(x)|H−1(v)|m−2H−1(v)

h(H−1(v))
, x ∈ R

N . (1.12)

Since f (x) and g(x) are radial functions, we deduce that equation (1.12) is equivalent
to the problem

− (
rN−1|v′|p−2v′

)′
=

rN−1
(
f (r)|H−1(v)|q−2H−1(v)+g(r)|H−1(v)|m−2H−1(v)

)
h(H−1(v))

, r > 0.
(1.13)
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Using the forthcoming Lemma 2.1, it is easy to verify that u(x) is the positive
ground state solution of (1.1) iff v(x) is the positive ground state solution of (1.12).
Remember that equation (1.12) is equivalent to problem (1.13). Hence, the purpose of
our article is to establish the nonexistence and existence of positive radial ground state
solutions of (1.1) via (1.13).

In this article, we assume h(t) satisfies the following
(H1) h(t) ∈C1(R,R+) is even and h′(t) � 0 for all t � 0.

(H2) There exists  > 0 such that th′(t) � h(t), for all t > 0.

We also suppose that f (t) and g(t) satisfy

(A1)
∫ 

a
t p−1

(
t−(q−p) f (t)+ t−(m−p)g(t)

)
dt = , where a > 0 is some given

constant,  = N−p
p−1 .

(A2)
∫ 

0

(
s1−N

∫ s

0
tN−1( f (t)+g(t)

)
dt

) 1
p−1

ds = .

(A3)
(
tN f (t)

)′ � (N−p)q
p(+1)

tN−1 f (t),
(
tNg(t)

)′ � (N−p)m
p(+1)

tN−1g(t), for all t > 0.

Now we may state our main results.

THEOREM 1.1. (Nonexistence) Let 1 < p < N and f (x),g(x) are positive radial
continuous functions in RN . Assume that (H1)−(H2) and (A1) hold. If 2 � p <
min{q,m} . Then (1.1) has no positive radial ground state solutions.

THEOREM 1.2. (Existence) Let 1 < p < N, min{q,m} > 1 and f (x),g(x) are
positive radial continuous functions in RN . Assume that (H1)−(H2) and (A2)− (A3)
hold. If 1 < p < max{q,m} . Then (1.1) has infinitely many positive radial ground state
solutions.

REMARK 1.3. If we let h(t) = p
√

1+ (2)p

p |t|p(2−1) with  > 1/2, then h(t) ∈
C1(R,R+) is an even function and satisfies (H1)−(H2). Thus the results of Theorems
1.1 and 1.2 are established for (1.5) with l(x,u) = f (x)|u|q−2u+g(x)|u|m−2u.

REMARK 1.4. If we let h(t)= p
√

1+  p

p (1+ t2)(

2 −1)p|t|p with  � 1, then h(t)∈

C1(R,R+) is an even function and satisfies (H1)−(H2). The conclusions of Theo-
rems 1.1 and 1.2 are also established for (1.6) with l(x,u) = f (x)|u|q−2u+g(x)|u|m−2u.
Which recover the known results for the p = 2 in Li and Wang [12, Theorems 1.1 and
1.2].

This paper is organized as follows. In Section 2, we give some preliminary results
and then prove Theorem 1.1. In the final Section, we will establish and prove the
existence of infinitely positive ground state solutions of (1.13). Besides, we denote by
C a positive constant, which may vary from line to line.
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2. Nonexistence of ground state solutions

We first give some properties of H(t) and H−1(t) .

LEMMA 2.1. The functions H(t) and H−1(t) satisfy:
(1) H(t), H−1(t) are odd, strictly increasing, and C2 in R.
(2) H(t) � h(0)t, ∀t ∈ [0,); 0 < (H−1)′(t) � 1

h(0) , ∀t ∈ R; |H−1(t)| � 1
h(0) |t|,

∀t ∈ R.

(3) lim
t→0

H−1(t)
t = 1

h(0) ; lim
t→

H−1(t)
t =

{ 1
h() , i f h is bounded,

0, i f h is unbounded.

(4) h(H−1(t))H−1(t) � (+1)t � ( +1)h(H−1(t))H−1(t), ∀t � 0.
(5) There exists a positive constant C such that |H−1(t)| � C|t|, ∀|t| � 1.

Proof. Utilizing the definition of h(t) , (1.11) and assumptions (H1)−(H2), we
may argue similarly as in the proof of Lemma 2.1 in [6] to prove our results and is
hence omitted. �

Define the following operator

L(v)(r) = −(
rN−1|v′|p−2v′

)′
, r > 0.

We have the following result.

LEMMA 2.2. Suppose that v(r) ∈ C2(0,) is a positive solution of (1.13) and
1 < p < N . If {

L(v)(r) � 0, r > 0,

v′(0) = 0.
(2.1)

Then for all r > 0, the function S(r) := rv(r) is nondecreasing, here  > 0 is given
in (A1) .

Proof. Integrating (1.13) from 0 to r , we conclude that (2.1) holds and v′(r) < 0
(r > 0). Since

L(v)(r) = −(
rN−1|v′|p−2v′

)′ = −(p−1)rN−2|v′|p−2(rv′′ +1v
′)

= −(p−1)rN−2|v′|p−2(rv′ +v)′ = −(p−1)rN−2|v′|p−2 ′(r),
(2.2)

where 1 = N−1
p−1 ,  (r) = rv′ +v. Thus,  ′(r) � 0 (r > 0).

We claim that for all r > 0,  (r) � 0. If this is not true, then there is r0 > 0 such
that  (r0) < 0. Remembering  ′(r) � 0 (r > 0), we get  (r) is nonincreasing for all
r > 0. So,

rv′ � rv′ +v =  (r) �  (r0), for all r ∈ (r0,),
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that is,

v′(r) �  (r0)
r

, for all r ∈ (r0,).

Integrating the above inequality from r0 to r , we deduce that

v(r) � v(r0)+ (r0) ln
r
r0

→−, when r → .

This is a contradiction to the positive solution v(r). Consequently, the claim is proved
and

 (r) = rv′ +v = r1−(rv)′ = r1−S′(r) � 0, for all r ∈ (0,). (2.3)

This shows that S(r) is nondecreasing for all r > 0. The proof is complete. �
Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. The proof of Theorem 1.1 is by contradiction. We assume
that (1.13) has a positive ground state solution v , then Lemma 2.2 holds. Moreover,
from (2.2), we have

L(v)(r) = −(p−1)rN−2|v′|p−2 ′(r)

= rN−1 · f (r)(H−1(v))q−1 +g(r)(H−1(v))m−1

h(H−1(v))
,

(2.4)

which yields

− ′(r) = r|v′|2−p · f (r)(H−1(v))q−1 +g(r)(H−1(v))m−1

(p−1)h(H−1(v))
. (2.5)

Note that v is positive ground state solution, it follows from Lemma 2.1-(3),(4) that
there are positive constants a0 � a, C such that

− ′(r) = r|v′|2−p · f (r)(H−1(v))q−1 +g(r)(H−1(v))m−1

(p−1)h(H−1(v))

� Cr|v′|2−p( f (r)vq−1 +g(r)vm−1), for all r ∈ [a0,),
(2.6)

where a is given in (A1) .
Recall that  (r) = rv′ +v � 0 (r > 0), we have − v

r � v′ < 0 (r > 0). Conse-
quently, |v′| = −v′ � v

r and

|v′|2−p � 2−pv2−prp−2, for all r ∈ (0,), (2.7)

here we have used p � 2. By virtue of (2.6) and (2.7), we find a constant C > 0 such
that

− ′(r) � Crp−1( f (r)vq+1−p +g(r)vm+1−p), for all r ∈ [a0,).



NONEXISTENCE AND EXISTENCE FOR SCHRÖDINGER EQUATIONS 823

Integrating the above inequality from a0 to r , we obtain

− (r)+ (a0) � C
∫ r

a0

t p−1( f (t)vq+1−p(t)+g(t)vm+1−p(t)
)
dt.

Since S(r) is nondecreasing in (0,) and  (r) � 0 (r > 0), we get

 (a0) � C
∫ r

a0

t p−1( f (t)vq+1−p(t)+g(t)vm+1−p(t)
)
dt

= C
∫ r

a0

t p−1( f (t)Sq+1−p(t)t−(q+1−p) +g(t)Sm+1−p(t)t−(m+1−p))dt (2.8)

� CSq+1−p(a0)
∫ r

a0

f (t)t p−1−(q+1−p)dt +CSm+1−p(a0)
∫ r

a0

g(t)t p−1−(m+1−p)dt

� Cmin{Sq+1−p(a0),Sm+1−p(a0)}
∫ r

a0

t p−1( f (t)t−(q+1−p) +g(t)t−(m+1−p))dt.

Now we divide the rest proof into two cases.

Case 1. If
∫ 

a0

t p−1( f (t)t−(q+1−p)+g(t)t−(m+1−p))dt =, then we have a con-

tradiction by letting r → in (2.8). Hence (1.13) has no positive ground state solution.

Case 2. If
∫ 

a0

t p−1( f (t)t−(q+1−p) +g(t)t−(m+1−p))dt < . Set

A(s) :=
∫ 

s
t p−1( f (t)t−(q+1−p) +g(t)t−(m+1−p))dt, s ∈ [a0,). (2.9)

Then A(s) is bounded for s � a0. Moreover, we have

A′(s) = −sp−1( f (s)s−(q+1−p) +g(s)s−(m+1−p)).
From (2.3), we get S′(r) = r−1 (r). Combining this with (2.8) and (2.9), we conclude
that for all s � a0,

S′(s) � Cs−1 min
{
Sq+1−p(s),Sm+1−p(s)

}
A(s), as r → .

If min
{
Sq+1−p(s),Sm+1−p(s)

}
= Sq+1−p(s), then we can find

S′(s)
Sq+1−p(s)

� Cs−1A(s), s ∈ [a0,). (2.10)

Integrating the above inequality from a0 to r , thanks to p < min{q,m}, we deduce

1
p−q

[
Sp−q(r)−Sp−q(a0)

]
� C

[
rA(r)−a0A(a0)

+
∫ r

a0

t p−1( f (t)t−(q−p) +g(t)t−(m−p))dt
]
.
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As a consequence,

1
q− p

Sp−q(a0) � C
[∫ r

a0

t p−1( f (t)t−(q−p) +g(t)t−(m−p))dt− sA(a0)
]
.

Combining this and the hypothesis (A1) , we can derive

0 < S(a0)

� C
[∫ r

a0

t p−1( f (t)t−(q−p) +g(t)t−(m−p))dt−a0A(a0)
] 1

p−q → 0, as r → ,

which is a contradiction.
If min

{
Sq+1−p(s),Sm+1−p(s)

}
= Sm+1−p(s). Same as arguments in the above

paragraph, we also get a contradiction. So, (1.13) has no positive ground state solu-
tion and the proof is finished. �

REMARK 2.3. For all s � 1, we have∫ r

s
t p−1( f (t)t−(q+1−p) +g(t)t−(m+1−p))dt

�
∫ r

s
t p−1( f (t)t−(q−p) +g(t)t−(m−p))dt.

Then ∫ 

s
t p−1( f (t)t−(q+1−p) +g(t)t−(m+1−p))dt = 

=⇒
∫ 

s
t p−1( f (t)t−(q−p) +g(t)t−(m−p))dt = .

3. Existence of ground state solutions

In this section, we will prove the existence of positive radial ground state solutions
for (1.13) by using the Schauder-Tychonoff fixed point theorem.

We still consider (1.13), namely⎧⎨⎩−(
rN−1|v′|p−2v′

)′ = rN−1
(

f (r)|H−1(v)|q−2H−1(v)+g(r)|H−1(v)|m−2H−1(v)
)

h(H−1(v)) , r > 0,

v0 = v(0) > 0, v(r) → 0, as r → ,

where min{q,m} > 1, 1 < p < N.

Proof of Theorem 1.2. We divide the proof into two parts.

Step 1. In this step, we will show that for each v0 > 0, there exists  > 0 and
v = v(r) such that

− (
rN−1|v′|p−2v′

)′
=

rN−1
(
f (r)|H−1(v)|q−2H−1(v)+g(r)|H−1(v)|m−2H−1(v)

)
h(H−1(v))

, r ∈ (0, ),
(3.1)



NONEXISTENCE AND EXISTENCE FOR SCHRÖDINGER EQUATIONS 825

with v0
2 � v(r) � v0, r ∈ [0, ]; v′(r) < 0,r ∈ (0, ).

By (1.11), we have H−1(v) > 0. Thus, (3.1) becomes

−(
rN−1|v′|p−2v′

)′ = rN−1
(
f (r)(H−1(v))q−1 +g(r)(H−1(v))m−1

)
h(H−1(v))

, r ∈ (0, ). (3.2)

Remember that f (t),g(t) are positive continuous functions, we see that

lim
r→0+

∫ r

0

(∫ s

0

( t
s

)N−1
f (t)dt

) 1
p−1

ds = 0, lim
r→0+

∫ r

0

(∫ s

0

( t
s

)N−1
g(t)dt

) 1
p−1

ds = 0.

Choose  > 0 small enough so that∫ 

0

(∫ s

0

( t
s

)N−1
f (t)dt

) 1
p−1

ds � 1
4
(h(0))

q
p−1 (v0)

p−q
p−1 ,∫ 

0

(∫ s

0

( t
s

)N−1
g(t)dt

) 1
p−1

ds � 1
4
(h(0))

m
p−1 (v0)

p−m
p−1 .

(3.3)

Denote

X =
{
v ∈C[0, ]

∣∣∣v0

2
� v(r) � v0, r ∈ [0, ]

}
,

and the operator T : X →C[0, ] with ṽ(r) = T (v)(r) , where

ṽ(r) = v0−
∫ r

0

(∫ s

0

( t
s

)N−1
f (t) · (H−1(v))q−1

h(H−1(v))
dt

) 1
p−1

ds

−
∫ r

0

(∫ s

0

( t
s

)N−1
g(t) · (H

−1(v))m−1

h(H−1(v))
dt

) 1
p−1

ds.

(3.4)

Clearly, X is a nonempty closed convex set of C[0, ]. To exploit Schauder-Tychonoff
fixed point theorem, we first show that T maps X into itself. It is clear that ṽ(r) ∈
C[0, ]. Since v(r) ∈ X , it follows from (3.3) and Lemma 2.1-(2) that

0 �
∫ r

0

(∫ s

0

( t
s

)N−1
f (t) · (H

−1(v))q−1

h(H−1(v))
dt

) 1
p−1

ds

+
∫ r

0

(∫ s

0

( t
s

)N−1
g(t) · (H

−1(v))m−1

h(H−1(v))
dt

) 1
p−1

ds

�h(0)
q

1−p v
q−1
p−1
0

∫ 

0

(∫ s

0

( t
s

)N−1
f (t)dt

) 1
p−1

ds

+h(0)
m

1−p v
m−1
p−1
0

∫ 

0

(∫ s

0

( t
s

)N−1
g(t)dt

) 1
p−1

ds

�v0

4
+

v0

4
=

v0

2
.

Substituting the above inequality into (3.4), we conclude v0
2 � ṽ(r) � v0, r ∈ [0, ].

Hence, the desired result is obtained and TX ⊂ X .
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Next, we prove that T is continuous. To this aim, we assume that vn(r) is a
sequence in X which converges to v(r) uniformly in [0, ].

Set

1
n (s) =

∫ s

0

( t
s

)N−1
f (t) · (H−1(vn))q−1

h(H−1(vn))
dt, 1(s) =

∫ s

0

( t
s

)N−1
f (t) · (H−1(v))q−1

h(H−1(v))
dt,

2
n (s) =

∫ s

0

( t
s

)N−1
g(t) · (H

−1(vn))q−1

h(H−1(vn))
dt, 2(s) =

∫ s

0

( t
s

)N−1
g(t) · (H

−1(v))q−1

h(H−1(v))
dt.

Then we have∣∣1
n (s)−1(s)

∣∣ �
∫ s

0
f (t)

∣∣∣ (H−1(vn))q−1

h(H−1(vn))
− (H−1(v))q−1

h(H−1(v))

∣∣∣dt,

∣∣2
n (s)−2(s)

∣∣ �
∫ s

0
g(t)

∣∣∣(H−1(vn))q−1

h(H−1(vn))
− (H−1(v))q−1

h(H−1(v))

∣∣∣dt,

(3.5)

and∣∣ṽn(r)− ṽ(r)
∣∣ �

∫ r

0

(∣∣(1
n (s))

1
p−1 − (1(s))

1
p−1

∣∣+ ∣∣(2
n (s))

1
p−1 − (2(s))

1
p−1

∣∣)ds.

(3.6)
Hence, by (3.5), we deduce that as n→, {1

n (s)} and {2
n (s)} converges to {1(s)}

and {2(s)} uniformly in [0, ] , respectively. As a result, {(1
n (s))

1
p−1 } and

{(2
n (s))

1
p−1 } converges to ({1(s))

1
p−1 } and {(2(s))

1
p−1 } uniformly in [0, ] , re-

spectively. Combining this with (3.6), we obtain ṽn(r) converges to v(r) in C[0, ].
Namely, T is continuous.

At last, we will verify that T (X) is relatively compact. Since v(r) ∈ X , it follows
from Lemma 2.1-(2) and (3.4) that

ṽ′(r) =
(∫ r

0

( t
r

)N−1
f (t) · (H−1(v))q−1

h(H−1(v))
dt

) 1
p−1 +

(∫ r

0

( t
r

)N−1
g(t) · (H

−1(v))m−1

h(H−1(v))
dt

) 1
p−1

� h(0)
q

1−p vq−1
0

(∫ 

0
f (t)dt

) 1
p−1 +h(0)

m
1−p vm−1

0

(∫ 

0
g(t)dt

) 1
p−1 , for all r ∈ [0, ],

which implies {ṽ(r)∣∣v ∈ X} is bounded. From the Arzela-Ascoli theorem, we get that
T (X) is relatively compact.

Thus, applying the Schauder-Tychonoff fixed point theorem, we can see that there
exists a v(r) ∈ X such that Tv = v. Moreover, the v(r) can be extended and satisfies
v′(r) < 0 provided v(r) > 0.

Indeed, let

U =
{
 � 0

∣∣v(r) > 0,0 � r < 
}
.

We claim that U = [0,). On the contrary we assume that U 
= [0,) , then there is
0 > 0 such that

v(r) > 0, 0 � r < 0; v(0) = 0; v′(r) < 0, 0 < t � 0.



NONEXISTENCE AND EXISTENCE FOR SCHRÖDINGER EQUATIONS 827

Multiplying (3.2) by −rv′(r) and v(r) , respectively, then integrating the results from 0
to 0, it follows that

p−1
p

N
0 (−v′(0))p +

∫ 0

0

[N− p
p

rN−1(−v′)p +
rN f (r)((H−1(v))q)′

q

+
rNg(r)((H−1(v))m)′

m

]
dr = 0,

(3.7)

and ∫ 0

0
rN−1(−v′)pdr = −[

rN−1(−v′)p−1v
]0
0 +

∫ 0

0
v
(
rN−1(−v′)p−1)′dr

=
∫ 0

0

rN−1
(
f (r)(H−1(v))q−1 +g(r)(H−1(v))m−1

)
v

h(H−1(v))
dr.

(3.8)

Note that∫ 0

0
rN f (r)((H−1(v))q)′dr =

[
rN f (r)(H−1(v))q]0

0 −
∫ 0

0
(H−1(v))q(rN f (r)

)′
dr

= −
∫ 0

0
(H−1(v))q(rN f (r)

)′
dr,

(3.9)

and∫ 0

0
rNg(r)((H−1(v))m)′dr =

[
rNg(r)(H−1(v))m]0

0 −
∫ 0

0
(H−1(v))m(

rNg(r)
)′

dr

= −
∫ 0

0
(H−1(v))m(

rNg(r)
)′

dr.
(3.10)

Thanks to the hypothesis (A3) , it follows from (3.7)–(3.10) and Lemma 2.1-(4) that

0 =
p−1

p
N

0 (−v′(0))p

+
∫ 0

0

[N− p
p

· rN−1 f (r)(H−1(v))q−1v
h(H−1(v))

− (H−1(v))q
(
rN f (r)

)′
q

]
dr

+
∫ 0

0

[N− p
p

· rN−1g(r)(H−1(v))m−1v
h(H−1(v))

− (H−1(v))m
(
rNg(r)

)′
m

]
dr

� p−1
p

N
0 (−v′(0))p

+
∫ 0

0

[ N− p
p(+1)

· rN−1 f (r)−
(
rN f (r)

)′
q

]
(H−1(v))qdr

+
∫ 0

0

[ N− p
p(+1)

· rN−1g(r)−
(
rNg(r)

)′
m

]
(H−1(v))mdr > 0.

This is impossible. Hence U = [0,) and obviously v′(r) < 0 provided v(r) > 0. To
sum up, there exists a positive radial solution v(r) of (1.13).
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Step 2. In this step, we will show that v(r) → 0 as r → , i.e., v(r) is a positive
ground state solution of (1.13).

Integrating (3.2) from 0 to s, it yields∫ s

0
(tN−1(−v′)p−1)′dt = sN−1(−v′(s))p−1

=
∫ s

0

tN−1
(
f (t)(H−1(v))q−1 +g(t)(H−1(v))m−1

)
h(H−1(v))

dt.
(3.11)

Notice that 0 < v(r) � v0, we can choose 0 < v0 � 1, then it follows from Lemma
2.1-(4),(5) and (3.11) that there exists a constant C > 0 such that

sN−1(−v′(s))p−1 � C
∫ s

0
tN−1( f (t)vq−1 +g(t)vm−1)dt

� Cvq−1(s)
∫ s

0
tN−1 f (t)dt +Cvm−1(s)

∫ s

0
tN−1g(t)dt

� Cvl−1(s)
∫ s

0
tN−1( f (t)+g(t)

)
dt,

(3.12)

where l = max
{
q,m

}
. Consequently,

−v′(s)

v
l−1
p−1 (s)

� C
(
s1−N

∫ s

0
tN−1( f (t)+g(t)

)
dt

) 1
p−1

. (3.13)

Recalling 1 < p < max
{
q,m

}
= l . Integrating (3.2) from 0 to r, then we get

p−1
l− p

v
p−l
p−1 (r) � p−1

l− p
(v

p−l
p−1 (r)− v

p−l
p−1
0 )

= −
∫ r

0

v′(s)

v
l−1
p−1 (s)

ds

� C
∫ r

0

(
s1−N

∫ s

0
tN−1( f (t)+g(t)

)
dt

) 1
p−1

ds,

which implies

v(r) � C

{∫ r

0

(
s1−N

∫ s

0
tN−1( f (t)+g(t)

)
dt

) 1
p−1

ds

} p−1
p−l

. (3.14)

Using the hypothesis (A2) , we immediately obtain v(r)→ 0 by letting r→ in (3.14).
Finally, from the above derivation process, we point out that for each 0 < v0 � 1,

there exists a solution v(r) of (1.13) with v(0) = v0. So, the existence of infinitely many
positive ground state solution for (1.13) is established, which indicates that (1.1) pos-
sesses infinitely many positive radial ground state solutions. The proof is finished. �
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